Can Light Interception of Intensive Apple and Pear Orchard Systems be Increased with new approaches to Tree Design?

Stuart Tustin

Plant and Food Research, Hawke’s Bay Research Centre, New Zealand

Why will this modern intensive orchard system not meet the needs of the future?
What is the physiological limit of apple orchard productivity?

Max. light interception is ~60%

‘The theoretical yield at 90% light interception would be 169 tonnes per hectare’.

Palmer et al, 2002

Future orchards – the systems challenges for achieving yields of 170+ t/ha

» 85+% light interception for high productivity

» High biological efficiency = high harvest index

» Simpler canopies = labour efficient, amenable to mechanisation, automation, robotics?

» Canopy designs that ensure high within-tree irradiance properties for fruit quality
Future orchards – practical considerations

» Between-row distances must be reduced to achieve 85-90% light interception
» With closer row spacing, simpler, more planar canopies are necessary
» Simpler canopies need to be designed to be physiologically efficient for productivity AND fruit quality
» Planting systems must be economically robust
» A ‘whole-system’ re-design

Tree prototype: planar canopy divided into multiple, minimally-branched vertical fruiting stems
Apical dominance minimises branching

Vertically-attenuated leaf area increases light interception

Physiological rationale
Apical dominance minimises branching

Vertically-attenuated leaf area
index increases light interception

Minimal branching, reduced
growth, for high harvest index
Apple ‘super orchard’ prototype - 2014

- 3m between trees, 1.5 to 2m between rows
- 1667-2222 planted trees/ha
- 16670 to 22220 vertical stems / ha, 30 cm apart in-row
- Vertical fruiting stems up to 3.5 m high
Apple ‘super orchard’ prototype – winter 2014

Systems Approach Step 1: Accelerating canopy establishment by developing purpose-designed nursery trees

Typical monoaxis nursery tree

Biaxis tree
The New Zealand Institute for Plant & Food Research Limited

Biaxis tree established at bench graft budbreak

Monoaxis

Biaxis

Bi-axis trees from bench grafts in winter 2013, ready for planting by autumn 2014 with 3 m of primary cordon axis

Cordon of bi-axis trees will be laid down early in year one in the orchard
Bi-axis trees from bench grafts in August (winter) 2013, planting in August 2014, with 3+ m of primary cordon axis

Future orchards:– Enhancing productivity of our best current orchard systems

» How much better can we make our current intensive orchards?

» Advanced cropping technologies for higher productivity

» Transitioning to precision crop load control methods
Enhancing productivity of our best performing intensive systems

Current studies from one of our commercial experimental sites:

» ‘Royal Gala’ on M.9, planted 2005, 3.4 x 1.25 m, 2,352 trees/ha (11 ft something x 4 ft, 52 trees/acre)

» Grower’s target yield: 100 tonnes/ha (100 bins/acre)

Canopy changes to enhance performance:

➢ Reduce branch number for improved light relations: 6 limbs per vertical m of canopy

➢ Artificial spur extinction for precision crop loading, thinning and enhanced spur quality

Royal Gala/M.9: 2,352 tree/ha: Light Interception: Optimised limb number - 6 limbs per m canopy height

33% fewer limbs but light interception not decreased
Royal Gala/M.9: 2,352 tree/ha  Light Interception: Optimised limb number plus artificial spur extinction @ 6 buds/cm² bca

<table>
<thead>
<tr>
<th>weeks after bud break</th>
<th>ASE6</th>
<th>Unmodified Grower</th>
<th>full bloom</th>
<th>hand thinning</th>
<th>start leaf fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>7.0</td>
<td>6.8</td>
<td>7.0</td>
<td>6.8</td>
<td>7.0</td>
</tr>
<tr>
<td>10</td>
<td>12.0</td>
<td>11.8</td>
<td>12.0</td>
<td>11.8</td>
<td>12.0</td>
</tr>
<tr>
<td>15</td>
<td>17.0</td>
<td>16.8</td>
<td>17.0</td>
<td>16.8</td>
<td>17.0</td>
</tr>
<tr>
<td>20</td>
<td>22.0</td>
<td>21.8</td>
<td>22.0</td>
<td>21.8</td>
<td>22.0</td>
</tr>
<tr>
<td>25</td>
<td>27.0</td>
<td>26.8</td>
<td>27.0</td>
<td>26.8</td>
<td>27.0</td>
</tr>
<tr>
<td>30</td>
<td>32.0</td>
<td>31.8</td>
<td>32.0</td>
<td>31.8</td>
<td>32.0</td>
</tr>
<tr>
<td>35</td>
<td>37.0</td>
<td>36.8</td>
<td>37.0</td>
<td>36.8</td>
<td>37.0</td>
</tr>
<tr>
<td>40</td>
<td>42.0</td>
<td>41.8</td>
<td>42.0</td>
<td>41.8</td>
<td>42.0</td>
</tr>
<tr>
<td>45</td>
<td>47.0</td>
<td>46.8</td>
<td>47.0</td>
<td>46.8</td>
<td>47.0</td>
</tr>
</tbody>
</table>

Enhancing productivity of our best performing intensive systems

Royal Gala on M.9, 2,352 trees per ha

<table>
<thead>
<tr>
<th>Tree type</th>
<th>Limbs per m tree ht (per tree)</th>
<th>Fruit No. per tree</th>
<th>Yield T/ha</th>
<th>Mean fruit weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grower management</td>
<td>9.0 (27)</td>
<td>327</td>
<td>117</td>
<td>152</td>
</tr>
<tr>
<td>Optimised limb no.</td>
<td>5.9 (18)</td>
<td>325</td>
<td>118</td>
<td>154</td>
</tr>
<tr>
<td>Optimised limb no. plus ASE</td>
<td>5.8 (17)</td>
<td>321</td>
<td>129</td>
<td>170</td>
</tr>
</tbody>
</table>
Light Interception: Autumn, year one

Tall Spindle: 3.0 x 1.5 m, 2,222 trees per ha
Light interception = 20.2 %

Planar Cordon: 3.0 x 1.5 m; 2,222 trees per ha
Light interception = 17.3 %

Planar Cordon: 3.0 x 2.0 m; 1,667 trees per ha
Light interception = 14.1 %

Interim conclusions

It is early days!

Ultimately, the environmental and crop physiology will inform us of the biological potential….and the practical possibilities

Yet the arithmetic looks compelling!

Cordon with 20,000 vertical fruiting stems/ha.
45 x 200g fruit per vertical stem  = 180 T/ha
Thank you

www.plantandfood.co.nz

stuart.tustin@plantandfood.co.nz