
Spatial Data: a brief statistical introduction

OpenSpat – Class notes

Jorge Cadima

Instituto Superior de Agronomia – Universidade de Lisboa

May 30 and 31, 2019

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 1 / 146



Goals

We focus on the statistical processing of spatial data:

Understanding the effects of autocorrelation vs. independence

Tools to assess and measure spatial autocorrelation

Other tools for spatial statistical models
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Spatial Data

Spatial data is data observed over some spatial coordinate system and

with autocorrelation that cannot be ignored.

A random spatial process generalizes the notion of a random variable

Z : now Z is defined on a space S:

{Z (s) , s ∈ S} .

If S is one-dimensional, Z (s) is also called a time series.

S may be a finite or infinite (countable or uncountable) set.

We observe the random process at n different locations

s1, s2, ..., sn ∈ S, producing a (non-independent) sample of size n:

(Z (s1),Z (s2),Z (s3), ...,Z (sn))
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The nature of a spatial variable Z

As in standard statistical methods, a spatial variable Z may be of different

types:

numerical (e.g., air temperature);

categorical (e.g., types of land use over a given region S);
ordinal (e.g., the intensity of some disease affecting crops in a region

S, with k ordered categories of observable effects);

binary (e.g., absence/presence of some plant disease).
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Geostatistical data

A spatial variable may also be classified in a different way, taking into

account its spatial characteristics:

Geostatistical data:

s varies continuously in S, and for any point s ∈ S a value Z (s)

exists, even if it is unknown.

Example: air temperature over some region of earth.

A common problem is interpolation: based on an available set of data

{Z (sij)}i ,j , obtain estimates for the values of Z in unobserved

locations of S.
We will focus on geostatistical data.
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Lattice (areal) and point data

Lattice (areal) data:

Z only makes sense when S is a collection of polygons or cells,

distributed over space S
Example: surface area of countries (or municipalities).

The polygons may be represented by a label point or centroid, but

this does not change the areal nature of variable Z .

Point data:

the location of points in space at which something happens.

Example: location of cities in a region, or of trees in a wooded area.

The main topic of interest is often the study of the point patterns

defined by the data.

Problems and methods for point data are somewhat different.
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Autocorrelation vs. independence

Standard statistical methods assume independence of observations.

Independence is simpler. But it may be unrealistic.

Observing air temperature at a given location, every 10 minutes,

generates a sample of size t:

(Y1,Y2,Y3, ...,Yt)

The observations are not independent. They have one-dimensional

autocorrelation (in time).

Observing, at a given instant in time, air temperatures in a given

rectangular grid of n1 × n2 points in space produces two-dimensional

(spatial) autocorrelation.
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Autocorrelation

Positive autocorrelation means that observations of a variable made

at points that are close to each other (in time and/or space) will be

more similar than observations at points that are further apart.

Negative autocorrelation means that observations made at points that

are closer will be more dissimilar than observations made further

apart. It also exists, but is rarer and will not be considered further.

The absence of autocorrelation means that the distance between

points of observation has no bearing on whether values are similar or

dissimilar. This is what assuming independence implies.
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Why worry about autocorrelation?

Even the simplest independence-based statistical methods give wrong

results in the presence of autocorrelation in the sample.

Consider the standard (1− α)× 100% confidence interval for a population
mean µ, when the population variance σ2 is known:

]

y − zα/2
σ√
n

, y + zα/2
σ√
n

[

. (1)

This result is based on the assumption that the sample of size n has

independent observations.

But what if there is autocorrelation in the sample? How does

autocorrelation affect the confidence interval?
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The independence model

The standard confidence interval in the previous slide results from the

assumptions of an independence-based model:

{

Yi = µ+ ǫi

ǫi ∼ N (0, σ2) (i .i .d .) ,
(2)

where i .i .d . stands for independent and identically distributed: the random

errors ǫi are assumed to be independent.

Usual estimator of the population mean µ: sample mean Y = 1
n

n
∑

i=1

Yi .

With the independence model, the sampling distribution of Y is:

Y ∼ N
(

µ,
σ2

n

)

.

Note: E [Y ]=µ and V [Y ]= σ2

n
.
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Consequences of the independence model

The confidence interval flows directly from the result in the previous slide:

Y − µ
√

σ2

n

∼ N (0, 1) ⇒
]

y − zα/2
σ√
n

, y + zα/2
σ√
n

[

.

Since the population variance σ2 is usually also unknown, it is estimated by

the sample variance S2 = 1
n−1

n
∑

i=1
(Yi − Y )2. Corresponding results are:

Y − µ
√

S2

n

∼ tn−1 ⇒
]

y − tα/2
s√
n

, y + tα/2
s√
n

[

.
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The AR(1) autocorrelation model
It is only possible to study the effects of autocorrelation in the sample if

an alternative model is specified. We consider the simplest form of

autocorrelation for the error terms: 1-D autocorrelation (in time).

This is the first order autoregressive, AR(1), model:











Yi = µ+ ηi

ηi = λ ηi−1 + ǫi , η0 = 0

ǫi ∼ N (0, σ2) (i .i .d .) ,

(3)

λ gives the intensity and nature of the autocorrelation:

λ=0: the independence model (2).

λ>0: positive autocorrelation (ηi−1 > 0 makes ηi > 0 more likely).

λ<0: negative autocorrelation (ηi−1 > 0 makes ηi < 0 more likely).

|λ|>1: errors increase their effect over time (not usually realistic).
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The AR(1) autocorrelation model

We assume positive autocorrelation: 0<λ<1.

Iterating the second equation of model (3) gives each observation of Yi as

a function only of the independent errors ǫj (j ≤ i):

Yi = µ+ λi−1 ǫ1 + λi−2 ǫ2 + λi−3 ǫ3 + ...+ λ2 ǫi−2 + λ ǫi−1 + ǫi

⇔ Yi = µ+

i
∑

j=1

λi−j ǫj .

The AR(1) error model can be re-written as:











Yi = µ+
i
∑

j=1

λi−j ǫj

ǫi ∼ N (0, σ2) (i .i .d .) .

(4)
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Comparing the models

AR(1) results are interesting for large i (after an initial transient period):

Independence AR(1)

E [Yi ] µ µ

V [Yi ] σ2 σ2
(

1−λ2i

1−λ2

)

→ σ2

1−λ2

Cov [Yi ,Yj ] 0 λi−j V [Yj ] → λi−j σ2

1−λ2

(for i > j)

rij 0 λi−j
√

V [Yj ]
V [Yi ]

→ λi−j

(for i > j)

AR(1) is stationary in the mean and (after transience) in the variance.

For 0 < λ < 1, correlations decrease with the time lags i − j .
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Distribution of Y with the AR(1) model
How does the AR(1) model affect results for the sample mean Y ?

Consider a random sample of size n, following model (3), but with t

transient iterations: ~Y = (Yt+1,Yt+2,Yt+3, ...,Yt+(n−1),Yt+n)
t .

The sample mean can be re-written as:

Y =
1

n

n
∑

i=1

Yt+i = µ+
1

n

n
∑

i=1

t+i
∑

j=1

λt+i−j ǫj .

The mean and variance of Y are:

E [Y ] = µ , V [Y ] =
σ2

n2(1− λ)2

[

(1− λ
n)2

λ2

1− λ2
(1− λ

2t) +
n

∑

i=1

(1− λ
i)2

]

.

If 0<λ<1, for any n and t, V [Y ] > σ2

n
. The true sampling variance of Y

is larger than with independence.
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Large sample AR(1) distribution of Y

For large samples (n big), after large transient periods (t big), we have:

V [Y ] ≈ σ2

n (1− λ)2
(5)

Normality of Y also follows, and so, approximately:

Y ∼ N
(

µ ,
σ2

(1− λ)2 n

)

(6)

We illustrate this result with a simulation of the sampling distribution of

Y : 10 000 samples of size n=1000 were generated under model AR(1),

with an initial transience of t=1000 iterations. The population mean and

standard deviation were chosen to be µ=10 and σ=3. The

autocorrelation parameter was λ=0.7. The results are on the next slide.
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A simulation
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Figure: Histogram of the distribution of y , for 10 000 repetitions of size n=1000

samples, in an AR(1) model. Parameters: µ=10, σ=3, λ=0.7. Red curve:

N
(

µ, σ2

n

)

distribution of Y under independence. Blue curve: asymptotic

equivalent under AR(1), N
(

µ, σ2

(1−λ)2 n

)

.
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The implications

The independence-based confidence interval formula will give shorter

intervals, that do not ensure a true (1−α) × 100% confidence level.

Of the 10 000 simulated samples, only 44.5% of the (nominally) 95%

confidence intervals produced by formula (1) include µ=10.

The appropriate (large-sample) confidence interval for AR(1) is:
]

y − zα/2
σ

(1− λ)
√
n

, y + zα/2
σ

(1− λ)
√
n

[

. (7)

94.95% of the 10 000 intervals given by the simulated samples contained

the true population mean µ=10.

There are similar implications for hypothesis testing on µ.
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Effective sample size
A useful concept is that of effective sample size, defined as the value nǫ

such that:

V [Y ] =
σ2

nǫ
⇔ nǫ =

σ2

V [Y ]
. (8)

Effective sample size may be thought of as the number of truly

independent sources of information in a sample of size n.

For AR(1) and the large sample approximation V [Y ] ≈ σ2

(1−λ)2 n
, we get:

nǫ ≈ n (1− λ)2 .

n λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 8.27 6.66 5.20 3.87 2.68 1.63 0.78 0.23 0.03

50 40.66 32.26 24.78 18.25 12.67 8.03 4.35 1.67 0.21

100 81.16 64.25 49.28 36.25 25.17 16.03 8.85 3.64 0.60

1000 810.16 640.25 490.28 360.25 250.17 160.03 89.84 39.61 9.37

10000 8100.16 6400.25 4900.28 3600.25 2500.17 1600.03 899.84 399.61 99.33
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Estimating σ2

The independence-based estimator of an unknown population variance σ2

becomes, in an AR(1) setting, a biased estimator, which overestimates σ2.

Assuming a large sample (n big) and a long transience (t big), the

expected value of S2= 1
n−1

n
∑

i=1
(Yi − Y )2 is approximately:

E [S2] ≈ σ2

1− λ2
> σ2 . (9)

An (approximately) unbiased estimator of σ2 is now σ̂2 = (1− λ2)S2.

This is illustrated with the simulated samples in the next slide.
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A simulated sampling distribution of S2 and (1− λ2)S2

Sampling distribution of S
2
 and (1 − λ2)S2

simul.n1k[, 1002]

D
e
n
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y
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Figure: Histograms of the distributions of s2 (in black and white) and (1− λ2) s2

(in red), for 10 000 repetitions of size n=1000 samples, in an AR(1) model.

Parameters: µ=10, σ=3, λ=0.7. The true variance is σ2 = 9.
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Confidence intervals for µ when σ2 is unknown
Using s2

n
instead of σ2

n
in the confidence interval for µ gives a wider

interval. But two wrongs do not make a right:

The true (asymptotic) variance of Y is σ2

(1−λ)2 n
, not σ2

n
;

An unbiased estimator of σ2 is (1− λ2)S2, not S2.

An unbiased estimator of the true (asymptotic) variance of Y is:

̂V [Y ] =
(1− λ2)S2

(1− λ)2 n
=

1 + λ

1− λ

S2

n
. (10)

The standard CIs for unknown σ2 (using the Normal distribution, since n is

very large), are given by
]

y − zα/2
s√
n

, y + zα/2
s√
n

[

.

For the 10 000 simulated samples, only 58.77% of the nominally 95%

confidence intervals contain the true population mean µ=10.
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Confidence intervals for µ when σ2 is unknown

Assuming Normality, the appropriate (large-sample) confidence interval for

µ, with AR(1), is:

]

y − zα/2

√

1 + λ

1− λ

s√
n

, y + zα/2

√

1 + λ

1− λ

s√
n

[

. (11)

This interval is wider than the standard CI by a factor of
√

1+λ
1−λ .

With these 95% (asymptotic) confidence intervals, the proportion of the

10 000 simulated AR(1) samples with confidence intervals containing

µ=10 rises to 94.80%.

Morale: autocorrelated data require specific methods.
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Spatial data: the Aragonez data set
Aragonez is a Portuguese variety of grapes, also known as Tinta Roriz or Tempranillo.

A field trial was carried out in Reguengos de Monsaraz, in Southern Portugal.

Goal: study the variety’s yields.

Description: A vineyard trellis was set up, with 40 wires (columns, numbered 4 to 43)

running on an approximate N-S direction, and 2.25m apart. In each column, groups of

three plants were taken to represent a cell, thereby creating a rectangular grid with 40

columns and 26 rows. The rows are numbered 2 to 27 (bordering columns/rows were

considered a ’transient’ part, not included in the dataset). In each column, the centre of

each grid cell (i.e, of the ’rows’) are separated by 3.75m. The mean yield in each grid cell

(in kg of grapes/plant) (with three plants in every cell) is the observation of interest.

Warnings:

There are N=1019 observations. Some of the 1040 cells have missing values.

Yields are defined relative to an area (areal data) or plant. But we consider them

as geostatistical data: we assume that yields vary continuously over the trial field.
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The Aragonez trial field

Figure: The Aragonez yields on the field. The southernmost corner has

coordinates 38.4411239 N and 7.5159353 W.
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The Aragonez data
The dataset was originally provided as a data frame, whose six first lines and summary
statistics are given below:

> head(Aragonez)

genotype block col row colm rowm yield

1 RZ717 B1 4 2 0 0.00 2.417

2 RZ1158 B1 4 9 0 26.25 2.724

3 RZ1325 B1 4 6 0 15.00 2.647

4 RZ3313 B1 4 8 0 22.50 1.543

5 RZ3603 B1 4 12 0 37.50 0.865

6 RZ3604 B1 4 3 0 3.75 1.659

> summary(Aragonez)

genotype block col row colm rowm yield

RZ103 : 4 B1:255 Min. : 4.00 Min. : 2.00 Min. : 0.00 Min. : 0.00 Min. :0.188

RZ107 : 4 B2:255 1st Qu.:13.00 1st Qu.: 8.00 1st Qu.:20.25 1st Qu.:22.50 1st Qu.:1.750

RZ1103 : 4 B3:255 Median :23.00 Median :14.00 Median :42.75 Median :45.00 Median :2.374

RZ1110 : 4 B4:254 Mean :23.36 Mean :14.42 Mean :43.57 Mean :46.57 Mean :2.549

RZ1117 : 4 3rd Qu.:33.00 3rd Qu.:21.00 3rd Qu.:65.25 3rd Qu.:71.25 3rd Qu.:3.247

RZ1124 : 4 Max. :43.00 Max. :27.00 Max. :87.75 Max. :93.75 Max. :7.704

(Other):995

Variables genotype and block are ignored.

This data frame was geo-referenced in the initial class, and several sf and sp objects

were created.
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Aragonez sf and sp objects

The sf object AragonezSF with point data.

> AragonezSF

Simple feature collection with 1019 features and 7 fields

geometry type: POINT

dimension: XY

bbox: xmin: -7.516431 ymin: 38.44118 xmax: -7.515039 ymax: 38.4423

epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

First 10 features:

genotype block col row colm rowm yield geometry

1 RZ717 B1 4 2 0 93.75 2.417 POINT (-7.516431 38.44193)

2 RZ1158 B1 4 9 0 67.50 2.724 POINT (-7.516291 38.44172)

3 RZ1325 B1 4 6 0 78.75 2.647 POINT (-7.516351 38.44181)

4 RZ3313 B1 4 8 0 71.25 1.543 POINT (-7.516311 38.44175)

5 RZ3603 B1 4 12 0 56.25 0.865 POINT (-7.516231 38.44163)

6 RZ3604 B1 4 3 0 90.00 1.659 POINT (-7.516411 38.4419)

7 RZ3803 B1 4 13 0 52.50 0.481 POINT (-7.516211 38.4416)

8 RZ3902 B1 4 10 0 63.75 1.203 POINT (-7.516271 38.44169)

9 RZ6201 B1 4 4 0 86.25 2.108 POINT (-7.516391 38.44187)

10 RZ6204 B1 4 5 0 82.50 3.561 POINT (-7.516371 38.44184)
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Aragonez sf and sp objects (cont.)

The sf object Aragonez3763Vor with polygon data (via Voronoi).

> Aragonez3763Vor

Simple feature collection with 1019 features and 7 fields

geometry type: POLYGON

dimension: XY

bbox: xmin: 53834.87 ymin: -136048.6 xmax: 53962.69 ymax: -135918

epsg (SRID): 3763

proj4string: +proj=tmerc +lat_0=39.66825833333333 +lon_0=-8.133108333333334 +k=1 +x_0=0 +y_0=0 +ellps=GRS80

First 10 features:

genotype block col row colm rowm yield geometry

1 RZ717 B1 4 2 0 93.75 2.417 POLYGON ((53837.5 -135959.4...

2 RZ1158 B1 4 9 0 67.50 2.724 POLYGON ((53839.54 -135958....

3 RZ1325 B1 4 6 0 78.75 2.647 POLYGON ((53836.11 -135965....

4 RZ3313 B1 4 8 0 71.25 1.543 POLYGON ((53841.53 -135967,...

5 RZ3603 B1 4 12 0 56.25 0.865 POLYGON ((53841.58 -135957....

6 RZ3604 B1 4 3 0 90.00 1.659 POLYGON ((53837.88 -135969,...

7 RZ3803 B1 4 13 0 52.50 0.481 POLYGON ((53843.3 -135970.4...

8 RZ3902 B1 4 10 0 63.75 1.203 POLYGON ((53843.62 -135956....

9 RZ6201 B1 4 4 0 86.25 2.108 POLYGON ((53839.65 -135972....

10 RZ6204 B1 4 5 0 82.50 3.561 POLYGON ((53845.07 -135973....
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Plotting the Aragonez cell yields
There is a plot method for sf objects, allowing us to view the yields:

> plot(Aragonez3763Vor[,"yield"], key.pos=4)

2
4

6

yield

Figure: Yields tend to increase from left to right on the trial field. There seems

to be an underlying (linear?) trend. The key.pos argument controlling where the

legend is displayed.
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Aragonez sf and sp objects (cont.)
A SpatialPointsDataFrame (sp) object is sometimes needed.

It can be created, as shown below (with CRS 3763).
AragonezPoints has 5 slots where the information is stored.

> Aragonez3763 <- st_transform(AragonezSF, crs=3763)

> AragonezPoints <- as_Spatial(Aragonez3763)

> str(AragonezPoints)

Formal class ’SpatialPointsDataFrame’ [package "sp"] with 5 slots

..@ data :’data.frame’: 1019 obs. of 7 variables:

.. ..$ genotype: Factor w/ 255 levels "RZ103","RZ107",..: 193 11 36 81 95 96 106 112 158 160 ...

.. ..$ block : Factor w/ 4 levels "B1","B2","B3",..: 1 1 1 1 1 1 1 1 1 1 ...

.. ..$ col : int [1:1019] 4 4 4 4 4 4 4 4 4 4 ...

.. ..$ row : int [1:1019] 2 9 6 8 12 3 13 10 4 5 ...

.. ..$ colm : num [1:1019] 0 0 0 0 0 0 0 0 0 0 ...

.. ..$ rowm : num [1:1019] 93.8 67.5 78.8 71.2 56.2 ...

.. ..$ yield : num [1:1019] 2.417 2.724 2.647 1.543 0.865 ...

..@ coords.nrs : num(0)

..@ coords : num [1:1019, 1:2] 53838 53850 53845 53849 53856 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "coords.x1" "coords.x2"

..@ bbox : num [1:2, 1:2] 53838 -136046 53960 -135921

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "coords.x1" "coords.x2"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class ’CRS’ [package "sp"] with 1 slot

.. .. ..@ projargs: chr "+proj=tmerc +lat_0=39.66825833333333 +lon_0=-8.133108333333334 +k=1 +x_0=0 +y_0=0 +ellps=GRS80

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 30 / 146



Plotting the Aragonez cell yields
For sp objects, package sp provides an spplot function:

> spplot(AragonezPoints ,zcol="yield", key.space="right")

[0.188,1.691]
(1.691,3.194]
(3.194,4.698]
(4.698,6.201]
(6.201,7.704]

Figure: A similar view of the trend, based on a SpatialPointsDataFrame

object. The key.space argument controls where the legend is displayed.
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2-D Spatial autocorrelation and trends

We consider a generic two-dimensional spatial autocorrelation process Z :

We assume that the (numerical) variable of interest Z depends on

two spatial coordinates x and y ;

Z (x , y) represents the value of Z at location (x , y) on the x0y plane.

In the spirit of the AR(1) model, we assume that Z (x , y) can be

decomposed into three terms:

Z (x , y) = T (x , y) + η(x , y) + ǫ(x , y) , (12)

where:

◮ T (x , y) is a deterministic (non-random) underlying spatial trend

(sometimes further separated into µ+ T (x , y), where µ is the overall mean);

◮ η(x , y) is a spatially autocorrelated random process, describing

spatially correlated deviations from the underlying trend;
◮ ǫ(x , y) is an uncorrelated random process, i.e., independent error terms.

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 32 / 146



Detrending the process
Detrending a spatial process separates explainable correlation between nearby

values from unexplained spatial autocorrelation, in much the same way as

standard regression methods remove explainable variability in a response variable,

allowing us to focus on residual variability.

Several common ways of detrending a two-dimensional process:

removing a constant (usually the mean)

removing a linear trend on the geographical coordinates:

z = β0 + β1 x + β2 y . (13)

removing a quadratic trend on the geographical coordinates:

z = β0 + β1 x + β2 y + β3 x
2 + β4 y

2 + β5 xy . (14)

Trends may also be defined by other (non-spatial) variables (next week).
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Detrending with least-squares fits
Standard least-squares (regression) fitting methods can be used to remove trends. In a

strictly descriptive context, least-squares fitting does not need independent observations.

Consider the SpatialPointsDataFrame object AragonezPoints. Create two new

columns in the data frame, removing the overall mean yield (a constant) and a linear

trend on the coordinates:

Remark: R accepts the shorthand AragonezPoints$yield for the complete

AragonezPoints@data$yield.

> AragonezPoints$yieldct <- AragonezPoints$yield - mean(AragonezPoints$yield)

> Arag.lm <- lm(yield ~ rowm + colm , data=AragonezPoints)

> AragonezPoints$yieldldt <- AragonezPoints$yield - fitted(Arag.lm)

The resulting data frame:

> head(AragonezPoints@data)

genotype block col row colm rowm yield yieldct yieldldt

1 RZ717 B1 4 2 0 93.75 2.417 -0.13168302 0.87742187

2 RZ1158 B1 4 9 0 67.50 2.724 0.17531698 1.08176580

3 RZ1325 B1 4 6 0 78.75 2.647 0.09831698 1.04876126

4 RZ3313 B1 4 8 0 71.25 1.543 -1.00568302 -0.08456904

5 RZ3603 B1 4 12 0 56.25 0.865 -1.68368302 -0.82122965

6 RZ3604 B1 4 3 0 90.00 1.659 -0.88968302 0.10475672
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Viewing the detrended yields in the Aragonez data
The sp::spplot function allows us to view the detrended yields:

> spplot(AragonezPoints, layout=c(2,1), zcol=c("yieldct", "yieldldt"))

The layout option specifies the ‘matrix’ layout for multiple graphs (columns × rows).

Linear detrending seems to have broken down the original pattern.

yieldct yieldldt

[−2.712,−1.139]
(−1.139,0.4346]
(0.4346,2.008]
(2.008,3.582]
(3.582,5.155]
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Bubble plots
The sp::bubble function (sp package) creates bubble plots, which are
also useful to visualize spatial autocorrelation of (detrended) variables.
Here is a bubble plot for the centred yield data, which still displays a
trend:

> bubble(AragonezPoints, zcol="yieldct")

yieldct

−2.361
−0.798
−0.175
0.698
5.155
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Another bubble plot
Here is a bubble plot for the linearly detrended yield data:

> bubble(AragonezPoints, zcol="yieldldt")

yieldldt

−2.712
−0.763
−0.095
0.636
4.595

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 37 / 146



Areal data and polygons
Data of areal type are spatially described by polygons. But it is necessary to again

create the two new columns for the detrended yields.

Here for the sf Aragonez3763Vor Voronoi polygons:

> Aragonez3763Vor$yieldct <- Aragonez3763Vor$yield-mean(Aragonez3763Vor$yield)

> Aragonez3763Vor$yieldldt <- residuals(Arag.lm)

> plot(Aragonez3763Vor[,c("yieldldt")], key.pos=2)

−
2

0
2

4

yieldldt
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Areal data and polygons (cont.)

Now for the sf Aragonez3763Grid polygons.

Here, empty polygons are associated with missing values.

> Aragonez3763Grid$yieldct <- Aragonez3763Grid$yield-mean(Aragonez3763Grid$yield)

> Aragonez3763Grid$yieldldt <- residuals(Arag.lm)

> plot(Aragonez3763Grid[,c("yieldldt")], key.pos=4)

−
2

0
2

4

yieldldt
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Autocorrelated spatial processes

To model two-dimensional autocorrelated processes, we assume that the

values of the spatially autocorrelated process η(x , y) depend on the values

of η at other points in some vicinity of (x , y).

We assume that we have n observations of a spatial process Z (s), {Zi}ni=1:



















Zi = µ+ ηi

ηi = λ

(

n
∑

j=1

wijηj

)

+ ǫi

ǫi ∼ N (0, σ2) (i .i .d .) ,

(15)

where wij is a constant measuring the influence of observation Zj on

observation Zi . The n × n matrix W, whose (i , j)-th element is wij , is

called a spatial weights matrix.
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Spatial weights matrices

Spatial weights matrices play a crucial role in the analysis of spatial data.

As a general rule, 0 ≤ wij ≤ 1. But weights can be defined in several

different ways.

For geostatistical data it is often appropriate to define weights wij as some

non-increasing function, g , of the Euclidean distance dij between the

coordinates of the points at which observations i and j were made:

wij = g(dij) , (16)

Implicit in equation (16) is that weights depend only on the scalar

distance dij , regardless of the direction which separates the points at which

observations Zi and Zj were made. This is the isotropy assumption which

may, or may not, be true in practice.
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Some distance-based weight functions
It may also be appropriate to define a range over which observation Zi

may be influenced by other observations, as well as the strength of that

influence.

Some frequent choices for the distance functions g are:

the radial distance weight function: observations made at a distance

closer than some parameter d have a (common) weight 1, and

observations made further apart have associated weight zero:

wij =

{

1 , if 0 ≤ dij ≤ d

0 , if dij > d
(17)

the power (inverse) distance weights function: weights decrease with

some power of the distance. For some positive constant a:

wij =
1

da
ij

; (18)
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More on distance functions

Another common (isotropic) distance function is:

the exponential distance weight function: weights decrease

exponentially with distance. For some positive constant a:

wij = e
−a dij . (19)

For both the exponential and the power (inverse) weight functions, the

larger the power a, the less influential will be distant points.

If appropriate, these weights can also be specified for areal data, defined

on polygons. A centroid, with coordinates, is necessary for each polygon.

A more complex class of spatial weights assumes that, for any given

direction, the weights decrease with distance, but in a way that differs, for

different directions. This is the anisotropy assumption.
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Neighbourhoods

Other definitions of a spatial weights matrix W may be especially useful for areal

data, where Z is observed on some regular grid, or some irregular arrangement of

polygons. For each cell, neighbouring cells are specified and non-zero weights are

then defined for each pair of neighbours.

Two different issues are at stake in neighbour-based weight matrices:

the definition of pairs of neighbours, for which wij 6= 0; and

the precise way in which values are associated with the non-zero weights wij .

Neighbours can also be defined when Z is observed only at points in space by

creating a tessellation or grid of regions surrounding the points and using the

resulting polygons to define pairs of neighbours, or via a distance-based criterion

for neighbourhoods.

A standard convention in spatial statistics is that a polygon is not a neighbour of

itself.
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The rook’s case
There are two famous conventions to define neighbourhoods for polygons:

the rook’s case and the queen’s case.

Rook’s case: pairs of cells are considered neighbours if they share a

common border of dimension 1 (curve).

The name rook’s case originates from the adjacent chessboard squares to which a rook

can move, as illustrated below. The patchwork of cells does not have to be a rectangular

grid for the definition to apply.

x

y
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The queen’s case

Queen’s case: pairs of cells are considered neighbours when they touch

each other, even if only at a single point.

The name queen’s case is again inspired by the possible movements of a queen on a

chessboard, as illustrated below

x

y

Neighbours can also be specified in more general ways. The R package

spdep provides ways to define neighbours.
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A touch of graph theory

Elementary concepts of graph theory are useful.

A graph is a pair of sets G = (V ,E ), where:

V is a set of n vertices (or points, or nodes), {vi}ni=1;

E is a set of edges (or lines, or arcs) that may unite vertices:

eij =(vi , vj).

In our context, vertices will be observation points/polygons and edges the

neighbour relations that may exist between different points/polygons.
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A very simple graph

Here is the graph for a 3× 3 grid of cells, with n=9 vertices and 12 edges:

● ● ●

● ● ●

● ● ●

7 8 9

4 5 6

1 2 3
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Some graph terminology

The order of the graph is the number of vertices, |V |;
the size of the graph is the number of edges, |E |;
two vertices vi , vj are adjacent if there is an edge eij between them;

a given vertex vi is incident with a given edge if that edge unites vi
with another vertex vj ;

the degree of a vertex is the number of edges incident with that

vertex.

The central vertex in slide 48 is incident with 4 edges, thus, of degree 4.

The four corner vertices (1, 3, 7, 9) are of degree 2 and all other vertices

in that (very small) graph are of degree 3.
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Adjacency matrices

One way of fully specifying a graph is through its adjacency matrix A:

both rows and columns are associated with the set of vertices;

matrix element aij can take two values:

◮ aij=1 if vi and vj are adjacent (edge eij exists);
◮ aij=0 if vi and vj are not adjacent (edge eij does not exist).

Here is the adjacency matrix for the graph in slide 48:

A =





























0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 1 0





























(20)
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Adjacency matrices (cont.)

Convention in spatial statistics: a vertex is not adjacent to itself; the

diagonal elements in the adjacency matrix are all zero.

The row sums of an adjacency matrix are the degree of each vertex.

adjacency matrices are symmetric (except for directed graphs – see

later): aij = aji for any i ,j , or equivalently, At = A .

In graphs of very high order (|V | very big) adjacency matrices are

very large and require a lot of memory. It is more efficient to define a

list of n vectors indicating, for each vertex, the adjacent vertices. In

the above example, the list would have 9 objects, the first of which

gives the vertices adjacent to vertex 1: (2, 4); the second the vector

for vertex 2: (1, 3, 5); and so on.
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Weighted and directed graphs

A weighted graph is a graph in which edges have weights, giving different

strengths to the connections between vertices. In our context, weighted

graphs may be used to represent the distance, or some function g of the

distance, between the observations/vertices.

Graphs may be directed, if an edge from an initial vertex vi to a terminal

vertex vj is not the same thing as an edge from vertex vj to vertex vi (which

may even not exist). Directed graphs are also called digraphs.

The adjacency matrix of a directed graph is, in general, not symmetric.

For directed graphs,

◮ the in-degree of vertex vi is the number of edges that end at vi ;
◮ the out-degree of vertex vi is the number of edges that begin at vi .
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Binary weight matrices
Once neighbours are defined, the specific weights wij must be specified. A few

common options are:

Binary weights matrix: it is the adjacency matrix of the graph of neighbours:

wij = 1 if cells/points i , j are neighbours, and wij = 0 otherwise (similar to a

radial distance weight function, except for the fact that the neighbours may be defined

in ways that are not simply functions of a distance).

For the graph on slide 48, we get:

W =





























0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 1 0





























For undirected neighbour graphs, a binary weights matrix is symmetric

(wij = wji , ∀ i , j ⇔ Wt = W).
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Row-normalized weight matrices

Row-normalized weights matrix: all non-zero weights wij in a given row are equal

and add to 1:
n
∑

j=1

wij = 1, for any row i . The weights are given by wij =
1
di
,

where di is the degree of vertex i in the graph of neighbours.

For the example on slide 48:

W =

































0 1
2

0 1
2

0 0 0 0 0
1
3

0 1
3

0 1
3

0 0 0 0

0 1
2

0 0 0 1
2

0 0 0
1
3

0 0 0 1
3

0 1
3

0 0

0 1
4

0 1
4

0 1
4

0 1
4

0

0 0 1
3

0 1
3

0 0 0 1
3

0 0 0 1
2

0 0 0 1
2

0

0 0 0 0 1
3

0 1
3

0 1
3

0 0 0 0 0 1
2

0 1
2

0

































This is not a symmetric matrix (W 6= Wt). But its use is fairly common.
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Standardized by mean number of links weight matrix

Another frequent types of weight matrices is the globally standardized by

the mean number of links weight matrix. It is the neighbourhood graph

adjacency (binary weights) matrix divided by |E |
|V | where |E | is the total

number of neighbour links that were established between the n= |V |
observations.

The non-zero weights (at the same positions as in the binary weights

matrix) have value |V |
|E | , and add up to |V |, the number of observations.

This is a symmetric weight matrix.
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Standardized by the total number of links weight matrix

The globally standardized by the total number of links weight matrix is the

neighbourhood graph adjacency (binary weights) matrix divided by the

graph size |E |, that is, the total number of neighbour links that were

specified.

All non-zero elements of W are 1
|E | , and their sum total is 1.

This is a symmetric weights matrix.
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Defining neighbours with R packages

Package spdep provides a class called nb for neighbour lists.

Details about this class can be found in the nb vignette, which can be

invoked (after loading the spdep package) with the command:

> vignette("nb")

Objects of class nb store, in a compact way, the information about which

pairs of objects are to be considered neighbours.

The following commands create nb objects.
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cell2nb

spdep::cell2nb assumes a rectangular grid with nrow rows and ncol

columns, which must be specified as arguments to the command.

By default the command uses the rook’s case to create neighbours, but

the argument type="queen" uses the queen’s case instead.

The appropriate command for the rook’s case 3× 3 example is:

> cell2nb(3,3)

The results are on the next slide.
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cell2nb (example)

> cell2nb(3,3)

Neighbour list object:

Number of regions: 9

Number of nonzero links: 24

Percentage nonzero weights: 29.62963

Average number of links: 2.666667

There are |V |=9 cells in the 3×3 grid, for a maximum of 92=81 possible links between

pairs of neighbours (counting links between each cell and itself, and different

permutations, as in a directed graph).

Of these, only 2×|E |=24 are pairs of neighbours (for the rook’s case), a percentage of
24
81

× 100% = 29.62963%. The average number of links/cell is 2|E |
|V |

= 24
9
= 2.666667. In

graph terminology this is the mean degree per vertex.

Since there are missing values in the Aragonez rectangular grid, the command

cell2nb(nrow=26, ncol=40) does not solve our problem.
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dnearneigh

spdep::dnearneigh creates a list of neighbours with the distance

between the (supplied) point coordinates that are between d1 (usually

zero) and d2.

For the Aragonez data set, with d1 = 0 and d2 = 3, only points in the

same row of adjacent columns (separated by 2.25m) will be neighbours:

> dnearneigh(AragonezPoints, d1=0, d2=3)

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 1958

Percentage nonzero weights: 0.1885664

Average number of links: 1.921492

The number of non-zero links (1958) is almost twice the number of points (1019): most

points have 2 neighbours (there are border points, but also missing values).
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dnearneigh (d2=3)
This is the resulting graph. Here the (same) neighbours were calculated from the

Aragonez3763 sf object:

> plot(dnearneigh(Aragonez3763, d1=0, d2=3),

+ coords=st_geometry(Aragonez3763), col="red", pch=16)
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dnearneigh (d2=4)
Different upper distance bounds give different sets of neighbours. For example,

d2 = 4 connects adjacent points in a way similar to the rook’s case: for most

points, the neighbours are the four cells immediately above, to the right, below,

and to the left:
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dnearneigh (d2=5)

d2=5 is a rule similar to the queen’s case, but with an extra-long

horizontal connection (diagonally adjacent points are at distance 4.37m; points on

the same row are neighbours of points two columns away, separated by 4.5m).

> dnearneigh(AragonezPoints, d1=0, d2=5)

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 9550

Percentage nonzero weights: 0.9197187

Average number of links: 9.371933

Most grid points have 10 neighbours: 1 above; 2 to the right; 1 below; 2 to the

left; 4 in diagonal directions.

This choice allows for spatial dependence over gaps in the data.
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dnearneigh (d2=5)

> plot(dnearneigh(AragonezPoints, d1=0, d2=5),

+ coord=coordinates(AragonezPoints), col="red")
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knearneigh

spdep::knearneigh searches k-nearest neighbours in a set of point

coordinates. Output is of class knn (class package), not nb. The spdep

knn2nb function converts knn objects to nb objects.

> knn2nb(knearneigh(Aragonez3763, k=4))

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 4076

Percentage nonzero weights: 0.3925417

Average number of links: 4

Non-symmetric neighbours list

The average number of links is exactly 4 (by design), usually the adjacent

cells in the rook’s case sense.
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knearneigh

> plot(knn2nb(knearneigh(Aragonez3763, k=4)),

+ st_geometry(Aragonez3763), col="red", pch=16)
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poly2nb

spdep::poly2nb accepts polygon input (of class sf or

SpatialPolygonsDataFrame) and creates a neighbour list (of class nb)

using the queen’s case rule, by default.

> poly2nb(Aragonez3763Grid)

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 7646

Percentage nonzero weights: 0.7363528

Average number of links: 7.503435

For Aragonez3763Grid, on average, each grid polygon has almost 8

neighbours, as expected for the queen’s case in a rectangular grid.
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poly2nb

> plot(poly2nb(Aragonez3763Grid),

+ coords=st_geometry(Aragonez3763), col="red", pch=16)
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Weights matrices

Once a neighbour list has been created, the weights matrix results from

assigning weights to each pair of neighbours.

spdep::nb2mat accepts as input an nb object and creates a spatial

weights matrix with, by default, the row-normalized weights criterion.

This is illustrated with the 3× 3 rectangular grid and a rook’s case

neighbour pattern (the default in the cell2nb function):

> nb2mat(cell2nb(3,3))

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 69 / 146



Weights matrices

> nb2mat(cell2nb(3,3))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

1:1 0.0000000 0.50 0.0000000 0.50 0.0000000 0.00 0.0000000 0.00 0.0000000

2:1 0.3333333 0.00 0.3333333 0.00 0.3333333 0.00 0.0000000 0.00 0.0000000

3:1 0.0000000 0.50 0.0000000 0.00 0.0000000 0.50 0.0000000 0.00 0.0000000

1:2 0.3333333 0.00 0.0000000 0.00 0.3333333 0.00 0.3333333 0.00 0.0000000

2:2 0.0000000 0.25 0.0000000 0.25 0.0000000 0.25 0.0000000 0.25 0.0000000

3:2 0.0000000 0.00 0.3333333 0.00 0.3333333 0.00 0.0000000 0.00 0.3333333

1:3 0.0000000 0.00 0.0000000 0.50 0.0000000 0.00 0.0000000 0.50 0.0000000

2:3 0.0000000 0.00 0.0000000 0.00 0.3333333 0.00 0.3333333 0.00 0.3333333

3:3 0.0000000 0.00 0.0000000 0.00 0.0000000 0.50 0.0000000 0.50 0.0000000

But spatial weights matrices are usually very large, and tend to be sparse.

It is advisable to avoid creating the n × n weights matrices.
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Objects of class listw

spdep::nb2listw is a function that creates objects of class listw, which

efficiently store (sparse) spatial weights matrices.

The class listw is a list, with 3 components:

style records the style of weights used, with row-sum normalized (W)

as the default;

neighbours is the nb object;

weights is a list of numeric vectors giving the values of spatial

weights for each pair (i , j) of neighbours.
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Objects of class listw

This is the visible output for the 3× 3 cell grid:

> nb2listw(cell2nb(3,3))

Characteristics of weights list object:

Neighbour list object:

Number of regions: 9

Number of nonzero links: 24

Percentage nonzero weights: 29.62963

Average number of links: 2.666667

Weights style: W

Weights constants summary:

n nn S0 S1 S2

W 9 81 9 6.916667 36.80556
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Styles for weight matrices

The argument style exists in the output of both nb2mat and nb2listw.

It controls the type of weights assigned to the neighbour pairs, with the

following conventions:

W (default) a row-normalized weights matrix (the weights of each row

add to 1).

B a binary weights matrix (all links have weight 1).

C the globally standardized by the mean number of links weight matrix

(all weights add to n).

U the globally standardized by the total number of links weight matrix

(elements add to 1).
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A listw object
The five weights constants summary values in the output are:

n - the number n of observations (sample size);

nn - the number n2 of elements in the n × n weight matrix;

S0 - the sum of all the weights in the weights matrix: S0 =
∑n

i=1

∑n

j=1 wij .

S1 - twice the sum of squares of all elements in the symmetric part of matrix

W, defined as W+W
t

2 :

S1 = 2

n
∑

i=1

n
∑

j=1

(

wij + wji

2

)2

=
1

2

n
∑

i=1

n
∑

j=1

(wij + wji )
2 .

S2 - If wi .=
∑n

j=1 wij is the sum of W’s i-th row, and

w.i =
∑n

j=1 wji is the sum of W’s i-th column:

S2 =

n
∑

i=1

(wi . + w.i)
2
.
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The structure of a listw object
This is the actual (partial) output of a nb2listw command:

> str(nb2listw(cell2nb(3,3)))

List of 3

$ style : chr "W"

$ neighbours:List of 9

..$ : int [1:2] 2 4

..$ : int [1:3] 1 3 5

..$ : int [1:2] 2 6

..$ : int [1:3] 1 5 7

..$ : int [1:4] 2 4 6 8

..$ : int [1:3] 3 5 9

..$ : int [1:2] 4 8

..$ : int [1:3] 5 7 9

..$ : int [1:2] 6 8

[...]

$ weights :List of 9

..$ : num [1:2] 0.5 0.5

..$ : num [1:3] 0.333 0.333 0.333

..$ : num [1:2] 0.5 0.5

..$ : num [1:3] 0.333 0.333 0.333

..$ : num [1:4] 0.25 0.25 0.25 0.25

..$ : num [1:3] 0.333 0.333 0.333

..$ : num [1:2] 0.5 0.5

..$ : num [1:3] 0.333 0.333 0.333

..$ : num [1:2] 0.5 0.5

[...]
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A listw object

The nb2listw for the Aragonez polygons, with style “C”:

> nb2listw(poly2nb(Aragonez3763Grid), style="C")

Characteristics of weights list object:

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 7646

Percentage nonzero weights: 0.7363528

Average number of links: 7.503435

Weights style: C

Weights constants summary:

n nn S0 S1 S2

C 1019 1038361 1019 271.6089 4159.318
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Summary of spdep functions for neighbours and weights
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Effects of two-dimensional autocorrelation

The effects of 2-D autocorrelation on standard statistical methods are

similar to those for 1-D autocorrelation discussed previously.

Autocorrelation decreases the effective sample size, as there are no longer

n independent sources of information. Standard independence-based

statistical techniques provide mistaken significance levels and p-values, as

well as mistaken confidence levels for confidence intervals.

This can be seen by again assuming the extension of the AR(1)

autocorrelation process, which was already introduced in slide 40.

We re-write the model using the random vector ~Z of n observations of a

temporal process.
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The 2-D autocorrelated model in vector notation

Assuming independent Normal errors, with ǫi ∩ N (0, σ2) for all i , is

equivalent to assuming that the random error vector ~ǫǫǫ has a Multinormal

distribution, with mean vector E [~ǫǫǫ] = ~0 and variance-covariance matrix

V [~ǫǫǫ] = σ2 In, where In is the n× n identity matrix:

~ǫǫǫ ∼ Nn(~0, σ
2
In)

We have an alternative model formulation:










~Z = µ~1n + ~ηηη

~ηηη = λW~ηηη +~ǫǫǫ

~ǫǫǫ ∼ Nn(~0, σ
2In) ,

(21)

With a transient period of length t, W is (t+n)×(t+n). Only the

post-transient part of ~Z is of interest. Post-transience, matrix W is n×n.
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The 2-D autocorrelated error model in vector notation

The second equation in model (21) can be re-written (assuming the matrix

inverse exists) as:

(In − λW)~ηηη = ~ǫǫǫ ⇔ ~ηηη = (In − λW)−1~ǫǫǫ . (22)

So the spatial autocorrelation model under consideration becomes:

{

~Z = µ~1n + (In − λW)−1~ǫǫǫ

~ǫǫǫ ∩ Nn(~0, σ
2In) .

(23)
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The distribution of ~Z
A linear (affine) transformation of a Multinormal vector, as in the first

equation in model (23), preserves Multinormality.

The expected vector and (co-)variance matrix of ~Z can be derived by their

general properties for linear transformations:

E [~a+ B~X] = ~a+ BE [~X] (24)

V [~a+ B~X] = BV [~X]Bt (25)

These properties give:

E [~Z] = µ~1n , V [~Z] = σ2
[

(In − λW)t(In − λW)
]−1

.

Therefore, under model (23), we have:

~Z ∩ Nn

(

µ~1n , σ2
[

In − λ
(

W +W
t
)

+ λ2
W

t
W
]−1
)

(26)
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The distribution of Z

Note the role of both the spatial weights matrix W and the overall

autocorrelation parameter λ in the distribution of ~Z.

Using this vector/matrix notation, the sample mean is: Z = 1
n
~1n

t~Z

(the inner product ~1n

t~Z gives the sum of elements of ~Z).

The general properties (24) for expected values and variances give:

E [Z ] =
1

n
~1n

t · µ~1n = µ
1

n
~1n

t~1n = µ (27)

V [Z ] =
1

n2
~1n

t
V [~Z]~1n . (28)

Remark: For any matrix B, ~1n
t
B~1n gives the sum of elements in B.
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The distribution of Z

Since Normality is also preserved, we have:

Z ∩ N
(

µ ,
sum(V [~Z])

n2

)

with V [~Z] = σ2
[

In − λ (W +Wt) + λ2WtW
]−1

.

For λ = 0 (no spatial autocorrelation) V [Z ] reverts back to σ2

n
, the result

for independent samples.

Specific formulas for V [Z ] depend on both λ and the weights matrix W,

but are in general different from the variance for independent samples.
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Measuring spatial autocorrelation

The most frequent measure of spatial autocorrelation is Moran’s I indicator,

originally developed to test the null hypothesis of zero autocorrelation for a (fully

numerical) spatial random process Z , given a random sample (Z1,Z2, ...,Zn).

We start with the following expression, which resembles a weighted covariance,

not between different variables measured at corresponding points, but between the

same variables (the sample values Zi ), measured at all possible pairs of points:

n
∑

i=1

n
∑

j=1

wij(Zi − Z)(Zj − Z )

n
∑

i=1

n
∑

j=1

wij

(29)

The weights wij are the elements of a spatial weights matrix W.

The sum of the weights in the denominator is S0.

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 84 / 146



Moran’s I

Moran’s I indicator compares this ‘Moran covariance’ with the value that would

result if the spatial weights matrix were an identity matrix (W = I), which is the

assumption of independence.

Moran’s I is measuring how well the spatial weights wij applied to neighbouring

values Zj are capable of reconstituting the observed values Zi :

I =

n
∑

i=1

n
∑

j=1

wij (Zi−Z)(Zj−Z )

n
∑

i=1

n
∑

j=1

wij

n
∑

i=1

(Zi−Z)2

n

=
n

S0
·

n
∑

i=1

n
∑

j=1

wij(Zi − Z )(Zj − Z )

n
∑

i=1

(Zi − Z )2
. (30)

More positive (negative) values of I tend to be associated with more intense

positive (negative) autocorrelation.

The expected value of I in the absence of spatial autocorrelation is E [I ]=− 1
n−1 .
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Geary’s c

Geary’s c is a related indicator, which instead of using ‘Moran’s

covariance’, uses a weighted sum of the squared distances between the

observed variable values, at all possible pairs of observed points:

c =
n − 1

2S0
·

n
∑

i=1

n
∑

j=1
wij(Zi − Zj)

2

n
∑

i=1
(Zi − Z)2

. (31)

The expected value of Geary’s c , with no spatial autocorrelation, is

E [c]=1.

Smaller values (necessarily non-negative) of c indicate positive

autocorrelation, and values c > 1 indicate negative autocorrelation.
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Testing for spatial autocorrelation

Both Moran’s I and Geary’s c are used to test the null hypothesis of no

spatial autocorrelation. Both indicators have asymptotic Normal

distribution, given H0 (independence). But the variance (V [I ] or V [c]) can

be computed in one of two ways:

The standard assumption of a random sample: every new sample of

size n will be a set of different values.

The randomisation assumption: conditional on the observed values,

we assume that the locations at which they observed are randomised.

The test statistics are I−E [I ]√
V [I ]

or E [c]−c√
V [c]

, with asymptotic N (0, 1)

distribution, under H0.

In both cases, large values of the statistic suggest rejection of H0.
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Testing for spatial autocorrelation in R

The functions spdep::moran and spdep::geary, compute the value of

each indicator.

The functions spdep::moran.test and spdep::geary.test test for

spatial autocorrelation, assuming asymptotic Normality. H0 is the absence

of spatial autocorrelation.

By default, both the moran.test and the geary.test functions will

compute the variance assuming the randomisation option.

If the randomisation argument is set to the logical value FALSE, the

variance is computed under the standard random sample assumption.

Since the values of Moran’s I and of Geary’s c are also displayed when

using the test functions, we focus on these *.test functions, with the

Aragonez dataset, for various weights matrices.
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Spatial autocorrelation for the Aragonez yields

We consider the yields, with a row-normalized weight matrix and

neighbours defined by the maximum distance of 3m:

> Wd3 <- nb2listw(dnearneigh(AragonezPoints, d1=0, d2=3))

> moran.test(AragonezPoints$yield, listw=Wd3)

Moran I test under randomisation

data: AragonezPoints$yield

weights: Wd3

Moran I statistic standard deviate = 10.924, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.3506489981 -0.0009823183 0.0010361789

I = 0.3506489981 is highly significant, indicating spatial autocorrelation.

But undetected spatial trends may be confused with spatial

autocorrelation.
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Spatial autocorrelation for Aragonez yields (cont.)

The test based on the alternative expression for V [I ] does not produce

major differences.

Note: the values of I and E [I ] do not change with the type of test used.

> moran.test(AragonezPoints$yield, listw=Wd3, randomisation=FALSE)

Moran I test under normality

data: AragonezPoints$yield

weights: Wd3

Moran I statistic standard deviate = 10.918, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.3506489981 -0.0009823183 0.0010371728
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Geary’s c with Aragonez

The use of Geary’s c gives similar results (keeping in mind that the

absence of spatial autocorrelation is indicated by the value c = 1):

> geary.test(AragonezPoints$yield, listw=Wd3)

Geary C test under randomisation

data: AragonezPoints$yield

weights: Wd3

Geary C statistic standard deviate = 10.561, p-value < 2.2e-16

alternative hypothesis: Expectation greater than statistic

sample estimates:

Geary C statistic Expectation Variance

0.655693718 1.000000000 0.001062794

The tests depend on the spatial weights matrix used.

For the Aragonez yields, we must assume spatial autocorrelation.
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Testing for spatial autocorrelation (cont.)

For smaller samples, where asymptotic Normality is doubtful, moran.mc

carries out a permutation test on I .

The value of Moran’s I is computed for a large number of permutations of

the variable values along the spatial distribution, and the empirical

quantile of our true indicator value is registered.

In the absence of spatial autocorrelation, the empirical quantile of I or

should not be extreme. If it is, this suggests the existence of spatial

autocorrelation.
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Spatial autocorrelation for Aragonez centred yields (cont.)

The permutation tests for the same setting:

> moran.mc(AragonezPoints$yield, listw=Wd3, nsim=10000)

Monte-Carlo simulation of Moran I

data: AragonezPoints$yield

weights: Wd3

number of simulations + 1: 10001

statistic = 0.35065, observed rank = 10001, p-value = 9.999e-05

alternative hypothesis: greater

The value of Moran’s I is, of course, the same. But its significance is

assessed in a different way: its value is the most extreme, for all 10 001

permutations. Its empirical p-value is therefore p= 1
10001 =9.999 × 10−5.
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Testing the Aragonez linearly detrended yields
When examining residuals of a linear regression (such as yieldldt),

independence cannot be assumed (by design) as H0.

The lm.morantest function should be used instead of moran.test.

The input argument must be an lm object, resulting from a linear

regression, such as Arag.lm (slide 34), whose residuals are yieldldt.

> lm.morantest(Arag.lm, listw=Wd3)

Global Moran I for regression residuals

data:

model: lm(formula = yield ~ rowm + colm, data = AragonezPoints)

weights: Wd3

Moran I statistic standard deviate = 6.1735, p-value = 3.34e-10

alternative hypothesis: greater

sample estimates:

Observed Moran I Expectation Variance

0.195881656 -0.002945635 0.001037275

Moran’s I is now noticeably smaller than for yield, but there is still

strong indication of spatial autocorrelation (p = 3.34 × 10−10).
J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 94 / 146



K-th order neighbours

Given a list of neighbours of each observation, second-order neighbours are

the neighbours of neighbours.

Third-order neighbours include the neighbours of second-order neighbours.

Neighbours of order k , for any natural number k , are defined in a similar

fashion.

The spdep function nblag, given a neighbour’s list, computes neighbours

of successive order (up to a value k given by the maxlag argument).

The output is a list of length maxlag, with the summary characteristics of

the neighbour’s list for each lag:

the first object in the output list summarizes the initial neighbours list;

the second list object summarizes the neighbours of order 2;

and so on.
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K-th order neighbours and nblag

> nb.k4 <- knn2nb(knearneigh(AragonezPoints, k=4))

> nblag(nb.k4, maxlag=3)

[[1]]

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 4076

Percentage nonzero weights: 0.3925417

Average number of links: 4

Non-symmetric neighbours list

[[2]]

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 7762

Percentage nonzero weights: 0.7475242

Average number of links: 7.617272

Non-symmetric neighbours list

[[3]]

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 11253

Percentage nonzero weights: 1.083727

Average number of links: 11.04318

Non-symmetric neighbours list
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Moran’s correlogram

K-th order neighbours are useful to see how indicators such as Moran’s I

vary as successive orders of neighbours are considered.

Function spdep::sp.correlogram computes Moran’s I for the

neighbours of each successive order.

Arguments which must be specified are:

the original neighbours list (an object of class nb);

the method, giving the type of indicator (‘‘I’’ or ‘‘C’’);

the variable of interest (argument var);

the maximum order for neighbours (argument order);

The style of the weight matrix (by default it is style="W", a

row-normalized weights matrix).
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Moran’s correlogram for the Aragonez data

> sp.correlogram(nb.k4, var=AragonezPoints$yieldldt, method="I", order=3)

Spatial correlogram for AragonezPoints$yieldldt

method: Moran’s I

estimate expectation variance standard deviate Pr(I) two sided

1 (1019) 0.20026079 -0.00098232 0.00047723 9.2121 < 2.2e-16 ***

2 (1019) 0.11882755 -0.00098232 0.00024437 7.6643 1.798e-14 ***

3 (1019) 0.11274136 -0.00098232 0.00016604 8.8255 < 2.2e-16 ***

Row k is the output of a moran.test function with neighbours of order k .

As would be expected, Moran’s I decreases as the order k of neighbours

grows: spatial correlation tends to decrease with increasing spatial lags.

Plotting the values of Moran’s I against the order k of the neighbours

gives a Moran’s correlogram. The following command produces a Moran’s

correlogram up to order 10, which is shown in the next slide.

> plot(sp.correlogram(nb.k4, var=AragonezPoints$yieldldt, method="I", order=10))

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 98 / 146



Moran’s correlogram for Aragonez
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Figure: Moran’s correlogram for the linearly detrended Aragonez yields, based on

a k = 4 nearest neighbours list and a row-normalized weight matrix, with lags of

up to 10. There is evidence of spatial autocorrelation, at least up to neighbours

of lag k = 5 or k = 7.
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Some concepts of random processes of geostatistical data

We assume that Z (s) is a random spatial process where s ∈ S (s is a

vector of coordinates).

Mean function µs is the function that, for each location s ∈ S gives

the expected value µs = E [Z (s)].

Covariogram C (s1, s2), or auto-covariance function, is the function

that, for any pair of locations s1, s2 ∈ S, gives the covariance between

Z (s1) and Z (s2):

C (s1, s2) = Cov [Z (s1),Z (s2)] = E [(Z (s1)− µs1)(Z (s2)− µs2)] .

Spatial lag ~d=s1−s2 is the difference between two locations s1 and s2

where Z (s) is observed. It is a 2-D vector.
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Second-order (weak) stationarity

We say that the process Z (s) is:

second-order (or weakly) stationary if µs does not depend on the

location s (is constant over S) and C (s1, s2) depends only on the

spatial lag:

µs = µ , ∀ s ∈ S ; and

C (s1, s2) = Cℓ(s1−s2) , ∀ s1, s2 ∈ S.

isotropic when the covariogram C (s1, s2) depends only on the (scalar)

distance between the points s1 and s2: C (s1, s2) = Cs(d(s1, s2)).

Anisotropic if it is a second-order stationary process but not isotropic,

that is, C (s1, s2) depends on the spatial lag, but in ways that vary

according to the direction of the spatial lag vector ~d=s1−s2.

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 101 / 146



(Semi-)Variogram
A crucial concept is the (semi-)variogram function:

variogram is the function

2γ(s1, s2) = Var [Z (s1)− Z (s2)] . (32)

semi-variogram is the function

γ(s1, s2) =
1

2
Var [Z (s1)− Z (s2)] . (33)

Confusingly, the semi-variogram is often just called a variogram.

It is straightforward to see that, for weakly stationary processes:

2γ(s1, s2) = C (s1, s1) + C (s2, s2)− 2C (s1, s2) = 2Cℓ(~0)− 2Cℓ(~d) .
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Semi-variogram

So, for weakly stationary processes, the semi-variogram is:

γℓ(~d) = Cℓ(~0)− Cℓ(~d) .

With the further assumption of isotropy, the semi-variogram becomes a

function of a single real variable, the distance d = d(s1−s2) associated

with the spatial lag:

γs(d) = Cs(0)− Cs(d) .
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Properties of the semi-variogram

With isotropy, the semi-variogram of a spatial process Z (s) is:

nonnegative: γs(d) ≥ 0, ∀ d .
γs(0) = 0.

With no spatial autocorrelation, C (d) = 0, for d 6= 0, and so

γs(d) = Cs(0) = Var [Z (s)], ∀ d 6= 0.

Without spatial autocorrelation, γs is discontinuous at the origin.

Even with spatial autocorrelation, the variogram is not usually

continuous at the origin. This may be thought of as a feature of the

semi-variogram itself, or as a consequence of the necessary

discretization that any measurement of the covariances implies.
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Nugget, sill, range and partial sill
For isotropic processes, we define:

lim
d→0

γs(d) = c0 is called the nugget effect. The nugget effect can be

viewed as the part of the variance of the random process Z (s) that

has not been explained by the spatial autocorrelation process.

The sill is the (constant) variance of the stationary process Z (s):

sill = lim
d→+∞

γs(d) = Cs(0) − lim
d→+∞

Cs(d) = Cs(0) = Var [Z (s)] .

the range of a spatial point s1 is the value of d for which the

semi-variogram is smaller than the sill, γ(d) < Cs(0), or, if the sill is

an asymptotic value, for which the semi-variogram becomes some

proportion, very close to 1 (say 95%) of the sill.

The partial sill is the difference between the sill and the nugget. It

can be viewed as that part of Var [Z (s)] that is explained by the

spatial autocorrelation process.
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A typical semi-variogram

Figure: A typical variogram curve, with the nugget, sill and range highlighted.
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Empirical semi-variograms

Assuming isotropy, the semi-variogram is estimated by the empirical

semi-variogram, from the sample (z(s1), z(s2), ..., z(sn)):

γ̂(d) =
1

2

1

|N(d)|
∑

i ,j∈N(d)

(z(si)− z(sj))
2 , (34)

where, for any given distance d = dist(s1, s2), N(d) denotes the set of

pairs of locations s1, s2 which are distance d , |N(d)| is the cardinality

(size) of this set, and the summation is over all pairs of locations si , sj at

that given distance.

Usually, d is taken to be a small interval in order to ensure the existence of

enough pairs N(d) of observations, for any given d .

To interpret the empirical semi-variogram, we must consider the properties

of the semi-variogram which it is estimating.
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Empirical semi-variograms in R

The gstat package has a variogram function that computes the

empirical semi-variogram.

Input is:

a formula to detrend the variable (similar to the R formulas for linear

regression);

a SpatialPointsDataFrame object (use as Spatial to convert an

sf object).

Alternatively, the latter argument may be replaced by the name of a data

frame containing the variable and a list of coordinates for each observed

point.
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The variogram function
We compute the empirical semi-variogram of the Aragonez variable yield,

detrended by just subtracting a constant (the mean):

> variogram(yield ~ 1, data=AragonezPoints)

np dist gamma dir.hor dir.ver id

np dist gamma dir.hor dir.ver id

1 1944 3.026404 0.8617851 0 0 var1

2 6513 5.666938 0.9560390 0 0 var1

3 13187 9.613532 0.9693001 0 0 var1

4 14887 13.512151 1.0027140 0 0 var1

5 20259 17.441649 1.0266800 0 0 var1

6 20529 21.302718 1.0582606 0 0 var1

7 24687 25.061267 1.0702769 0 0 var1

8 28165 29.142116 1.1049442 0 0 var1

9 26756 33.097528 1.1325510 0 0 var1

10 28621 36.892389 1.1600034 0 0 var1

11 29117 40.763906 1.1997004 0 0 var1

12 29146 44.621526 1.2327257 0 0 var1

13 28860 48.412351 1.2727498 0 0 var1

14 29956 52.323021 1.3368361 0 0 var1

15 27872 56.240912 1.3874178 0 0 var1

Column dist gives the values of d ; column gamma gives the corresponding estimated

value of the semi-variogram value γ(d), computed from the np available points.
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An empirical semi-variogram
An empirical semi-variogram can be plotted using the appropriate plot

method for objects of class gstatVariogram, in other words, by enclosing

the previous command inside a plot() call.
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Figure: The empirical semi-variogram for the Aragonez yields, detrended by the

(constant) mean, as produced by the variogram command in package gstat.

The stabilization of the semi-variogram may have not been completed
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Extending the cutoff point

To check whether the curve is approaching a horizontal asymptote at about 1.2,

the cutoff argument in the function variogram will be set to a larger value:

> variogram(yield ~ 1, data=AragonezPoints, cutoff=75)

np dist gamma dir.hor dir.ver id

1 4775 3.885159 0.9006839 0 0 var1

2 11662 8.016826 0.9640507 0 0 var1

3 17587 12.546920 0.9995182 0 0 var1

4 27227 17.609841 1.0286987 0 0 var1

5 27150 22.604166 1.0598021 0 0 var1

6 32791 27.481308 1.0921583 0 0 var1

7 35735 32.444811 1.1267466 0 0 var1

8 39019 37.578379 1.1697366 0 0 var1

9 33814 42.471293 1.2151499 0 0 var1

10 42088 47.444342 1.2590447 0 0 var1

11 34834 52.536738 1.3352649 0 0 var1

12 36149 57.389630 1.4167549 0 0 var1

13 35044 62.448067 1.4409542 0 0 var1

14 31021 67.475473 1.5638226 0 0 var1

15 26936 72.392091 1.6330283 0 0 var1

Increasing the cutoff argument has its limits: as d grows, values of γ will be

estimated with a smaller numbers of points, becoming prone to erratic behaviour.
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Extending the cutoff

The figure gives the new empirical semi-variogram, which continues to grow. This

suggests a non-stationary variance in the process or an inappropriately removed

underlying trend.

> plot(variogram(yield ∼ 1, data=AragonezPoints, cutoff=75))
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Variogram for the linearly detrended yields

Detrending with a linear regression on column and row distances (variables

colm and rowm, respectively, in the AragonezPoints object) can be given

directly in the formula argument of the command, as illustrated below:

> variogram(yield ~ colm + rowm, data=AragonezPoints)

np dist gamma dir.hor dir.ver id

1 1944 3.026404 0.8612585 0 0 var1

2 6513 5.666938 0.9533967 0 0 var1

3 13187 9.613532 0.9616996 0 0 var1

4 14887 13.512151 0.9861200 0 0 var1

5 20259 17.441649 0.9984865 0 0 var1

6 20529 21.302718 1.0167690 0 0 var1

7 24687 25.061267 1.0102689 0 0 var1

8 28165 29.142116 1.0295995 0 0 var1

9 26756 33.097528 1.0337417 0 0 var1

10 28621 36.892389 1.0427308 0 0 var1

11 29117 40.763906 1.0539613 0 0 var1

12 29146 44.621526 1.0555425 0 0 var1

13 28860 48.412351 1.0741435 0 0 var1

14 29956 52.323021 1.0991958 0 0 var1

15 27872 56.240912 1.1142427 0 0 var1
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Variogram for the linearly detrended yields
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The semi-variogram clearly flattens out, suggesting that the linear detrending has

been more successful than detrending by just a constant value.

The sill appears to be at approximately 1 and the nugget value at 0.8.
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The variog function

An alternative function to compute empirical variograms is the variog function

in package geoR.

> library(geoR)

> variog(coords=coordinates(AragonezPoints), data=AragonezPoints$yieldldt)

$u

[1] 4.977219 14.931657 24.886094 34.840532 44.794970 54.749408

[7] 64.703845 74.658283 84.612721 94.567159 104.521596 114.476034

[13] 124.430472

$v

[1] 0.9431928 0.9913348 1.0151768 1.0393587 1.0617242 1.1096586 1.1409804

[8] 1.1868190 1.2239065 1.2387683 1.2562398 1.2209068 1.0539211

$n

[1] 15572 44191 60139 73986 75903 71073 66636 51950 34997 16787 5712 1553

[13] 172

[...]

u gives the lags d ; v the values γ(d); n the points used to estimate γ(h).

n decreases substantially for large d , making the estimates of γ(d) fall for large d .
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Plotting the variog results

Unlike variogram, the variog function uses, by default, all the spatial

lags d (as center points in intervals, or bins) for which it finds pairs of

points. A max.dist argument controls the maximum distance d used.

> plot(variog(coords=coordinates(AragonezPoints),

+ data=AragonezPoints$yieldldt))

0 20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

distance

s
e
m

iv
a
ri

a
n
c
e

J. Cadima (ISA - Univ. Lisboa) OpenSpat – Spatial Data: an introduction May 2019 116 / 146



Variogram models
Several classes of functions have been proposed for smooth semi-variogram

curves. Among them:

exponential model: for d > 0, the semi-variogram is given by:

γ(d) = c0 + p
[

1− e
− d

r

]

,

c0 is the nugget, r the range and p the partial sill. The function

grows to an asymptotic sill (given by c0 + p), which is not attained.

spherical model: for 0 < d < r , the semi-variogram is given by:

γ(d) = c0 + p

[

3

2

d

r
− 1

2

(

d

r

)3
]

for d < r ,

with γ(d) = sill = c0 + p for d > r .

The model assumes that for d > r there ceases to be spatial

dependence and thereafter the semi-variogram γ(d) is constant.
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Variogram models

gaussian model: for d > 0, the semi-variogram is given by:

γ(d) = c0 + p

[

1− e
− d2

r2

]

,

with constants defined as above.

The gstat package provides tools to

fit such models;

plot smooth curves on the empirical semi-variogram; and

estimate the sill, the nugget effect and the range.
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The vgm function

Model functions are specified with the vgm command in gstat, which

requires as arguments:

psill: an initial estimate of the partial sill (the difference between

the sill and the nugget);

nugget: an initial estimate of the nugget effect c0;

range: an initial estimate of the range r ;

model: the class of model function.

The shapes of available variogram models can be viewed by typing the

following command, with results in the next slide:

> show.vgms()
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Variogram models available with vgm
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The fit.variogram function

To fit a variogram model, package gstat has the fit.variogram

function, with two main arguments:

an empirical semi-variogram; and

a model class of functions.

An exponential model fitted to the linearly detrended Aragonez yields:

> AragVarioLin <- variogram(yield ~ colm + rowm,

+ data=AragonezPoints, locations=coordinates(AragonezPoints))

> m.fit <- fit.variogram(AragVarioLin,

+ model=vgm(psill=0.3,"Exp", range=7, nugget=0.8))

> m.fit

model psill range

1 Nug 0.7906716 0.000000

2 Exp 0.2483298 7.297103
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Plotting a variogram model

The empirical semi-variogram and fitted (exponential) variogram model

from the previous slide can be jointly plotted with the following command

and the results shown below:

> plot(AragVarioLin, m.fit)
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A spherical model

A spherical model fitted to the same empirical variogram:

> m2.fit <- fit.variogram(AragVarioLin,

+ model=vgm(psill=0.3,"Sph", range=7, nugget=0.8))

> m2.fit

model psill range

1 Nug 0.7277332 0.000000

2 Sph 0.2759964 9.032198

While both models provide similar estimates for the partial sill and nugget,

the estimates for the range differ a bit more. The exponential model is

better suited in this case, since unlike the spherical model, it does not

assume a constant γ(d) from some point onwards.
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The plotted spherical model

> plot(AragVarioLin, m2.fit)
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Variogram models in package geoR

The geoR package also has functionalities to fit variogram models for the

empirical variograms estimated with its variog function. They allow us to

try on various models ‘by hand’.

After plotting an empirical variogram, we can use the function

lines.variomodel to fit a given model function, with parameters

provided by the user.

The lines.variomodel function arguments are:

cov.model specifies the type of model (see details in the helpfile for

cov.spatial);

cov.pars, a vector with the values for the partial sill and range;

nugget, the value for the nugget effect.
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Using the geoR functions
For the linearly detrended Aragonez yields, the commands to compute an

empirical variogram (with a maximum lag d = 80), plot it, and try out an

exponential model:

> AragVariog <- variog(coords=coordinates(AragonezPoints),

+ data=AragonezPoints$yieldldt, max.dist=80)

> plot(AragVariog)

> lines.variomodel(cov.model="exp", cov.pars=c(0.2, 20), nugget=0.9)
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Anisotropy
Anisotropy is harder to identify and to work with.

The authors of the gstat package provide an argument alpha for the

variogram function, which allows the user to define a vector of angles

giving the main directions along which to inspect if the resulting

semi-variograms are similar.

> variogram(yield ~ colm + rowm , data=AragonezPoints, alpha=c(0,90))

np dist gamma dir.hor dir.ver id

1 965 3.761890 0.8553530 0 0 var1

2 2782 5.937408 0.9799105 0 0 var1

3 7021 9.841740 0.9568937 0 0 var1

[...]

13 14835 48.420389 1.0816942 0 0 var1

14 15112 52.398543 1.1151889 0 0 var1

15 13430 56.296716 1.1327193 0 0 var1

16 979 2.301436 0.8670795 90 0 var1

17 3731 5.465264 0.9336268 90 0 var1

18 6166 9.353679 0.9671719 90 0 var1

[...]

29 14844 52.246134 1.0829139 90 0 var1

30 14442 56.189018 1.0970608 90 0 var1
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Variograms for different directions

Requesting a plot of the previous command gives the two empirical

semi-variograms which, in relation to the each observation, are in the

angular sectors defined by the two main bisecting lines.

With anisotropy, we expect to see differences in the semi-variograms for

points on the vertical (0 degrees) and horizontal (90 degrees) directions.
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Correlograms
For isotropic models, the correlogram, or autocorrelation function, may be

easier to interpret. It basically considers the correlation coefficient between

observations that are separated by a spatial lag h:

ρ(d) =
Cov [Z (s),Z (s + d)]

√

Var [Z (s)]Var [Z (s + d)]
=

Cs(d)

Cs(0)
. (35)

The semi-variogram γ(d) and the correlogram ρ(d) are related:

γ(d) = Cs(0) − Cs(d) = Cs(0)

[

1− Cs(d)

Cs(0)

]

⇔ γs(d) = Cs(0) [1 − ρ(d)]. (36)

The intuitively obvious relation lim
d→+∞

ρ(d) = 0 is coherent with the idea that the

sill is the asymptotic value of the semi-variogram as d tends to infinity. It is also

natural that γs(0) = 0, since ρ(0) = 1
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A meteorological dataset
Downloaded from the website of the European Centre for Medium-Range

Weather Forecasts (ECMWF)1. The data are reanalysis data

(pre-processed in this case by the ERA-Interim data assimiliation system).

For a given hour of June 18, 2016, reanalysis values were obtained, relative

to a rectangular grid covering 24 longitudes from 9W to 8E and 23

latitudes from 36N to 52N.

The variables in the dataset are:

Short name Long name Units

t2m temperature at 2 meters ◦K

stl1 soil temperature level 1 (surface) ◦K

stl2 soil temperature level 2 ◦K

sund sunshine duration (s)

tp total precipitation (m)

1apps.ecmwf.int/datasets/interim-full-daily
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Some data values

The data format in the ERA-Interim website is NCDF and, with the R
packages ncdf4 and raster, the dataset was transformed into an R data
frame, called meteo, whose first six lines are shown below:

> head(meteo)

lon lat t2m stl1 stl2 sund tp

1 -9.00 52.5 283.7192 284.7060 286.6936 23399.97 0.0012258549

2 -8.25 52.5 283.6690 284.8637 286.8675 22049.91 0.0009417163

3 -7.50 52.5 284.0929 285.2671 287.2538 22219.33 0.0010797265

4 -6.75 52.5 284.6273 285.6325 287.4712 22949.73 0.0012786235

5 -6.00 52.5 285.9954 285.8502 285.8498 24637.31 0.0007062872

6 -5.25 52.5 285.9974 285.9481 285.9473 25986.71 0.0007062872

The longitudes had to be converted to the range −9 to 8, to ensure

contiguous plotting of results.
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Correlations

The standard linear correlation coefficients (rounded to two decimal

places) are given below. Unsurprisingly, they reveal strong positive

correlations between the three temperature variables and negative

correlations between rainfall and the temperature variables. Sunshine

duration is almost uncorrelated with most variables, with a small negative

correlation with total precipitation.

> round(cor(meteo[,3:7]),d=2)

t2m stl1 stl2 sund tp

t2m 1.00 0.97 0.86 -0.01 -0.47

stl1 0.97 1.00 0.95 0.02 -0.50

stl2 0.86 0.95 1.00 0.05 -0.50

sund -0.01 0.02 0.05 1.00 -0.24

tp -0.47 -0.50 -0.50 -0.24 1.00
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Spatial objects

As before, we build objects of class sf and SpatialPointsDataFrame.

> meteo.sf <- st_as_sf(meteo, coords=c("lon","lat"), crs=4326)

> meteo.sp <- as_Spatial(meteo.sf)

The plot method for sf objects is used to preview the variables.

> plot(meteo.sf, pch=16)
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N-S temperature gradient
t2m stl1

stl2 sund

tp

A North-South soil temperature gradient is clearly visible for temperatures slt1
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Meteorological data with mapview

> library(mapview)

> mapView(meteo.sf, zcol="stl1")

A small dialogue window on the left of the browser window will allow you to select

different types of maps. This is the “ESRI.WorldImagery” map option.
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Interactive information

Clicking on any of the circles will open a window with the information for that location.
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Several variables
The tp (total precipitation) variable can be seen after creating Voronoi

polygons using the voronoi function from package dismo:

> library(dismo)

> meteo.voronoi <- voronoi(meteo.sp)

> mapView(meteo.voronoi, zcol="tp")
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Relating different variables

We will briefly consider some concepts relating to spatial correlation

between different variables.

The study of relations between different variables is frequent in standard

statistics. If spatial autocorrelation and cross-correlation between different

variables exists, it should be taken into account.

The variables may, or may not, be collocated (co-located), that is, if they

are observed at the same set of locations. In what follows, we assume that

different variables are collocated.

If the observed variables are not collocated, we should interpolate in order

to obtain a collocated set of data (an issue for next week!).
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The cross-variogram

The variogram for a single variable Z[i ] was defined on slide (102) as:

2γii (d) = Var
(

Z[i ](s)− Z[i ](s + d)
)

The usual extension to a pair of different variables, Z[i ] and Z[j ], is:

2γij (d) = Cov
[(

Z[i ](s)− Z[i ](s + d)
)

,
(

Z[j ](s)− Z[j ](s + d)
)]

Cressie gives an alternative definition:

2γij(d) = Var
(

Z[i ](s)− Z[j ](s + d)
)

Both extensions give the standard variogram when i= j .
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Cross-variograms in R

The gstat package produces cross-variograms.

We define an object of class gstat which collects and detrends variables.

Objects of class gstat may be attached to each other.

Each variable in the meteo dataset, will be detrended using a linear trend

on the geographical coordinates:

> gobj <- gstat(NULL, "t2m", t2m ~ coords.x1 + coords.x2, meteo.sp)

> gobj <- gstat(gobj, "stl1" , stl1 ~ coords.x1 + coords.x2, meteo.sp)

> gobj <- gstat(gobj, "stl2" , stl2 ~ coords.x1 + coords.x2, meteo.sp)

> gobj <- gstat(gobj, "sund" , sund ~ coords.x1 + coords.x2, meteo.sp)

> gobj <- gstat(gobj, "tp" , tp ~ coords.x1 + coords.x2, meteo.sp)
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The variogram function for cross-variograms

> gobj

data:

t2m : formula = t2m ~ coords.x1 + coords.x2 ; data dim = 552 x 5

stl1 : formula = stl1 ~ coords.x1 + coords.x2 ; data dim = 552 x 5

stl2 : formula = stl2 ~ coords.x1 + coords.x2 ; data dim = 552 x 5

sund : formula = sund ~ coords.x1 + coords.x2 ; data dim = 552 x 5

tp : formula = tp ~ coords.x1 + coords.x2 ; data dim = 552 x 5

A call to gstat::variogram function will compute both the empirical

variograms and the empirical cross-variograms:

> vario.meteo <- variogram(gobj)

> plot(vario.meteo)
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Plotted empirical cross-variograms
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The variables whose cross-variograms have a clearer pattern are best suited for

subsequent use in spatial models that use information from multiple variables.
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Fitting (cross-)variogram models

Variogram models may be fitted to the empirical variograms and

cross-variograms, using the fit.lmc function, as shown below (to fit a

spherical model in all cases)

The numerical estimates of the ranges, nuggets and partial sills can be

viewed by just writing the name of the object that results from invoking

the fit.lmc function.

> vmeteo.fit <- fit.lmc(vario.meteo, gobj,

+ vgm(psill=1, "Sph", range=800, nugget=1))
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Fitting (cross-)variogram models (cont.)
> vmeteo.fit

[...]

variograms:

model psill range

t2m[1] Nug 2.558868e-01 0

t2m[2] Sph 1.032814e+01 800

stl1[1] Nug 2.932069e-01 0

stl1[2] Sph 6.462121e+00 800

stl2[1] Nug 6.235986e-01 0

stl2[2] Sph 4.442875e+00 800

sund[1] Nug 2.818659e+05 0

sund[2] Sph 2.730965e+06 800

tp[1] Nug 8.193747e-08 0

tp[2] Sph 2.485045e-07 800

t2m.stl1[1] Nug -6.684264e-02 0

t2m.stl1[2] Sph 7.955068e+00 800

t2m.stl2[1] Nug -9.927164e-02 0

t2m.stl2[2] Sph 4.107862e+00 800

stl1.stl2[1] Nug 2.779786e-01 0

stl1.stl2[2] Sph 4.119670e+00 800

t2m.sund[1] Nug 2.177144e+02 0

t2m.sund[2] Sph -7.672389e+02 800

stl1.sund[1] Nug 7.526683e+01 0

stl1.sund[2] Sph -1.738549e+02 800

stl2.sund[1] Nug -7.237660e+01 0

stl2.sund[2] Sph 4.655195e+02 800

t2m.tp[1] Nug -7.439963e-05 0

t2m.tp[2] Sph 1.172327e-04 800

[...]
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Plotted (cross-)variogram model fits

> plot(vario.meteo, vmeteo.fit)
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Next week you will use the concepts covered so far to specify models,

similar to linear regressions, but with spatial autocorrelation.

Good luck for the rest of the course.
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