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The Simplex method at a glance (conclusion)
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Convert the linear programming model to the standard form

Find an initial feasible basic solution. If there is no feasible basic
solution, the problem is unfeasible and STOP

repeat

Verify if the objective function value can be improved. If not, an
optimal solution was found and STOP

Move to the adjacent feasible basic solution in the direction that
most improves the objective function. If there is no such solution,
the problem is unbounded! STOP

until Stopping criteria is fulfilled
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n - number of variables in the standard form

m - number of equations in the standard form

• Each basic feasible solution has n−m null components and m

positive components or, if it is degenerate, more than n−m null
components and less than m positive components.

• Each basic feasible solution has m basic variables - those
associated to the positive components and eventually to null
components if the solution has less than m positive components.
The other n−m variables are the so-called non-basic variables.

• Each basic feasible solution is the unique solution of the system of
linear equations with the non-basic variables equal to zero.
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Example of a degenerate basic feasible solution
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P = {(x1, x2) ∈ R
2 :

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 + x2 ≥ 300
100x1 + 200x2 ≥ 40000
x1 ≤ 300

x2 ≤ 200
x1 + x2 ≤ 500

, x1, x2 ≥ 0}

F = {(x1, x2, s1, s2, s3, s4, s5) ∈ R
7 :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 + x2 − s1 = 300
100x1 + 200x2 − s2 = 40000
x1 + s3 = 300

x2 + s4 = 200
x1 + x2 + s5 = 500
x1, x2, s1, s2, s3, s4, s5 ≥ 0

}

No equation (in F) is a direct consequence of the others and thus
unnecessary.
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−→ Each basic feasible solution has at least 7− 5 = 2 null
components.

−→ C = (300, 200) corresponds to (300, 200, 200, 30000, 0, 0, 0).

−→ The basic variables are x1, x2, s1, s2 and one of the other
variables such that the basic feasible solution is the unique
solution of the system of linear equations with the non-basic
variables equal to zero (s3, s4 or s5 can be a basic variable).
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Definition

Two basic feasible solutions are adjacent if they have all non-basic
variables (basic variables) in common except one.

Example:

A = (200, 100)←→ (200, 100, 0, 0, 100, 100) with the non-basic
variables s1, s2 and the basic variables x1, x2, s3, s4

B = (100, 200)←→ (100, 200, 0, 10000, 200, 0) with the non-basic
variables s1, s4 and the basic variables x1, x2, s2, s3

(200, 100, 0, 0, 100, 100) and (100, 200, 0, 10000, 200, 0) have in
common all non-basic variables (basic variables) except one

(200, 100, 0, 0, 100, 100) and (100, 200, 0, 10000, 200, 0) are adjacent
basic feasible solutions.
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• Two adjacent basic feasible solutions correspond to two adjacent
vertices.

The defining-equations of two adjacent vertices are equal except in one
equation. Example:
x2
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A

B A→ (200, 100, 0,0, 100, 100)

B → (100, 200, 0, 10000, 200, 0)
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• Starting at (300, 200, 200, 30000, 0, 0).


























Z = x1 + 1.5x2

x1 + x2 − s1 = 300
100x1 + 200x2 − s2 = 40000
x1 + s3 = 300

x2 + s4 = 200

• Search for a better basic feasible solution


























Z = 600 − s3 − 1.5s4

x1 = 300 − s3 ∆s3 = 300
x2 = 200 − s4
s1 = 200 − s3 − s4 ∆s3 = 200 ∆Z = −200

s2 = 30000 − 100s3 − 200s4 ∆s3 = 300



























Z = 600 − s3 − 1.5s4

x1 = 300 − s3
x2 = 200 − s4 ∆s4 = 200
s1 = 200 − s3 − s4 ∆s4 = 200
s2 = 30000 − 100s3 − 200s4 ∆s4 = 150 ∆Z = −225



























Z = 600 − 1.5(150) = 375

x1 = 300
x2 = 200 − 150 = 50
s1 = 200 − 150 = 50
s4 = 150

−→ (300, 50, 50, 0, 0, 150) −→ D(300, 50)
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• Search for a better basic feasible solution






























Z = 375 + 3

400
s2 − 1

4
s3

x1 = 300 − s3 ∆s3 = 300

x2 = 50 + 1

200
s2 + 1

2
s3

s1 = 50 + 1

200
s2 − 1

2
s3 ∆s3 = 100 ∆Z = −25

s4 = 150 − 1

200
s2 − 1

2
s3 ∆s3 = 300































Z = 375 − 1

4
(100) = 350

x1 = 200

x2 = 50 + 1

2
(100) = 100

s3 = 100

s4 = 150 − 1

2
(100) = 100

−→ (200, 100, 0, 0, 100, 100) −→ A(200, 100)
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• Search for a better basic feasible solution






























Z = 350 + 1

2
s1 + 1

400
s2

x1 = 200 + 2s1 − 1

100
s2

x2 = 100 − s1 + 1

100
s2

s3 = 100 − 2s1 − 1

100
s2

s4 = 100 + s1 − 1

100
s2

The objective function value can not be improved. A(200, 100) is an
optimal solution!
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Keeping the rive clean with the objective function

Min Z = x1 + x2
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• Starting at (300, 200, 200, 30000, 0, 0).


























Z = x1 + x2

x1 + x2 − s1 = 300
100x1 + 200x2 − s2 = 40000
x1 + s3 = 300

x2 + s4 = 200

• Search for a better basic feasible solution


























Z = 500 − s3 − s4

x1 = 300 − s3 ∆s3 = 300
x2 = 200 − s4
s1 = 200 − s3 − s4 ∆s3 = 200 ∆Z = −200

s2 = 30000 − 100s3 − 200s4 ∆s3 = 300



























Z = 500 − s3 − s4

x1 = 300 − s3
x2 = 200 − s4 ∆s4 = 200
s1 = 200 − s3 − s4 ∆s4 = 200
s2 = 30000 − 100s3 − 200s4 ∆s4 = 150 ∆Z = −150



























Z = 500 − 1(200) = 300

x1 = 300 − 200 = 100
x2 = 200
s2 = 30000 − 20000 = 10000
s3 = 200

−→

(100, 200, 0, 10000,200, 0) −→ B(100, 200)
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• Search for a better basic feasible solution



























Z = 300 + s1 + 0s4

x1 = 100 + s1 + s4
x2 = 200 − s4 ∆s4 = 200
s3 = 200 − s1 − s4 ∆s4 = 200
s2 = 10000 + 100s1 − 100s4 ∆s4 = 100 ∆Z = 0(100) = 0



























Z = 300 + 0(100) = 300

x1 = 100 + 100 = 200
x2 = 200 − 100 = 100
s3 = 200 − 100 = 100
s4 = 100

−→ (200, 100,0, 0, 100,100) −→ A(200, 100)

• A has the same objective function value than B. So, there is no
vertex adjacent to B better than B. Thus, A and B are optimal
solutions (alternative solutions).
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Definition

The reduced cost of a non-basic variable, which has zero value in the
optimal solution, provides a measure of how much the objective
function would change (a penalty amount) if one unit of this
variable was forced into the solution.

A basic variable has a null reduced cost.
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