The Simplex method at a glance (conclusion)

8 Mar 2019

Simplex method at a glance

Simplex method \triangleright at a glance Coming back to sensitivity analysis

Convert the linear programming model to the standard form
Find an initial feasible basic solution. If there is no feasible basic solution, the problem is unfeasible and STOP

repeat

Verify if the objective function value can be improved. If not, an optimal solution was found and STOP

Move to the adjacent feasible basic solution in the direction that most improves the objective function. If there is no such solution, the problem is unbounded! STOP
until Stopping criteria is fulfilled

Simplex method at a glance

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

$\min Z=x_{1}+1.5 x_{2}$

Simplex method at a glance

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

$\min Z=x_{1}+1.5 x_{2}$

Simplex method at a glance

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

$\min Z=x_{1}+1.5 x_{2}$

Basic variables and non-basic variables

Simplex method
\triangleright at a glance Coming back to sensitivity analysis
n - number of variables in the standard form
m - number of equations in the standard form

- Each basic feasible solution has $n-m$ null components and m positive components or, if it is degenerate, more than $n-m$ null components and less than m positive components.
- Each basic feasible solution has m basic variables - those associated to the positive components and eventually to null components if the solution has less than m positive components. The other $n-m$ variables are the so-called non-basic variables.
- Each basic feasible solution is the unique solution of the system of linear equations with the non-basic variables equal to zero.

Basic and non-basic variables

Simplex method \triangleright at a glance Coming back to sensitivity analysis

Example of a degenerate basic feasible solution

Basic and non-basic variables

Simplex method \triangleright at a glance Coming back to sensitivity analysis

$$
\begin{aligned}
& \mathcal{P}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \left\lvert\, \begin{array}{lllll}
x_{1} & + & x_{2} & \geq & 300 \\
100 x_{1} & + & 200 x_{2} & \sum & 40000 \\
x_{1} & & x_{2} & \leq & 300 \\
& & & \\
x_{1} & + & x_{2} & \leq & 500
\end{array} \quad\right., x_{1}, x_{2} \geq 0\right\} \\
& \mathcal{F}=\left\{\left(x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right) \in \mathbb{R}^{7}:\right.
\end{aligned}
$$

No equation (in \mathcal{F}) is a direct consequence of the others and thus unnecessary.

Basic and non-basic variables

Simplex method
\triangleright at a glance Coming back to sensitivity analysis
\longrightarrow Each basic feasible solution has at least $7-5=2$ null components.
$\longrightarrow C=(300,200)$ corresponds to $(300,200,200,30000,0,0,0)$.
\longrightarrow The basic variables are $x_{1}, x_{2}, s_{1}, s_{2}$ and one of the other variables such that the basic feasible solution is the unique solution of the system of linear equations with the non-basic variables equal to zero (s_{3}, s_{4} or s_{5} can be a basic variable).

Basic and non-basic variables

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

Definition

Two basic feasible solutions are adjacent if they have all non-basic variables (basic variables) in common except one.

Example:
$A=(200,100) \longleftrightarrow(200,100,0,0,100,100)$ with the non-basic variables s_{1}, s_{2} and the basic variables $x_{1}, x_{2}, s_{3}, s_{4}$
$B=(100,200) \longleftrightarrow(100,200,0,10000,200,0)$ with the non-basic variables s_{1}, s_{4} and the basic variables $x_{1}, x_{2}, s_{2}, s_{3}$
$(200,100,0,0,100,100)$ and $(100,200,0,10000,200,0)$ have in common all non-basic variables (basic variables) except one
$(200,100,0,0,100,100)$ and ($100,200,0,10000,200,0)$ are adjacent basic feasible solutions.

Basic and non-basic variables

Simplex method
\triangleright at a glance
Coming back to sensitivity analysis

- Two adjacent basic feasible solutions correspond to two adjacent vertices.

The defining-equations of two adjacent vertices are equal except in one equation. Example:

The Simplex method at a glance

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

- Starting at $(300,200,200,30000,0,0)$.
- Search for a better basic feasible solution

$$
\begin{aligned}
& \left\{\begin{array}{lll}
Z & =600-s_{3}-1.5 s_{4} & \\
x_{1}=300-s_{3} & \Delta s_{3}=300 \\
x_{2}=200-s_{4} & \\
s_{1}=200-s_{3}-s_{4} & \Delta s_{3}=\mathbf{2 0 0} & \Delta \mathbf{Z}=-\mathbf{2 0 0} \\
s_{2}=30000-100 s_{3}-200 s_{4} & \Delta s_{3}=300 &
\end{array}\right. \\
& \left\{\begin{array}{rlr}
Z & =600-s_{3}-1.5 s_{4} & \\
x_{1} & =300-s_{3} & \\
x_{2} & =200-s_{4} & \Delta s_{4}=200 \\
s_{1} & =200-s_{3}-s_{4} & \Delta s_{4}=200
\end{array}\right. \\
& s_{2}=30000-100 s_{3}-200 s_{4} \\
& \left\{\begin{array}{l}
\mathbf{Z}=600-1.5(150)=\mathbf{3 7 5} \\
x_{1}=300 \\
x_{2}=200-150=50 \\
s_{1}=200-150=50 \\
\mathbf{s}_{4}=\mathbf{1 5 0}
\end{array}\right. \\
& \longrightarrow(300,50,50, \mathbf{0}, 0, \mathbf{1 5 0}) \longrightarrow D(300,50)
\end{aligned}
$$

The Simplex method at a glance

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

- Search for a better basic feasible solution

$$
\begin{aligned}
& \left\{\begin{array}{l}
Z=375+\frac{3}{400} s_{2}-\frac{1}{4} s_{3} \\
x_{1}=300-s_{3} \\
x_{2}=50+\frac{1}{200} s_{2}+\frac{1}{2} s_{3} \\
s_{1}=50+\frac{1}{200} s_{2}-\frac{1}{2} s_{3} \\
s_{4}=150-\frac{1}{200} s_{2}-\frac{1}{2} s_{3}
\end{array}\right. \\
& \Delta s_{3}=300 \\
& \Delta \mathrm{~s}_{3}=100 \\
& \Delta Z=-25 \\
& \Delta s_{3}=300 \\
& \longrightarrow(200,100, \mathbf{0}, 0,100,100) \longrightarrow A(200,100) \\
& x_{2}=50+\frac{1}{2}(100)=100 \\
& \mathrm{~s}_{3}=100 \\
& s_{4}=150-\frac{1}{2}(100)=100
\end{aligned}
$$

The Simplex method at a glance

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

- Search for a better basic feasible solution

$$
\left\{\begin{array}{l}
Z=350+\frac{1}{2} s_{1}+\frac{1}{400} s_{2} \\
x_{1}=200+2 s_{1}-\frac{1}{100} s_{2} \\
x_{2}=100-s_{1}+\frac{1}{100} s_{2} \\
s_{3}=100-2 s_{1}-\frac{1}{100} s_{2} \\
s_{4}=100+s_{1}-\frac{1}{100} s_{2}
\end{array}\right.
$$

The objective function value can not be improved. $A(200,100)$ is an optimal solution!

The Simplex method at a glance - optimal alternative solutions

Simplex method \triangleright at a glance Coming back to sensitivity analysis

Keeping the rive clean with the objective function
$\operatorname{Min} Z=x_{1}+x_{2}$

The Simplex method at a glance

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

- Starting at $(300,200,200,30000,0,0)$.
- Search for a better basic feasible solution

$$
\begin{aligned}
& \begin{cases}Z & =500-s_{3}-s_{4} \\
x_{1} & =300-s_{3} \\
x_{2} & =200-s_{4} \\
s_{1} & =200-s_{3}-s_{4} \\
s_{2} & =30000-100 s_{3}-200 s_{4}\end{cases} \\
& \int=500-s_{3}-s_{4} \\
& x_{1}=300-s_{3} \\
& x_{2}=200-s_{4} \\
& \begin{array}{ll}
s_{1} & =200-s_{3}-s_{4} \\
s_{2} & =30000-100 s_{3}
\end{array} \\
& 30000-100 s_{3}-200 s_{4} \\
& \left\{\begin{array}{ll}
\mathbf{Z} & =500-1(200)=\mathbf{3 0 0} \\
x_{1} & =300-200=100 \\
x_{2} & =200 \\
s_{2} & =30000-20000=10000 \\
\mathbf{s}_{\mathbf{3}} & =\mathbf{2 0 0}
\end{array} \longrightarrow\right. \\
& \text { (100, 200, 0, 10000, 200, 0) }
\end{aligned}
$$

The Simplex method at a glance

Simplex method
\triangleright at a glance Coming back to sensitivity analysis

- Search for a better basic feasible solution

$$
\left\{\begin{array}{lll}
Z & =300+s_{1}+0 s_{4} & \\
x_{1} & =100+s_{1}+s_{4} & \Delta s_{4}=200 \\
x_{2}=200-s_{4} & \Delta s_{4}=200 \\
s_{3}=200-s_{1}-s_{4} & \mathbf{\Delta} \mathbf{s}_{\mathbf{4}}=\mathbf{1 0 0} & \mathbf{\Delta Z}=\mathbf{0}(\mathbf{1 0 0})=\mathbf{0}
\end{array}\right.
$$

- A has the same objective function value than B. So, there is no vertex adjacent to B better than B. Thus, A and B are optimal solutions (alternative solutions).

Reduced cost

Simplex method at a

 glanceComing back to sensitivity
\triangleright analysis

Definition

The reduced cost of a non-basic variable, which has zero value in the optimal solution, provides a measure of how much the objective function would change (a penalty amount) if one unit of this variable was forced into the solution.

A basic variable has a null reduced cost.

