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Chapter 1

Introduction

Standard statistical methods that are studied in introductory courses assume the indepen-
dence of sample observations. For example, con�dence intervals or hypothesis tests for the
population mean µ of some variable X are based on the assumption that a random sample
(X1, X2, ..., Xn) of n independent observations of that variable is available. Likewise, in a
simple linear regression of some response variable Y on a predictor (explanatory variable)
X, the standard model assumes that we have n pairs of observations {(xi, Yi)}ni=1, where
the n observations of the response variable Y are independent random variables, such that
Yi = β0 + β1 xi + εi. In this case, the independence of the observations results from the as-
sumption that the random errors εi are independent deviations from the underlying straight
line with equation y = β0 + β1 x.

Independence considerably simpli�es statistical analyses. It is quite often a valid assumption,
at least as a �rst approximation to the study of a problem. But there are many instances
in which this assumption is clearly not appropriate. One such instance is when data values
are observed over time, and observations that are nearby in time are more similar than
those made at points in time that are further apart, as is the case with measurements of
air temperature in a given location, at 10-minute intervals. Assuming independence in such
time series measurements would lead us astray if the more standard statistical techniques
were used, in ways that will be illustrated below.

In time series, there is a one-dimensional (time) dependence or temporal autocorrelation, that
must be taken into account. Likewise, in spatial data, there is spatial dependence, or spatial
autocorrelation, of the observations that must be taken into consideration. Sometimes, this
spatial dependence may be one-dimensional, as would be the case if some water quality mea-
surements were made at di�erent locations along the course of a river. But usually, spatial
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data has two-dimensional (sometimes 3-dimensional) dependence. Consider, for example, air
temperature measurements taken at di�erent locations on a spatial grid. It is to be expected
that observations at points that are close to each other will be more similar than observa-
tions at points that are further apart. This spatial autocorrelation violates the assumption of
independence of the observations, with consequences that impact the statistical tools needed
to study such data.

Loosely speaking, spatial data vary over some spatial coordinate system, with spatial auto-
correlation to a degree that cannot be ignored. More formally, we can talk about a random

spatial process (variable) Z, in a space S, {Z(s), s ∈ S}, where s denotes a location in space
S. Some sort of model for the spatial autocorrelation must be speci�ed, if the e�ects of
spatial autocorrelation are to be studied.

As in standard statistical methods, a variable Z may be of di�erent types:

� Z may be a fully numerical variable, such as air temperature.

� Z may be a categorical variable, as would be the case if Z(s) indicated types of land
use over a given region S.

� Z may be an ordinal variable, if its values can be ordered, but not on a fully numerical
scale. For example, assume that Z(s) measures the intensity of some disease a�ecting
crops in a region S, on a scale of observable e�ects with k ordered categories, where
category 2 indicates a more severe incidence of the pathology than category 1, but
where it does not make sense to say that the incidence is �twice as big�.

� Z may also be a binary variable, that indicates some dichotomy (absence/presence
of some characteristic; alive/dead; male/female; etc.); binary variables share some
properties of numerical variables, and some properties of categorical variables.

Besides this sort of classi�cation of variables (that is also relevant in a classical statistical
setting), it is also possible to classify spatial data into categories that are directly related
to the spatial nature of the variables. Cressie [1], classi�ed spatial data {Z(s), s ∈ S} as
belonging to one of three categories:

Geostatistical data, in which S is a two-dimensional (or three-dimensional) region, over
which s varies continuously. For any point s ∈ S, a value Z(s) exists, even if it is
unknown. Consider, for example, that Z represents air temperature over some region
S of the earth's surface. A common problem for such settings is that of interpolation,
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that is, based on an available set of observations {Z(sij)}i,j, to obtain estimates for
the values of Z in other, unobserved, locations of region S. Several methods dealing
with this problem will be addressed in Chapter 6, among them kriging.

Lattice (areal) data, in which the nature of the data only makes sense if we consider
S as a collection of polygons or cells, distributed over space S. Consider variable Z
indicating the surface area of countries, or municipalities: the variable's values only
make sense for a given area as a whole (hence the expression areal data) and they do
not vary continuously within the given polygons, or cells. Sometimes the polygons
are represented by an individual point within them (usually a central point for each
polygon or cell), but this does not change the areal nature of variable Z. If the only
spatial reference that is known are these representative or label points, it may be helpful
to create a lattice of polygons that provide a spatial representation of the full areas,
in what is also known as a tessellation.

Point data, are data de�ned by the locations of points in space (such as the location of
cities in a region, or of trees in a wooded area) and for which the main topic of interest
is the study of the point patterns that they de�ne.

This text focuses mostly on geostatistical data.

Chapter 2 begins by discussing why we should worry about the existence of autocorrelation in
data. In particular, this section discusses the e�ects of autocorrelation in time, on standard
statistical methods.

Chapter 3 discusses how the R statistical software deals with spatial data, highlighting
the standard structures for spatial data, and some important packages and functions to
manipulate spatial data in R.

Chapter 4 discusses two-dimensional spatial autocorrelation and introduces key concepts,
such as bubble plots, spatial weights matrices, Moran's I and Geary's c coe�cients, the
semi-variogram and the correlogram, as well as tools when two or more spatial variables are
involved.

Chapter 5 studies various regression models for spatially autocorrelated data.

Chapter 6 explains how to do an interpolation map with R (using Inverse Distance Weight
or Kriging approaches) and gives a brief introduction to kriging and co-kriging.

Appendix A gives the code used in the simulation.

Appendix B provides information about Coordinate Reference Systems.
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Appendix E has exercises for this part of the material.

Appendix E.4.4.3 gives a few key bibliographical references.
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Chapter 2

The Effects of Autocorrelation on Standard

Statistical Analyses

In order to understand the e�ects that autocorrelation may have on the results of standard
statistical techniques, we will consider (as in Plant [2], 2012) the simplest of all statistical
inference problems, regarding the population mean µ of some numerical variable Y .

2.1 The classical setting of independent observations

We recall the classical setting for inference regarding a population mean µ. It is assumed that
there is a random sample (Y1, Y2, ..., Yn) of n independent observations of variable Y . With
simple random sampling, each element of the sample Yi will have a probability distribution
that is equivalent to the frequency distribution of Y in the population. The expected value

of each element Yi is therefore equal to the population mean µ and the variance of each Yi
will be the population variance σ2, that is,

E[Yi] = µ , V [Yi] = σ2 (2.1)

A common assumption is that the population distribution is Normal (Gaussian), in which
case all elements of the random sample will have the common distribution Yi ∼ N (µ, σ2).
This is equivalent to specifying the following model for the sample elements:{

Yi = µ+ εi
εi ∼ N (0, σ2) (i.i.d.) ,

(2.2)
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where i.i.d. stands for independent and identically distributed, indicating that the random

errors εi are assumed to be independent.

The standard estimator for the population mean µ is the sample mean,

Y =
1

n

n∑
i=1

Yi . (2.3)

As is well known, the expected value and variance of the sample mean are (for independent
observations) given by:

E[Y ] = µ , V [Y ] =
σ2

n
(2.4)

The Central Limit Theorem guarantees that, under fairly general conditions, and even for
non-Normal populations, we have asymptotically (that is, approximately, for large samples):

Y − µ√
σ2

n

∼ N (0, 1) . (2.5)

The above result underpins inference on µ when the population variance σ2 is known. This
is not usually the case, and the sample variance is then used as an unbiased estimator of the
population variance σ2 (that is E[S2] = σ2). It is de�ned as:

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2 . (2.6)

Although under somewhat more restrictive conditions, replacing σ2 with its estimator S2 in
(2.5) produces a Student-t distribution that underlies the standard inferential results for µ
when σ2 is unknown:

Y − µ√
S2

n

∼ tn−1 . (2.7)

2.2 The e�ect of one-dimensional autocorrelation: the AR(1) model

In order to understand the e�ects on the classical inference of having a sample of n auto-

correlated observations Yi, we must �rst specify a model for the autocorrelation. We will
assume a simple model for one-dimensional (in time) autocorrelation, that assumes that the
deviations from the mean, in the �rst equation of model (2.2), are no longer independent
but rather depend on the previous deviations. The speci�c model considered is known as a
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�rst-order autoregressive, or AR(1), error model. For i=1, ..., n:
Yi = µ+ ηi
ηi = ληi−1 + εi with η0 = 0

εi ∼ N (0, σ2) (i.i.d.) ,

(2.8)

The parameter λ speci�es the intensity of the autocorrelation along time. If λ= 0, model
(2.8) reverts back to model (2.2) with independent errors. When λ>0 we speak of positive
autocorrelation since a positive deviation at time i−1 (ηi−1 > 0) would more likely be followed
by another positive deviation at time i and a negative deviation at time i−1 (ηi−1 < 0) would
also be more likely to be followed by a negative deviation at time i. Thus, an observation
Yi−1 above (below) the mean will more likely be followed by an observation Yi again above
(below) the mean. On the other hand, for λ < 0 we speak of a negative autocorrelation:
positive deviations would more likely be followed by negative deviations and vice-versa.
Negative autocorrelation is less frequent and we will assume λ> 0. In addition, it is to be
expected that the e�ect of a deviation will only be partially felt at a subsequent time point,
and that this e�ect will wear out over time, so we will further assume that λ<1.

By iterating over previous times in the second equation of model (2.8), it is possible to re-
write each observation of Yi as a function of all previous independent error terms εj (j ≤ i):

Yi = µ+ λi−1 ε1 + λi−2 ε2 + λi−3 ε3 + ...+ λ2 εi−2 + λ εi−1 + εi (2.9)

⇔ Yi = µ+
i∑

j=1

λi−j εj . (2.10)

This expression, using only the independent errors εi, ensures easier deductions, and so we
re-write the AR(1) deviations model in the following, equivalent, way: Yi = µ+

i∑
j=1

λi−j εj

εi ∼ N (0, σ2) (i.i.d.) .

(2.11)

There are advantages in using vector notation. Denoting a vector of i independent random er-
rors by εεεi = (ε1, ε2, ε3, ..., εi−1, εi)

t and the vector of powers of λ by λλλi = (λi−1, λi−2, λi−3, ..., λ, 1)t,
we can re-write the AR(1) model equation as:

Yi = µ+ λλλi
t εεεi (2.12)
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2.2.1 Properties of individual observations

First consequences of autocorrelation now become apparent, for any value of λ. The expected
value of each element Yi in the random sample is still the population mean µ:

E[Yi] = E

[
µ+

i∑
j=1

λi−j εj

]
= µ+

i∑
j=i

λi−j E[εj]︸ ︷︷ ︸
=0

= µ .

But the variance is now di�erent for each element in the sample. From equations (2.11) we
have:

V [Yi] = V

[
µ+

i∑
j=1

λi−j εj

]
=

i∑
j=i

(λi−j)2 V [εj]︸ ︷︷ ︸
=σ2

= σ2
[
(λ2)i−1 + (λ2)i−2 + (λ2)i−3 + ...+ (λ2)2 + (λ2) + 1

]
.

Using the expression for the sum of a geometric progression of ratio λ2, we obtain the
following expression, which replaces equation (2.1) from the independent error model:

V [Yi] = σ2

(
1− λ2i

1− λ2

)
. (2.13)

This expression implies several di�erences in relation to the independent error model (2.2):

� each sample element Yi now has a di�erent variance;

� assuming 0 < λ < 1, we have V [Yi] > σ2 for all i > 1, and the larger λ, the larger this
variance becomes, for any given i.

It should also be stressed that, again assuming 0 < λ < 1, after a su�ciently large initial
transient period (i large) it is safe to approximate λ2i ≈ 0, and so V [Yi] ≈ σ2

1−λ2 . Thus,
with this model, after an initial transience, the variance of individual observations becomes
(approximately) constant, so that we can speak of both stationary mean and variance.

As would be expected from a model with autocorrelation, the sample elements Yi are no
longer independent. This can be con�rmed by computing the covariances and correlations
between di�erent sample elements, which will also be useful for later calculations:

Cov[Yi, Yj] = Cov

[
µ+

i∑
k=1

λi−k εk , µ+

j∑
m=1

λj−m εm

]
=

i∑
k=1

j∑
m=1

λi−kλj−mCov[εk, εm]
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Since the error terms {εi} are independent, only terms for which k = m are non-zero, and
in such cases Cov[εk, εm] = V [εk] = σ2. Therefore, the double sum is in reality a single
summation, with as many terms as min{i, j}. Assuming i > j, we get, from the formula for
the sum of a geometric progression (this time with ratio 1

λ2
):

Cov[Yi, Yj] = σ2

j∑
k=1

λi+j−2k = σ2λi+j
j∑

k=1

(
λ−2
)k

= σ2λi−j · 1− λ
2j

1− λ2
= λi−j V [Yj] (2.14)

Expression (2.14) tells us that there are non-zero covariances for any pair of di�erent sample
observations. For 0 < λ < 1, these covariances decrease with the di�erence i−j, that is, with
the time gap between the observations. As would be expected, Cov[Yi, Yj] grows with λ.

From equation (2.14) the correlation coe�cient between di�erent observations, rij = Cor[Yi, Yj]

(again, for i > j) is given by:

rij =
Cov[Yi, Yj]√
V [Yi]V [Yj]

= λi−j

√
V [Yj]

V [Yi]
= λi−j

√
1− λ2j
1− λ2i

(2.15)

After a su�ciently long initial transience, we can assume λ2j ≈ 0 (hence, necessarily λ2i ≈ 0),
this simpli�es to rij ≈ λi−j. The correlation between di�erent observations, Yi and Yj,
therefore decreases as the time gap i−j between observations grows. For su�ciently large
di�erences i−j, the correlation becomes negligible.

Table 2.1 compares the main results, for the independent error and the AR(1) error models,
highlighting the latter's characteristics for large i (after an initial transient period).

2.2.2 Properties of the sample mean

We now turn our attention to the sample mean Y . We consider a general case, in which a
sample of size n is drawn, following model (2.8), but after a transient period of t iterations.
The random sample is the following random vector:

Y = (Yt+1, Yt+2, Yt+3, ..., Yt+(n−1), Yt+n)t . (2.16)

The case of no transient period arises as a speci�c instance, where t = 0. On the other hand,
assuming that the sample was taken after a long initial transience, we are assuming that, for
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Independence AR(1)
E[Yi] µ µ

V [Yi] σ2 σ2
(

1−λ2i
1−λ2

)
→ σ2

1−λ2

Cov[Yi, Yj] 0 λi−j V [Yj] → λi−j σ2

1−λ2
(for i > j)

rij 0 λi−j
√

V [Yj ]

V [Yi]
→ λi−j

(for i > j)

Table 2.1: Results for the independent, and AR(1), error models. The arrows indicate
post-transience results (large j < i). For 0 < λ < 1, the AR(1) model is stationary in the
mean and (after transience) in the variance. Correlations decrease with the time lags i− j.

any sample elements Yt+i and Yt+j:

Yt+i ∼ N
(
µ,

σ2

1− λ2

)
,

Cov(Yt+i, Yt+j) ≈
σ2

1− λ2
λi−j ; (2.17)

r
Yt+i,Yt+j

≈ λi−j . (2.18)

Again, calculations are simpler if we write the sample mean Y as a linear (a�ne) combination
of the independent random errors εj. A direct substitution of the exact expressions in (2.11)
gives:

Y =
1

n

n∑
i=1

Yt+i = µ+
1

n

n∑
i=1

t+i∑
j=1

λt+i−j εj

⇔ Y = µ+
1

n

[(
1− λn

1− λ

) t∑
j=1

λ(t+1)−j εj +
1

1− λ

n∑
k=1

[1− λn−(k−1)] εt+k

]
.(2.19)

From this expression it is easy to see that E[Y ] = µ (since for all i, E[εi] = 0). Laborious,
but straightforward, algebra gives an exact expression for the variance of Y under the AR(1)
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error term:

V [Y ] =
σ2

n2

[(
1− λi

1− λ

)2
λ2

1− λ2
(1− λ2t) +

n∑
i=1

(
1− λi

1− λ

)2
]

(2.20)

=
σ2

n2(1− λ)2

[
(1− λn)2

λ2

1− λ2
(1− λ2t) +

n∑
i=1

(1− λi)2
]

(2.21)

For any λ ∈]0, 1[λ ∈]0, 1[λ ∈]0, 1[, the �rst term inside the square brackets of equation (2.20) (which only
exists if there is a transient period t > 0) is non-negative, and all (but one) terms in the
summation are necessarily greater than 1 (equal, for i= 1), and therefore the factor in the
square brackets is greater than n. Thus, for any sample size n and any transient period t,
we have:

V [Y ] >
σ2

n
. (2.22)

Hence, the variance of the sample mean with the independent error model, σ2

n
, is smaller

than the true variance of Y (given by 2.20), for the AR(1) autocorrelation model. This
underestimation is not very relevant for small values of the autocorrelation parameter λ (λ
close to zero), but as λ increases, it can become quite signi�cant. For example, the value of
(2.20) is between 3 and 4 times as large as σ2

n
if λ = 0.5, for any sample size greater than 5.

For λ = 0.75 (and t= 0), even for a sample size as small as n = 5, the ratio of expression
(2.20) to σ2

n
is already greater than 5, and for larger sample sizes it grows to become 16 times

as big.

Although the above result is for an AR(1) model, the underestimation of V [Y ] by the ex-
pression σ2

n
is a general feature when autocorrelation is present. It can be thought of as

re�ecting the fact that, in the presence of autocorrelation, a sample of size n has, in reality,

less than n independent sources of information.

For large samples, collected after large transient periods (with λ2t ≈ 0), the variance of
the sample mean converges to σ2

n (1−λ)2 . In fact, from expression (2.21), and assuming both
λ2t ≈ 0 and λn ≈ 0, we have:

V [Y ] ≈ σ2

n2(1− λ)2

[
λ2

1− λ2
+

(
n∑
i=1

(1− 2λi + λ2i)

)]

≈ σ2

n (1− λ)2

[
1 +

2

n

λ2

1− λ2
− 2

n

λ

1− λ

]
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So, for large sample size n, we have:

V [Y ]
σ2

n (1−λ)2
≈ 1 +

2

n

λ2

1− λ2
− 2

n

λ

1− λ︸ ︷︷ ︸
≈0

≈ 1 ⇔ V [Y ] ≈ σ2

n (1− λ)2
(2.23)

A useful concept is that of e�ective sample size, nε, which is de�ned as the value for which:

V [Y ] =
σ2

nε
⇔ nε =

σ2

V [Y ]
. (2.24)

The e�ective sample size suggests the 'real' size of our sample, in terms of independent
observations. After initial transience and for large sample size n, equation (2.23) indicates
that the e�ective sample size converges to nε ≈ n(1 − λ)2, as can be seen in Table 2.2,
assuming a large transience. For large n, the e�ective sample size nε converges to n(1− λ)2

even in the absence of transience.

n λ
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

10 9.82 8.27 6.66 5.20 3.87 2.68 1.63 0.78 0.23 0.03 0.00

50 49.02 40.66 32.26 24.78 18.25 12.67 8.03 4.35 1.67 0.21 0.00

100 98.03 81.16 64.25 49.28 36.25 25.17 16.03 8.85 3.64 0.60 0.00

1000 980.12 810.16 640.25 490.28 360.25 250.17 160.03 89.84 39.61 9.37 0.01

10000 9801.02 8100.16 6400.25 4900.28 3600.25 2500.17 1600.03 899.84 399.61 99.33 0.51

Table 2.2: Table with the e�ective sample size nε in an autocorrelated AR(1) process, for
various values of true sample size n and of the global autocorrelation strength λ (0<λ<1),
with a large transient period (t = 10000). For large true sample size n, the e�ective sample
size converges to nε = n(1−λ)2.

2.2.3 Properties of the sample variance

The problem of estimating the variance of Y when the independent-sample expression σ2

n
is

used, is compounded by the fact that the sample variance S2 (which is needed to estimate
the unknown σ2) has an overestimation bias. In fact,

S2 =
1

n− 1

n∑
i=1

(Yt+i − Y )2 =
1

n− 1

[
n∑
i=1

Y 2
t+i − nY

2

]

⇒ E[S2] =
1

n− 1

n∑
i=1

E[Y 2
t+i] −

n

n− 1
E[Y

2
]
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Given the general property, for any random variable X, that E[X2] = V [X] + E2[X] and
since both Yt+i and Y share a common mean µ, we have:

E[S2] =
1

n− 1

n∑
i=1

V [Yt+i] −
n

n− 1
V [Y ] (2.25)

Assuming an initial transience for which λt ≈ 0, and using expressions (2.13) and (2.21), the
expected value of S2 becomes:

E[S2] =
σ2

1− λ2
n

n− 1

[
1− 1 + λ

n(1− λ)
+

2λ(1− λn)

n2(1− λ)2

]
(2.26)

For large samples, E[S2] is approximately:

E[S2] ≈ σ2

1− λ2
> σ2 . (2.27)

Thus, an unbiased (asymptotic, after transience) estimator of σ2 with the AR(1) model is:

σ̂2 = (1− λ)S2 . (2.28)

2.2.4 Simulations

We illustrate the above results with simulations of the model (2.8). An R code for these
simulations is given in Appendix A.

The simulation code was initially run with the following parameters: sample size n=10 000;
a transient period of one thousand iterations; population mean zero (µ= 0); and common
error variance σ2 = 1. Given the fairly long transient period, the process can be considered
stationary. Various values of the autocorrelation parameter λ were used, as indicated in
Table 2.3 and, for each λ, 10 thousand repetitions (times= 10000) were considered, giving
the means and variances in the Table. The true expected value for the mean of the sample
means is E[Y ] = µ = 0. The variances of the sample means are very close to the true
asymptotic value (2.23), V [Y ] = σ2

n(1−λ)2 = 0.0001
(1−λ)2 and are, in all cases, greater than the

variance of Y for independent samples (σ
2

n
= 0.0001). Likewise, the mean of the sample

variances is always very close to the asymptotic value E[S2] = σ2

1−λ2 = 1
1−λ2 , and are always

greater than σ2 = 1, which would the expected value with an independent sample. As is
to be expected, the deviation from the independent sample values becomes greater, as the
autocorrelation parameter λ grows.
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λ Y S2

mean variance mean variance
0.01 0.00002 0.00010 1.00002 0.00020
0.10 0.00024 0.00012 1.01007 0.00020
0.20 -0.00010 0.00015 1.04132 0.00024
0.30 0.00006 0.00021 1.09849 0.00029
0.40 -0.00006 0.00028 1.19016 0.00040
0.50 -0.00013 0.00040 1.33294 0.00059
0.60 -0.00020 0.00063 1.56233 0.00103
0.70 0.00035 0.00111 1.96007 0.00228
0.80 0.00004 0.00256 2.77648 0.00708
0.90 0.00032 0.01014 5.24928 0.05194
0.99 -0.01354 0.98780 49.21952 48.29015

Table 2.3: The means and variances of the sample means Y and the sample variances S2,
obtained form 10 000 repetitions of simulations of model (2.8). In all 10 thousand repetitions,
samples of size n = 10 000 were considered, after a transient period of 1000 iterations. The
population mean was taken to be µ = 0 and the error variance σ2 = 1. For independent
samples, we would expect E[Y ] = 0, V [Y ] = 0.0001 and E[S2] = 1.

A second simulation, based on the AR(1) model and the R function in Appendix A, computed
10 000 samples of size n=1000, assuming λ = 0.7, µ=10, σ=3, and 1000 transient iterations.

Figure 2.1 shows the histogram of the 10 000 sample means y that resulted. The red curve

gives the theoretical distribution results for an independence model: Y ∼ N
(
µ, σ

2

n

)
. The

blue curve is the asymptotic equivalent under the AR(1) model, after transience: Y ∼
N
(
µ, σ2

(1−λ)2 n

)
. It is clear that assuming independence when we are in the presence of

autocorrelation (with λ=0.7) seriously underestimates the sampling variability of Y .

Figure 2.2 shows the distribution of the 10 000 sample variances s2 (in black and white)
and of the unbiased (asymptotic, post-transience) estimates given in (2.28), (1 − λ2) s2 (in
red). Considering that the true variance in this simulation was σ2 =9, the scale of the bias
associated with the standard, independence-based, estimator (S2) is evident. It can also
be seen that the sampling variance of (1 − λ2)S2 is smaller than that of S2, by a factor of
(1− λ2)2.
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Figure 2.1: Histogram of the distribution of y, for 10 000 repetitions of size n=1000 samples,
in an AR(1) model. Parameters: µ=10, σ=3, λ=0.7. Red curve: distribution of Y under
independence. Blue curve: asymptotic equivalent under AR(1).
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Sampling distribution of S2 and (1 − λ2)S2

simul.n1k[, 1002]
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Figure 2.2: Histograms of the distributions of s2 (in black and white) and (1 − λ2) s2 (in
red), for 10 000 repetitions of size n=1000 samples, in an AR(1) model. Parameters: µ=10,
σ=3, λ=0.7. The true variance is σ2 = 9, and the severe bias of the standard estimator S2

is evident.
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2.2.5 Implications

The implications of these results for the classical inference on a population mean µ are
now considered. Assuming an independent sample of size n, (Y1, Y2, ..., Yn), the standard
con�dence interval (CI) for µ, when the population variance σ2 is also known, is based on
the well-known distributional result Y−µ

σ√
n

∼ N (0, 1), and is given by:

]
y − zα/2

σ√
n
, y + zα/2

σ√
n

[
. (2.29)

But, as was seen in equation (2.23), the large-sample variance of Y with the AR(1) model is
actually V [Y ] ≈ σ2

(1−λ)2 n . The Normality of Y−µ
σ

(1−λ)
√
n

holds with the AR(1) model, and so the

appropriate (1− α)× 100% CI would be:]
y − zα/2

σ

(1− λ)
√
n
, y + zα/2

σ

(1− λ)
√
n

[
. (2.30)

This con�dence interval is 1
1−λ times larger than the standard, independence-based, con�-

dence interval.

Consider again the second simulation mentioned in Subsection 2.2.4. The normality QQ-
plot (drawn with R's qqnorm function) for the 10 000 simulated values of the ratio Y−µ

σ√
n

is

given on the left of Figure 2.3. It suggests that the Normality assumption is appropriate
for this quantity, even with the AR(1) model. The con�dence interval (2.30) is therefore
adequate, but is 1

1−λ = 10
3

= 31
3
times as large as the conventional, independence-based CI

(2.29). Thus, the standard con�dence intervals (and standard hypothesis tests and p-values)
will be incorrect in a setting with AR(1) autocorrelation.

As an illustration of the e�ects, consider the �rst of the ten thousand repetitions in the
simulation that has just been mentioned, for which y = 10.1985884. The standard 95% CI
from equation (2.29) is therefore ]10.01625, 10.38453[ and does not include the true popula-
tion mean µ= 10. The more appropriate CI in equation (2.30) is ]9.578793, 10.81838[ and
includes the true value of µ. In the 10 000 samples of the simulation, only 44.5% of the
(nominally) 95% independence-based con�dence intervals actually contained the true popu-
lation mean µ= 10, so the use of formula (2.29) for a (supposedly) 95% con�dence interval
would, in fact, produce something akin to a 45% con�dence interval. Using the asymptotic
AR(1) 95% con�dence intervals (formula 2.30), 94.95% of the 10 000 intervals contained the
true population mean µ=10 (as would be expected with a true 95% con�dence interval).
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Figure 2.3: The Normality QQ-plots of the quantities underlying the Con�dence Intervals
for the population mean µ. The plots are based on 10 000 repetitions of samples of size
n= 1000, after 1000 transient iterations, and assuming µ= 10 and σ2 = 9. On the left, the
QQ-plot for Y−µ

σ√
n

, and on the right, the QQ-plot for Y−µ√
1+λ
1−λ

S√
n

.

In a real application, it is unlikely that the true population variance is known. The classical
result in such a situation involves replacing the unknown population variance σ2 with its
unbiased (for an independent sample) estimator S2. The standard CI assumes Normal
populations and is based on the result Y−µ

S√
n

∼ tn−1. For large independent samples, the

Student's t distribution is well approximated by a standard Normal distribution and we can
safely use the CI: ]

y − zα/2
s√
n
, y + zα/2

s√
n

[
. (2.31)

But, as was seen in equation (2.27), with a large AR(1) sample, the true expected value of
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S2 is not σ2, but σ2

1−λ2 . Thus, an unbiased estimator of σ2 is, for this model, σ̂2 = (1−λ2)S2.

The corresponding unbiased estimator of V [Y ] = σ2

n (1−λ)2 is therefore

V̂ [Y ] =
(1− λ2)S2

n (1− λ)2
=

1 + λ

1− λ
S2

n
. (2.32)

Again assuming that Normality holds, the appropriate CI for µ would now be:]
y − zα/2

√
1 + λ

1− λ
s√
n
, y + zα/2

√
1 + λ

1− λ
s√
n

[
. (2.33)

This con�dence interval is wider than the standard CI by a factor of
√

1+λ
1−λ .

The Normality assumption for Y−µ√
1+λ
1−λ

S√
n

seems to hold well, for the simulation discussed

above, as can be seen in the QQ-plot on the right of Figure 2.3. The fact that E[S2] > σ2

somewhat compensates the inappropriate e�ects of using the standard CI: equation (2.31)
now gives the (nominally) 95% con�dence interval ]9.932917, 10.46426[. But this is still
an inadequate CI. Out of the 10 000 samples in the simulation, only 58.77% of the �95%

con�dence� intervals given by formula (2.31) actually contain the true population mean
µ=10. The more appropriate 95% con�dence interval, given by formula (2.33), for the �rst
sample is ]9.566163, 10.83101[. It is more than twice as wide as the conventional one, since√

1+λ
1−λ =

√
1.7
0.3

=2.380476. With these 95% (asymptotic) con�dence intervals, the proportion

of the 10 000 samples with intervals containing µ=10 rises to 94.80%.

The underlying lesson is that autocorrelation, when it exists, should be taken into account
in any statistical analysis.
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Geographic Data Sets in R

In this chapter, we will look at two data sets that are going to be explored later in the
book. The �rst data set represent Aragonez grape yields in Portugal. We read the original
tabular data and create spatial georeferenced R objects of class sf to represent that data
set (Section 3.1). We will produce a point spatial data set Aragonez3763, and explore the
neighborhood relations between its elements (Section 3.2). We will also derive two new
areal data sets Aragonez3763Vor and Aragonez3763Grid, where the spatial geometry if 2-
dimensional. While Aragonez3763Vor (Section 3.3) covers the whole area of the vineyard,
AragonezGrid (Section 3.5) represents the geographic area of in�uence of each group of
plants as a regular grid, with void grid cells for missing data. Those data sets will be
used later in Section 4.4. The second data set represent corn yields in an experiment near
Las Rosas, in Argentina. In Section 3.7 explore the data and add new preditor variables
that are derived from an ancillary digital elevation model. Later in the book (Section 4 and
Section 5), those preditors will be used in spatial repression models for the yield. Throughout
this chapter, we will discuss the main data structures in R that support geographic data.

In fact, R is an extremely powerful tool to access and analyze geographic data. If one is
familiar with R, the major challenge is to understand the speci�cities of geographic data,
and in particular the data structures that are necessary to represent those data sets. While
for most standard statistical analysis, data can just be organized as a table (an object of
class data.frame in R), this is in general insu�cient for geographic data. In particular,
data structures for geographic data must permit the representation of complex shapes in
space. Moreover, geographic data sets have a speci�c location over the surface of the Earth,
given by coordinates associated to the data which need to be interpreted in the appropriate
coordinate reference system (CRS for short). Therefore, geographic data sets must always
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Figure 3.1: Read and write main data formats for spatial data in R

include coordinates and the corresponding CRS.

There are two basic families of data structures for geographic data: vector and raster. The
vector data stucture represents spatial features which can be 0-dimensional (points), 1-
dimensional (polygonal lines) or 2-dimensional (polygonal surfaces). Each feature can have
several attributes which are represented in a attribute table (where each row corresponds to
a feature, and each column corresponds to an attribute). For instance, this is a convenient
data structure to represent territorial units within some region of the world, where each unit
has a code and a name. The vector data structure is also convenient to represent a watershed
system, where each geographic feature represents a stream and might have attributes like
�stream name� and �water quality�. In this case, each feature can be represented by a single
polygonal line, or a group of polygonal lines. The raster format corresponds to images. It is a
regular array of pixels, where each pixel represents some contiguous location over the surface
of the Earth and has an associated numerical value. This is the natural data structure to
represent, for instance, a satellite image of a given region, or a map of surface temperatures.

Besides vector and raster data structures, simple tables are often used to represent spatial
information. Figure 3.1 describes the major functions in R to read and write �les for each
one of those data formats.

A very complete and easy to follow on-line resource is the eBook Geocomputation with R
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which is also available as [3]. Package sp was the main package to process vector spatial
data for a number of years, but it is being gradually abandoned in favour of the more recent
package sf (for Simple Features for R) which is described in https://r-spatial.github.

io/sf/ or [4]. For raster data, package raster [5] is still widely used. One of the strong
points of raster is that it allows to e�ciently manage memory, which is crucial for large
data sets as images typically are.

Since the R �Spatial Analysis� community is very dynamic, new packages are released fre-
quently. Therefore, it is important to know which tools are available at any time. The site
The Comprehensive R Archive Network's task view �Analysis of Spatial Data�, by Roger
Bivand is an excellent and very compact introduction that provides a general view of what
is happening in this �eld. All R packages that are going to be used in this section are
mentioned and put in context in that task view.

The major packages we rely on are sf, raster, and mapview to interactively visualize geo-
graphic data, but we will need a few other packages for more speci�c tasks.

library(raster)

library(sf)

library(mapview)

library(RANN) # fast nearest neighbors

library(interp) # linear spatial interpolation

library(spdep) # spatial data analysis, includes knn2nb

library(tidyverse) # packages for data science, includes %>%

Some spatial analysis packages still require objects of the older vector class sp, so when
necessary, sf objects are converted into sp objects using general purpose function as or
as_Spatial from package sf. Spatial objects can be converted back to sf in an a similar
way or with the sf dedicated function st_as_sf()

nc <- st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)

nc_sp <- as(nc, Class = "Spatial") # convert from sf to sp

nc_sp <- as_Spatial(nc) # convert from sf to sp

nc_sf <- st_as_sf(nc_sp, "sf") # convert from sp to sf

For users familiar with the sp package, it is worth to note that sf encompasses not only
the capabilities of sp, but also of packages rgeos for spatial analysis and rgdal for read-
ing/writing data in di�erent �le formats.
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3.1 Vector data sets: a simple example with point data

Aragonez is the Portuguese name of a variety of grapes that is also called Tinta Roriz. This
variety is most frequently known by its Spanish name, Tempranillo. A �eld trial to measure
genotype yields was carried out under the supervision of Instituto Superior de Agronomia
of the University of Lisbon, in Reguengos de Monsaraz, in the Évora district of Southern
Portugal. A vineyard trellis was set up, with wires running on an approximate North-South
direction, and which are henceforth referred to as columns.

In each column, groups of three plants were taken to represent a cell, thereby creating a
rectangular grid with 40 columns and 26 rows (see illustration in Section 3.4). The rows are
numbered 2 to 27 from North to South, since the bordering rows were considered a �transient�
part, not included in the dataset. The 40 columns (numbered 4 to 43 from West to East
since, again, bordering columns were left out of the data set) were 2.25 m apart. In each
column, the centre of each grid cell (i.e, of the �rows�) are separated by 3.75 m. Each grid
cell is therefore a small rectangular region with three vines, whose yield produced a single
observation for the data set, in kg of grapes per plant. There are fewer than 26× 40 = 1040

observations since, for various reasons, some of the cells have missing values.

In Section 3.4 we will discuss how those measurements along rows and columns of the vine-
yard can be converted into longitudes and latitudes. For simpli�cation, we consider at this
point that latitudes and longitudes are available, as well as information about genotype,
block, vineyard column, vineyard row, yield (kg/plant) and coordinates colm and rowm in
meters, along columns and rows of the vineyard.

Aragonez<-read.table(file.path(getwd(),"datasets","Aragonez.txt"),header=TRUE)

head(Aragonez,3)

genotype block col row colm rowm yield lon lat

1 RZ717 B1 4 2 0 93.75 2.417 -7.516431 38.44193

2 RZ1158 B1 4 9 0 67.50 2.724 -7.516291 38.44172

3 RZ1325 B1 4 6 0 78.75 2.647 -7.516351 38.44181

To create a spatial object of class sf from a table we just need to use function sf::st_as_sf(most
functions' names from package sf start with st_ for �spatiotemporal�) and indicate which
columns of Aragonez should be used as coordinates, and the corresponding coordinate refer-
ence system. For this data set, coordinates are longitude and latitude over the global WGS84
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CRS, with EPSG code 4326.1

AragonezSF<-st_as_sf(Aragonez, coords=c("lon","lat"),crs=4326)

R package mapview allows interactive visualizations of spatial data with or without back-
ground maps. The basic visualization function is called mapview and can be used to display
AragonezSF.

mapviewOptions(basemaps="Esri.WorldImagery")

mapview(AragonezSF, cex=2,zcol="yield",lwd=0)
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Leaflet	|	Tiles	©	Esri	—	Source:	Esri,	i-cubed,	USDA,	USGS,	AEX,
GeoEye,	Getmapping,	Aerogrid,	IGN,	IGP,	UPR-EGP,	and	the	GIS
User	Community

Figure 3.2: Mapview sf object. The option basemaps indicates the background map and
zcol speci�es the variable to be plotted.

1 Throughout the book, packageName::functionName is going to be used to indicate functions which

are not part of the base core of functions of R. Although syntax packageName::functionName is correct in

R code, for simplicity, R commands within chunks of code will often indicate just the function, without the

package name. In those cases, the context should make it clear which package is being used.
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Note that one can edit data interactively over mapview maps (for instance, to create new
features) with mapedit::editMap.

Since geographic coordinates (longitude and latitude) are not adequate to measure distances,
angles and areas, it is recommended to work over a cartographic CRS suitable for the study
area. For Continental Portugal, the o�cial CRS is named ETRS89-TM-PT06 and has EPSG
code 3763. To reproject AragonezSF we use function sf::st_transform.

Aragonez3763<-st_transform(AragonezSF,crs=3763)

Finally, Aragonez3763 can be exported as shape�le, geopackage, kml or other vector format
with st_write. Available drivers can be listed with st_drivers().

st_write(Aragonez3763, "Aragonez3763.shp")

Additionally, it can be converted into an alternative R object. For instance, later in this text,
packages like spdep accept as input spatial objects of the older class sp. As discussed earlier,
we can create a SpatialPointsDataFrame object from a sf object with sf::as_Spatial.

AragonezPoints <- as_Spatial(Aragonez3763) # creates sp object

3.2 Determining neighbors in spatial point data sets

The concept of neighborhood is crucial to analyse spatial data and will be at the heart of the
statistical techniques that are going to be discussed later in this book. Essentially, one wants
to determine, for each data feature (e.g. a POINT in the Aragonez data set), which are its
neighbors. In Section 4.4, several convenient functions from package spdep which determine
neighbors are going to be discussed. Here, we will see how this can be done from scratch
with sp functions and how the neighborhood can be represented as an R object compatible
with the spatial data analysis functions of package spdep.

The main object to be de�ned is a matrix, where each row represents a feature (there will
be 1019 rows for the Aragonez data set) and the k-th column holds the index (an integer)
of a neighbor.

If the data set is not loo large, one can simply compute Euclidian or great circle distances
for all pairs of features, and select for instance just the pairs of features with distances lower
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than a given threshold. Function sf::st_distance returns an object of class units, since
the units depend on the CRS, but this can be coerced to numeric by as.numeric.

The example below shows how to create a matrix nn of neighbor indices starting with all
distances between pairs of features. In this example, matrix nn is dense and it is built
according to the following rule: if j-th feature is a neighbor of the i-th feature, then nn[i,j]

is j, otherwise nn[i,j] is NA.

D <- st_distance(Aragonez3763) # matrix N*N

nn<-col(D) # assume that all features are neighbors

nn[as.numeric(D)>4]<-NA # NA is assigned to non neighbors

head(nn[,1:10],3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 NA NA NA NA 6 NA NA NA NA

[2,] NA 2 NA 4 NA NA NA 8 NA NA

[3,] NA NA 3 NA NA NA NA NA NA 10

Matrix nn above indicates that feature 1 is a neighbor of feature 1 and feature 6, feature 2
is a neighbor of features 2, 4 and 8, and so on. We can now build an R object compatible
with the spatial data analysis functions of package spdep to be discussed in Section 4.4. It
has to be of class knn and it has to be a list with the following components: the matrix nn,
the number of features np, the number k of columns of nn, dimension=2 since there are two
coordinates, and the matrix of coordinates x.

xy<-st_coordinates(Aragonez3763)

NN<-structure(list(nn=nn, np=nrow(nn), k=ncol(nn), dimension=2, x=xy), class="knn")

Finally, the topology of the neighborhood can be checked visually with the following com-
mand.

plot(spdep::knn2nb(NN),coord=NN$x)

Alternatively to st_distance, one can use sf::st_is_within_distance which returns a
logical matrix, and proceed similarly to de�ne nn.
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D <- st_is_within_distance(Aragonez3763,dist=4,sparse=FALSE) # logical N*N

nn<-col(D)# assume that all features are neighbors

nn[!D]<-NA # NA is assigned to non neighbors

For large data sets the construction above is not convenient since it requires a very large
matrix D. Alternatively, one should use function RANN::nn2 to create a more compact matrix
nn. Similarly, the output of RANN::nn2 can be converted into an object of class knn, which
can be used as an input for package spdep. In the example below, we restrict the number
of neighbors to k=30 and the distance between neighbors to radius=5. Since nn2 returns 0
when the k-th neighbor is not de�ned, we need to replace 0 by NA as required by spdep.

xy <- st_coordinates(Aragonez3763)

nn<-nn2( xy , k=30, searchtype="radius",radius=4)$nn.idx

nn[nn==0]<-NA

head(nn[,1:10],3)

Several simple functions from package spdep, which will be discussed later in Section 4.4,
can be used to easily generate the neighborhoods discussed above. However, one my want to
de�ne a neighborhood speci�cally designed for the data at hand. For instance, let's suppose
that only groups of plants which either belong to the same vineyard column and are at
most 4 meters apart, or belong to distinct vineyard columns but are at most 3 meters apart,
should be neighbors. We can adapt the techniques described above and design a matrix nn

according to that rule.

If we rely on function RANN::nn2, then we explore the fact that the output of nn2 is a list
with two components: $nn.idx is the matriz of indices of neighbors (as seen earlier), and
$nn.dists is the corresponding matrix of distances. Firstly, we apply RANN::nn2 to obtain
those two matrices (we consider up to 30 neighbors, which is more than su�cient given the
spatial distribution of our data set).

nn<-nn2( xy , k=30)$nn.idx # matrix 1019*30 of indices

d<-nn2( xy , k=30)$nn.dists # matrix 1019*30 of distances

Then, we extract the attribute of interest: in our case it is the vineyard column number
for each feature we call idxcol. With this, we can select which neighbors do not ful�ll the
condition set above (i.e. at most 4 meters within the same column and at most 3 meters for
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distinct columns), and we can assign NA to those neighbors. Note that nn[idxcol] is the
vineyard column index of every neighbor in nn, so idxcol[nn]==idxcol is TRUE when both
the feature and its neighbor belong to the same vineyard column and FALSE otherwise.

idxcol<-Aragonez3763$col

nn[(idxcol[nn]==idxcol & d >4) | (idxcol[nn]!=idxcol & d>3)]<-NA

head(nn[,1:10],3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 28 6 NA NA NA NA NA NA NA

[2,] 2 29 4 8 NA NA NA NA NA NA

[3,] 3 34 10 11 NA NA NA NA NA NA

The resulting matrix indicates that the neighbors of feature 1 are features 1, 28 and 6,
the neighbors of feature 2 are features 2, 29, 4 and 8, and so on. Finally, the resulting
neighborhood can be converted into an spdep object and plotted with spplot.

NN<-structure(list(nn=nn, np=nrow(nn), k=ncol(nn), dimension=2, x=xy), class="knn")

plot(spdep::knn2nb(NN),coord=NN$x)

3.3 Vector data sets: multiple geometries

A sf object has a table structure. The attribute table of the data is extended with a special
column called geometry. The remaining columns of the table are feature's attributes, and
each row of the table describes one feature. The main simple feature geometry types are
POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLY-
GON and GEOMETRYCOLLECTION as the mixed type. The geometry of features in a sp
object can be extracted with function st_geometry, which returns a list of the geometries
of all features (the list is an object of class sfc, for simple feature geometry list-column).

In general, the input for spatial data analysis can be either points or areas (areal data), where
common boundaries between features determine the neighbors. In Section 3.1, the simplest
geometry (POINT, where each feature corresponds to a single point) has been illustrated
with the Aragonez3763 example. Now, we will represent the data set as a collection of
polygons.
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Firstly, from Aragonez3763 we derive an object with POLYGON geometry, which is going
to be the convex hull of the set of points. The �rst step is to group all points in one single
feature, which can be done with an unary union performed by sf::st_union with a single
input, which returns in this case a MULTIPOINT geometry type. Notice that this operation
eliminates all attributes of Aragonez3763 since the attribute table collapses to one single
row with no other columns besides geometry. In fact, AragonezMP just holds the geometry
and it is of class sfc (simple feature geometry list-column).

AragonezMP<-st_union(Aragonez3763) # MULTIPOINT sfc object (with 1019 points)

class(AragonezMP)

[1] "sfc_MULTIPOINT" "sfc"

Next, we create the convex hull of the single feature, which has POLYGON geometry, and
the bu�er of the convex hull with st_buffer, which is of POLYGON geometry as well,
considering a bu�er distance of 3 meters.

AragonezCHull<-st_convex_hull(AragonezMP) # class sfc with one POLYGON

AragonezBuffer<- st_buffer(AragonezCHull, dist=3) # class sfc with one POLYGON

To complete this section, we create an areal version of the Aragonez data set by associating
to each group of plants its Voronoi polygon. Function sf::st_voronoi is used to create the
Voronoi polygons for the 1019 points in AragonezMP. Finally, since sf::st_voronoi outputs
an object of geometric type GEOMETRYCOLLECTION, function st_cast() is needed to
simplify the geometry to POLYGON.

To make the code easier to read, the next instruction uses magrittr's pipe operator (package
magrittr is part of the set of pakages called tidyverse which was loaded at the beginning
of this section). This is a convenient way of applying several functions consecutively: the
function after %>% uses as its �rst argument the object before %>% (i.e. x %>% f(y) is the same
as f(x,y)).

AragonezVoronoi<-AragonezMP %>%

st_voronoi() %>% # create Voronoi polygons

st_cast() # cast to POLYGON
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Voronoi polygons returned by sf::st_voronoi covers all the extent of the data set (which
could be identi�ed with sf::st_bbox). If we want to limit the extent of boundary polygons,
we can use AragonezBuffer to clip AragonezVoronoi and reduce the size of the boundary
Voronoi polygons.

AragonezVoronoiBuffer<-st_intersection(AragonezVoronoi,AragonezBuffer)

We can now associate the POLYGON geometry of AragonezVoronoiBuffer to the original
sf object Aragonez3763: we just have to replace the geometry column of Aragonez3763
(POINT geometry) by the new POLYGON geometry (Voronoi polygons) since the features
are the same and the order of the features has not changed.

Aragonez3763Vor<-Aragonez3763 # copy sf

st_geometry(Aragonez3763Vor)<-AragonezVoronoiBuffer # replace geometry

Finally, we map the output in Figure 3.3, using zcol to indicate the variable to be displayed
in the legend.

Later, in Section 3.5, we will consider the case where, instead of associating to each location
a Voronoi polygon, one will associate to the groups of plants a regular grid, with missing
grid cells for missing values.

To conclude this section, and analogously to Section 3.2, we brie�y discuss how we can de�ne
neighbors from the areal data set Aragonez3763Vor according to an arbitrary user de�ned
rule. Let's for instance consider that two Voronoi polygons are neighbors if the shortest
distance between them is lower than some small tolerance tol. Then, we need to test if the
distance between POLYGON features in Aragonez3763Vor is lower than tol and proceed
as in Section 3.2.

tol<-1

D <- st_is_within_distance(Aragonez3763Vor,dist=tol,sparse=FALSE)# matrix N*N

nn<-col(D) # assume that all features are neighbors

nn[!D]<-NA # non neighbors are NA

As in Section 3.2, we �rst create the appropriate knn object, and then we can plot both
Aragonez3763Vor and the links between neighbors as described below to visualy check the
result.
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mapviewOptions(basemaps="Esri.WorldImagery")

mapview(Aragonez3763Vor,zcol="yield",alpha.regions=0.7, lwd=0.3)
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GeoEye,	Getmapping,	Aerogrid,	IGN,	IGP,	UPR-EGP,	and	the	GIS
User	Community

Figure 3.3: Mapview Aragonez3763Vor. The option indicates the background map and
alpha.regions determines the opacity of the polygons in the map.

xy<-Aragonez3763Vor %>% st_centroid() %>% st_coordinates()

NNVor<-structure(list(nn=nn,np=nrow(nn),k=ncol(nn),dimension=2,x=xy),class="knn")

plot(st_geometry(Aragonez3763Vor))

plot(spdep::knn2nb(NNVor),coord=NNVor$x, add=TRUE, col="red", cex=0.5)

3.4 Working example: georeferencing the Aragonez data set

The Aragonez data set has been described in Section 3.1. As discussed then, the location
of plants of the Aragonez data set is determined by a vineyard trellis, with wires running
on an approximate North-South direction, and which are referred to as columns. In each
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column, groups of three plants were taken to represent a cell, thereby creating a rectangular
grid with 40 columns and 26 rows.

The vineyard's columns are approximately parallel. Figure 3.4 shows the location of each
group of plants along the rows and columns of the vineyard. Moreover, it gives the longitude
and latitude for three known locations in the standard WGS84 CRS. Note that longitudes
and latitudes for those speci�c three locations could have been obtained with high precision
GPS device or could have been simply extracted from georeferenced high resolution imagery
over the vineyard.

The original data are the yields for each row and column, as well as other attributes that
will not be considered in this exercise, and can be read from the text �le �Aragonez.txt�.

Aragonez<-read.table(file.path(getwd(),"datasets","Aragonez.txt"),header=TRUE)

Aragonez<-Aragonez[,c('genotype','block','col','row','yield')]

head(Aragonez,3)

genotype block col row yield

1 RZ717 B1 4 2 2.417

2 RZ1158 B1 4 9 2.724

3 RZ1325 B1 4 6 2.647

The goal of this exercise is to georeference this data set. This is a necessary condition for
combining this data set with additional geographic information and, for example, display it
with mapview with some background image. The goal is to associate to each group of three
plants their geographic coordinates. Towards this end, we consider the three locations in
Figure 3.4 which have a row and column index (row and col) as well as longitude and latitude
coordinates. If we suppose that a simple linear transformation is enough to transform the
data, which is acceptable due to the small size and regular geometry of the plot, the system
of equations that needs to be solved in order to a1, . . . , c2 is{

x = a1 + b1 row + c1 col

y = a2 + b2 row + c2 col.

In matrix form, we want to solve the equation B = AT , with respect to T , i.e. T = A−1B,
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Figure 3.4: Plot of the Aragonez data set with the indication of the rows and columns of the
vineyard and the WGS84 coordinates at three points. With a linear transformation, those
three points are used to georeference the whole data set.
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where

B =

 −7.515930 38.44118

−7.516431 38.44193

−7.515540 38.44229

 A =

 1 27 4

1 2 4

1 2 42

 and T =

 a1 a2
b1 b2
c1 c2



B<- rbind( c(-7.515930, 38.44118),c(-7.516431, 38.44193), c(-7.515540, 38.44229))

A<-rbind(c(1,27,4),c(1,2,4),c(1,2,42))

T<-solve(A,B)

Now that we know T , we can just apply the transformation T to the row and column numbers
of the 1019 locations. This can done by multiplying a 1019× 3 matrix � with a �rst column
of 1's, followed by the row and column numbers �, by T to obtain a 1019× 2 matrix which
columns are x and y. Since matrix multiplication is done in R with the operator %*%, the
following command returns the longitudes and latitudes for all 1019 groups of plants.

lonlat<-cbind(1,Aragonez[,"row"],Aragonez[,"col"])%*%T

head(lonlat,3)

[,1] [,2]

[1,] -7.516431 38.44193

[2,] -7.516291 38.44172

[3,] -7.516351 38.44181

Finally, we just need to add the longitudes and latitudes to Aragonez and convert it a sf

object with st_as_sf as seen earlier. Since coordinates are longitude and latitude, the EPSG
code is 4326.

Aragonez$lon<-lonlat[,1]

Aragonez$lat<-lonlat[,2]

AragonezSF<-st_as_sf(Aragonez, coords=c("lon","lat"),crs=4326)

The result is the georefenced data set which is depicted in Figure 3.2.
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3.5 Working example: creating a regular grid for the Aragonez data

set

The goal of this exercise is to create a grid for the Aragonez data set oriented along the
vineyard trellis which aproximates the area of in�uence of each group of three plants.
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Leaflet	|	Tiles	©	Esri	—	Source:	Esri,	i-cubed,	USDA,	USGS,	AEX,
GeoEye,	Getmapping,	Aerogrid,	IGN,	IGP,	UPR-EGP,	and	the	GIS
User	Community

Figure 3.5: Regular grid cells for the Aragonez data set, with void cells for missing data.

Aragonez<-read.table(file.path(getwd(),"datasets","Aragonez.txt"),header=TRUE)

AragonezSF<-st_as_sf(Aragonez, coords=c("lon","lat"),crs=4326)

One possible solution for this problem uses the linear transformation T above thats convert
points in the referential (row,column) into geographic coordinates. In particular, for each
vineyard row and col, we can consider that the respective grid cell ranges from row-0.5
to row+0.5 and from col-0.5 to col+0.5. For instance, to the group of plants at location
row=2 and col=4 (see Figure 3.4), corresponds to the following areal element, de�ned by
its four pairs of coordinates (the �rst pair is repeated at the end).
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cbind(c(1,1,1,1,1), c(1.5,2.5,2.5,1.5,1.5), c(3.5,3.5,4.5,4.5,3.5)) %*% T

[,1] [,2]

[1,] -7.516453 38.44194

[2,] -7.516433 38.44191

[3,] -7.516409 38.44192

[4,] -7.516429 38.44195

[5,] -7.516453 38.44194

To make the code below more compact, let us de�ne a function Tr which returns a POLYGON
geometry (with longitude and latitude coordinates) from the row and column position, using
linear transformation T.

Tr<-function(df) #input is a data.frame

{

row<-df$row;col<-df$col

A <- cbind(c(1,1,1,1,1),

c(row-.5,row+.5,row+.5,row-.5,row-.5),

c(col-.5,col-.5,col+.5,col+.5,col-.5))

return(st_polygon(list(A%*%T)))

}

Let's test this function over the group of plants in position (2,4). The output is a sf object
with POLYGON geometry as expected.

Tr(data.frame(row=2,col=4))

POLYGON ((-7.516453 38.44194, -7.516433 38.44191, -7.516409 38.44192, -7.516429

38.44195, -7.516453 38.44194))

To obtain the full geometry, i.e. an object sfc which is a list of POLYGON, we just have to
apply Tr to each of the 1019 rows of Aragonez[,c("row","col")], and gather the results as
a list. This could be achieved with a for cycle but it can also be done with R base function by

applied to the data.frame with row and col numbers. The option simplify=FALSE ensures
that by does not attempt to collapse the output list into a more compact R object.
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L<-by(Aragonez[,c("row","col")], # data.frame

INDICES=1:nrow(Aragonez), # each group is a data.frame row

FUN=Tr, # function to be applied to each group

simplify=FALSE)

Function by technically returns an object of class by, but it can be cast to list with the
generic R base function as. Since as(L,"list") is a list of POLYGON, it can be used to
create our sfc object, with one POLYGON for each group of plants.

new.geometry<-st_as_sfc(x=as(L,"list"),crs=4326)

Finally, we can proceed as in Section 3.3 and make a copy of AragonezSF, where the POINT
geometry column is replaced by the new POLYGON geometry that was created above, to
obtain the desired spatial data set called AragonezGrid.

AragonezGrid<-AragonezSF

st_geometry(AragonezGrid)<-new.geometry

Aragonez3763Grid<-st_transform(AragonezGrid, crs=3763)

3.6 Raster geographic data sets

The raster package can deal with very large images since it does not need to load the whole
data set in memory. If one needs to read a very large �le, raster can be used to create the
connection, and then data can be loaded by blocks of rows with raster::getValues and
processed one block at the time.

In the example below the data set is a multilayer image with three bands (three bands of a
Landsat 8 surface re�ectance images over the Alentejo) and it is read with raster::brick.
If each band was available as a separate tif �le, raster::stack could be used to read the
list of �le names. Then, the image stack could be converted into a multiband single image
with raster::brick. For tif �les (or other image formats) with just one layer, reading the
�le can also be done with raster::raster. All those functions read the �le metadata but
do not load the actual data into memory, which is very convenient for large data sets.
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b<-brick(file.path(getwd(),"datasets","LC82030332014151LGN00_sr_bands345.tif"))

raster::inMemory(b)

[1] FALSE

names(b)<-c("band3","band4","band5")

print(b)

class : RasterBrick

dimensions : 7791, 7651, 59608941, 3 (nrow, ncol, ncell, nlayers)

resolution : 30, 30 (x, y)

extent : 529785, 759315, 4190085, 4423815 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=utm +zone=29 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0

data source : /home/jcadima/Isa/Geo/OpenSpat2/datasets/LC82030332014151LGN00_sr_bands345.tif

names : band3, band4, band5

min values : -20, -88, -205

max values : 12661, 13515, 12429

For multiband images, mapview::mapview might be replaced by mapview::viewRGB to dis-
play color composites of the multiple bands. The color composite de�ned in the code below
is a false color composite, since in particular the red channel (denoted by �r�) of the color
composite corresponds to the near infrared band (band 5) of the sensor.

In Figure 3.6, the extent of the image is computed with raster::extent. Then, a new nar-
rower extent is computed with ext/4 and the original image is cropped with raster::crop.

Landsat 8 surface re�ectance values are not supposed to be smaller than 0 or larger than
10000, so we assign NA to those pixels, before computing the vegetation index ndvi, which
is displayed with mapview::mapview, using colors and value intervals set by the user. Map
colors are brie�y discussed in Appendix C.

myb[myb<=0 | myb>10000]<-NA # set non valid values

ndvi<-(myb[[3]]-myb[[2]])/(myb[[3]]+myb[[2]]) # access individual bands

The CRS of the data set is available through function raster::crs. It is an object of
class CRS and can be converted into a simple string that describes the CRS as discussed in
Appendix B.
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ext<-extent(b) # raster extent

myb<-crop(b,ext/4) # crop to a smaller extent

mapviewOptions(basemaps="CartoDB.Positron")

mapview::viewRGB(myb,r = 3, g = 2, b = 1)

+
−

20	km
10	mi Leaflet	|	©	OpenStreetMap	©	CartoDB

Figure 3.6: Mapview color composite of multiband images.

crs(b)

CRS arguments:

+proj=utm +zone=29 +datum=WGS84 +units=m +no_defs +ellps=WGS84

+towgs84=0,0,0

print(as.character(crs(b)))

[1] "+proj=utm +zone=29 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"
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mycolors<-colorRampPalette(c(rgb(1,1,0,0.5), rgb(0,1,0,0.5)), alpha = TRUE)(10)

mapview(ndvi,col.regions=mycolors,at=c(0.1,.3,.5,.7,1))

+
− ndvi

	0.1	–	0.3
	0.3	–	0.5
	0.5	–	0.7
	0.7	–	1.0
	NA

20	km
10	mi Leaflet	|	©	OpenStreetMap	©	CartoDB

Figure 3.7: The ndvi map, with explicit de�nition of the legend intervals and colors.

This PROJ string describes the CRS. The map projection for b is universal transverse
Mercator at zone 29, and the reference datum is WGS84. The coordinate units are meters.
Finally, +ellps indicates the ellipsoid, and +towgs84, which is unnecessary for this particular
CRS, contains in general parameters for datum transformation. As discussed in Appendix B,
this CRS can also be referred to by its epsg code. In fact, the vast majority of usual CRS
have an EPSG code, which can be found in spatialreference.org.

utm.29<-"+init=epsg:32629" # string that can be interpreted as a CRS

Pixel values can be extracted (and loaded into memory) with function raster::values and
coordinates can be extracted with raster::coordinates. Function raster::rasterToPoints
extract both and removes pixels with NA values. All those functions return vectors or matri-
ces.
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head(values(ndvi),3)

[1] 0.3966480 0.4031805 0.4117297

head(values(myb),3)

band3 band4 band5

[1,] 709 972 2250

[2,] 708 957 2250

[3,] 732 988 2371

head(coordinates(myb),3)

x y

[1,] 615870 4336140

[2,] 615900 4336140

[3,] 615930 4336140

head(rasterToPoints(myb),3)

x y band3 band4 band5

[1,] 615870 4336140 709 972 2250

[2,] 615900 4336140 708 957 2250

[3,] 615930 4336140 732 988 2371

Let's consider the problem of determining the location with the highest NDVI value. To
address the question, it is more convenient to work with coordinates of the pixel centers
and with pixel values instead of using the full raster data structure. Since rasterToPoints
returns a three-column matrix with coordinates and values for all pixels, it is very easy to
determine the row of that matrix which has the highest NDVI value. For instance, one can
use function which.max over the ndvi values (i.e. the third column of xyz below) that gives
us the position of the maximum. Then , we just have to select that row from xyz, which
gives us the coordinates x, y of the pixel where that maximum occurs.
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xyz<-rasterToPoints(ndvi)

xyz[which.max(xyz[,3]),] # x,y and maximun ndvi value

x y layer

6.702000e+05 4.305450e+06 9.458685e-01

3.7 Working example: Las Rosas

In this section, we will read data from a corn �eld experiment in Las Rosas, Argentina.
We will also read topographic data for the same region and combine the experiment data
with relief data derived from the topography. The ultimate goal is to model the yield at
each location from the set of predictors. The statistical models and methods to address the
problem will be discussed and applied in Section 4 and Section 5. Here, we are going to read
the initial data set and expand it with relief data, to create the full spatial R object needed
for the statistical analysis.

3.7.1 Read experiment data and gather elevation data

The Las Rosas data set [6] contains measurements of corn yield over a controlled plot in
Argentina. Measurements are made over an almost regular grid and are approximately 71
cm apart. Besides yield, Las Rosas data set also includes the amount of nitrogen fertilizer
that is applied in each location. For the experiment described in [6], 6 di�erent levels of
nitrogen fertizer (0 , 39 kg/ha, 50.6 kg/ha , 75.4 kg/ha, 99.8 kg/ha and 124.6 kg/ha) were
applied along the rows of the �eld. The basic set of information consists of four variables
measured at 1704 locations:

1. YIELD, which is the yield of corn, has been converted to kg/ha;

2. N, which is the amount of nitrogen fertilizer, also expressed in kg/ha;

3. LONGITUDE, the location longitude in degrees

4. LATITUDE, the location latitude in degrees

The data are available in the the following �le:
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X<-read.table(file.path(getwd(),"datasets","rosas2001predN-kg-ha.txt"),header=TRUE)

head(X,3)

YIELD N LONGITUDE LATITUDE

1 4224.759 124.6 -63.84857 -33.04995

2 4308.220 124.6 -63.84850 -33.04998

3 4300.509 124.6 -63.84843 -33.05000

dim(X)

[1] 1704 4

An interesting fact is that, overall, variables YIELD and N have very low correlation.

cor(X$YIELD,X$N)

[1] 0.07880061

To be able to examine the geographic context the observations, we convert data.frame X

into a sf POINT geometry object. The coordinate reference system (WGS84) is indicated
as EPSG code as discussed in Appendix B.

X4326<-st_as_sf(X, coords=c("LONGITUDE","LATITUDE"),crs=4326)

head(X4326,3)

Simple feature collection with 3 features and 2 fields

geometry type: POINT

dimension: XY

bbox: xmin: -63.84857 ymin: -33.05 xmax: -63.84843 ymax: -33.04995

epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

YIELD N geometry

1 4224.759 124.6 POINT (-63.84857 -33.04995)

2 4308.220 124.6 POINT (-63.8485 -33.04998)

3 4300.509 124.6 POINT (-63.84843 -33.05)
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The data set can now be plotted with mapview::mapview with high resolution imagery
background.

mapviewOptions(basemaps="Esri.WorldImagery")

mapview(X4326,zcol="YIELD",legend=TRUE, cex=1.5, lwd=0)

+
− 1,000

1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

X4326	-	YIELD

100	m
500	ft

Leaflet	|	Tiles	©	Esri	—	Source:	Esri,	i-cubed,	USDA,	USGS,	AEX,
GeoEye,	Getmapping,	Aerogrid,	IGN,	IGP,	UPR-EGP,	and	the	GIS
User	Community

Figure 3.8: The Las Rosas data set in Argentina.

This data set is located in Argentina, around coordinates LONG= -63.84521 and LAT=-
33.05053. The examination of the plot suggests that elevation varies within its boundaries.
Furthermore, it is clear that yield is somewhat correlated with elevation. Therefore, we
should estimate the elevation for each observation, and possibly derive new useful variables
that describe the relief, in addition to N, to model corn yield.

Elevation SRTM data for the 1o× 1o tile where the data set lies can be downloaded, unzipped
and imported through the following R commands. Note that the if condition tests if the
�le S34W064.hgt already exists in the working directory.
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if (!("S34W064.hgt" %in% list.files(path=file.path("datasets")))) {

urlzip<-"http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/South_America/S34W064.hgt.zip"

download.file(url=urlzip,destfile=file.path("datasets","S34W064.hgt.zip"),mode="wb")

unzip(zipfile=file.path("datasets","S34W064.hgt.zip")) }

srtm<-raster(file.path("datasets","S34W064.hgt"))

The resulting object is of class RasterLayer and contains the elevation measurements for
each 3 arc-second pixel (the resolution is therefore approximately 90 m in the North-South
direction). Note that srtm coordinates are longitude and latitude (CRS EPSG:4326).

Alternatively, one could use the SRTM1 data set (with a �ner 1 arc-second spatial resolution)
that can be downloaded from Earth Explorer.

srtm1<-raster(file.path("datasets","s34_w064_1arc_v3.tif"))

3.7.2 Deriving variables that describe the relief from elevation data

The goal of the current section is to derive new relevant variables from elevation for the 1704
locations in the data set X.

Since srtm contains a full 1o × 1o , much larger than the actual plot of interest, let us �rst
crop the image to the extent of the Las Rosas data set. We use the %>% pipe operator to make
code simpler to understand. The overall goal is to determine a bu�er (say, of 500 m) around
the points. To that end, we need to reproject the data to a local cartographic coordinate
reference system with coordinates in meters (here we use the UTM CRS for Argentina).
Then we proceed as in Section 3.3 to determine the bu�er. Finally we reproject the result
back to longitude and latitude coordinates and we extract the extent with st_bbox and
convert it to a vector with 4 values.

utm20s<-"+proj=utm +zone=20 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs"

ext<-X4326 %>%

st_transform(crs=utm20s) %>% # reproject to x/y

st_union() %>% # create MULTIPOINT object

st_convex_hull() %>% # create POLYGON convex hull

st_buffer(500) %>% # create POLYGON buffer

st_transform(crs=4326) %>% # reproject back to lon/lat
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st_bbox() %>% # determine extension

as.vector() # vector xmin ymin xmax ymax

Finally, we apply raster::crop to srtm. However, this function requires the extent input
as xmin, xmax, ymin, ymax so we need to re-order the components of ext.

elev<-crop(srtm,y=ext[c(1,3,2,4)])

Figure 3.9 depicts both elevation and yield variables for the Las Rosas site.

mapview(elev,legend=TRUE)+mapview(X4326, zcol="YIELD",cex=2,lwd=0)

+
− 264

266
268
270
272
274
276
278
280
282

elev

500	m
2000	ft

Leaflet	|	Tiles	©	Esri	—	Source:	Esri,	i-cubed,	USDA,	USGS,	AEX,
GeoEye,	Getmapping,	Aerogrid,	IGN,	IGP,	UPR-EGP,	and	the	GIS
User	Community

Figure 3.9: The Las Rosas data set in Argentina.

From elev, new relief variables can be derived. In particular, we use function raster::terrain
to compute the slope and the aspect from elev. In the example below, slope is measured
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in radians (0 indicate a �at surface) and the aspect is also measured in radians (0 indicates
North, with the angle growing clockwise).

Function raster::focal allow us to apply an arbitrary linear �lter and de�ne its kernel.
Essentially, a linear �lter replaces the pixel value by a weighted sum of all pixels of a moving
window which size and weights are determined by the kernel (note that slope is also the
result of applying a particular linear �lter). Since the variation of YIELD is mostly along the
East-West direction, we use raster::focal to estimate the derivative along that direction,
which is called slopeX below. The kernel, determined by argument w, is a 3×3 window with
appropriate weights. Moreover, we suspect that the yield is related to the accumulation of
water in the soil, which can be quanti�ed by the estimate of the second derivative of the
elevation along the East-West direction. Therefore, we also create a new variable accu by
applying raster::focal to slopeX.

slope<-terrain(elev,opt="slope", unit="radians")

aspect<-terrain(elev,opt="aspect",unit="radians")

slopeX<-focal(elev,w=matrix(c(-1,-2,-1,0,0,0,1,2,1),ncol=3))

accu<-focal(slopeX,w=matrix(c(-1,-2,-1,0,0,0,1,2,1),ncol=3))

We stress that in general slope and aspect should not be computed over geographic (lat-
itude/longitude) coordinates. However, function raster::terrain does the correct cal-
culations when the dataset (in our case srtm) has a WGS84 coordinate reference system.
Furthermore, since the linear �lter is applied along one single direction, slopeX and accu are
proportional to the actual estimated values of the �rst derivative and the second derivative

(the proportionality constant is given by the conversion of degrees of longitude into distances
on the ground). As long as we do not care about precise units for slopeX and accu we do
not need to apply the conversion.

Finally, we may wonder if yield is related to the amount of radiation that each location gets.
This can be measured by the cosine of the incidence angle of the radiation (0 if the radiation
is normal to the surface), which is estimated by function raster::hillShade. To apply it,
we need to choose a representative location for the sun. Since the plot is on the Southern
Hemisphere, we consider that the sun direction is North (azimuth=0o) , which is de�ned by
the argument direction). Let us suppose that the sun is relatively high in the sky (late
spring conditions) with angle=60o indicating that the sun is 60o above the horizon.
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hshade<-hillShade(slope=slope,aspect=aspect,angle=60,direction=0)

3.7.3 Linear interpolation of relief variables

So far, we have created a set of new variables in raster format. We would like to derive the
value for each variable at each one of the 1704 locations of data set X. This can be achieved
by spatially interpolating variables elev, slope, etc, over the locations in X. Since we don't
have extra information about the best way of doing the interpolation, we simply perform a
linear interpolation over a Delaunay triangulation with function interp::interp.

Function raster::rasterToPoints returns a matrix with columns longitude, latitude and
elevation extracted from the RasterLayer elev.

Function interp::interp interpolates z values over coordinates given by longs e lats. This
returns a vector that can be added to the attribute table of X. Option output = "points"

ensures that interpolated values are computed precisely at the locations given by longs and
lats and not over a grid.

interpolate<-function(r,longs,lats)

{

rtp<-rasterToPoints(r)

interp(x=rtp[,1],y=rtp[,2],z=rtp[,3],

xo=longs,yo=lats,output = "points",duplicate="mean")$z

}

Function interpolation can now be applied to interpolate values of the raster data sets
elev, slope, . . . , to the 1704 locations in the Las Rosas data set. The interpolated values
are added to data.frame X4326 as new columns.

longs<-st_coordinates(X4326)[,1]

lats<-st_coordinates(X4326)[,2]

X4326$elev<-interpolate(r=elev,longs,lats)

X4326$slope<-interpolate(r=slope,longs,lats)

X4326$slopeX<-interpolate(r=slopeX,longs,lats)

X4326$accu<-interpolate(r=accu,longs,lats)

X4326$aspect<-interpolate(r=aspect,longs,lats)
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X4326$hshade<-interpolate(r=hshade,longs,lats)

As a result, X4326 has now 6 additional variables which could be summarized with the
following command.

summary(X4326)

To examine how those variables vary over the study area, one can use mapview::sync which
allows us to zoom in a syncronized manner over a set of images. Doing this shows that
the pattern of elev, in particular, is closely related to the pattern of YIELD, which is an
indication that elev is a relevant predictor for the yield.

m1<-mapview(X4326,zcol="YIELD",cex=0.7,lwd=0,legend=TRUE)

m2<-mapview(X4326,zcol="N",cex=0.7,lwd=0,legend=TRUE)

m3<-mapview(X4326,zcol="elev",cex=0.7,lwd=0,legend=TRUE)

m4<-mapview(X4326,zcol="slope",cex=0.7,lwd=0,legend=TRUE)

sync(m1,m2,m3,m4)

3.7.4 Tables and spatial data sets for statistical analysis

If we want to extract just the attribute table from X4326, to replace the original data.frame X

with columns YIELD, N, LONGITUDE and LATITUDE, we can proceed as follows. First we make
a copy of X4326, which is a sf object with geometry column, and then we drop the geometry
column. Since a sf spatial object is a data.frame, we end up also with a data.frame with
the remaining (non geometry) columns.

X<-X4326

st_geometry(X)<-NULL

Interestingly, the correlations between YIELD and slope or elev, are much stronger than
the correlation between YIELD and the amount of nitrogen fertilizar N. Figure 3.10, depicts
the relation between elev and YIELD.
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round(cor(X),3)

YIELD N elev slope slopeX accu aspect hshade

YIELD 1.000 0.079 -0.881 -0.627 -0.107 0.889 -0.144 0.378

N 0.079 1.000 -0.022 0.008 0.003 -0.001 0.002 -0.043

elev -0.881 -0.022 1.000 0.584 0.123 -0.954 0.108 -0.306

slope -0.627 0.008 0.584 1.000 -0.051 -0.525 0.033 -0.368

slopeX -0.107 0.003 0.123 -0.051 1.000 0.016 0.965 0.708

accu 0.889 -0.001 -0.954 -0.525 0.016 1.000 0.015 0.424

aspect -0.144 0.002 0.108 0.033 0.965 0.015 1.000 0.613

hshade 0.378 -0.043 -0.306 -0.368 0.708 0.424 0.613 1.000

plot(YIELD~elev, data=X, xlab="elevation (m)", ylab="yield (kg/ha)")

Figure 3.10: Plot of the yield again the variable elev, which shows a trend. Overall, when
the elevation increases, the yield tend to decrease, possibly due to the availabily of water in
the soil.

At this point we have essentially all the information that is needed for subsequent statistical
analysis of the data set in Section 4 and Section 5. To be able to apply sound spatial
statistical techniques to the data set we may want to reproject the geographic coordinates
into cartographic coordinates that express correctly relative distances.

We consider the local cartographic coordinate reference system (UTM zone 20 South) that
was used in Section 3.7.2 and we reproject X into that CRS. Furthermore, we add new
cartographic coordinates x,y to the attribute table so those became easily available as inputs
of autocorrelation models.

utm20s<-"+proj=utm +zone=20 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs"

Xsfutm<-st_transform(X4326,crs=utm20s) # sf object

To create the corresponding SpatialPointsDataFrame sp object, one uses sf::as_Spatial.

Xutm<-as_Spatial(Xsfutm) # sp object
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3.8 Overview: common functions of packages raster and sf

To read geoti� �les and other formats one can use raster::raster, raster::brick and
raster::stack and to create a new �le from a R raster object, the function is raster::writeRaster.
Coordinate reference systems can be identi�ed or set with raster::projection. Spatial res-
olution is returned by raster::res and the extension of a raster object by raster::extent.
To project a raster onto a new CRS one can use raster::projectRaster but gdalUtils::gdalwarp
is more �exible an e�cient, and to get pixel coordinates one uses raster::coordinates()
that returns a matrix. This can also be done with raster::rasterToPoints. RasterLayer
or RasterBrick pixel values are returned by raster::values. To extract pixel values at
given locations one can use raster::extract and to crop a raster object using an sp ob-
ject one can use function raster::crop. Functions raster::merge and raster::mosaic

are used to mosaic rasters together and return a single raster object. Digital elevation
models can be explored to derive slope, aspect and hillshading with raster::terrain and
raster::hillShade, but more general linear and non linear �ltering techniques can be
applied with focal.

For vectorial sf objects the major functions that were discussed were sf::st_read and
sf::st_write for input/output. Coordinate reference systems for sf objects are retrieved
or set with sf::st_crs. Extension is returned by sf::st_bbox. To re-project a data set
to a new CRS, one uses sf::st_transform. For sf objects, function sf::st_coordinates

returns vertices' coordinates. It also returns indices of the features, parts and rings to
which the vertices belong, according to the complexity of the geometry. The geometry
of a sf spatial data set is returned or set with sf::st_geometry. Various function for
spatial data analysis were discussed like st_cast, st_union, st_buffer, st_intersection
or st_voronoi. In general, all functions from the GIS simple feature norm (e.g. st_area,
st_centroid, st_is_valid, . . . ) are available under the sf package.

Function raster::rasterize can be used to convert vector data structures (objects sf)
into rasters but it is not very e�cient. One much faster alternative for POLYGON geometry
is fasterize::fasterize.
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Tools for Spatial Autocorrelation

We now turn our attention to basic tools to inspect the existence of spatial autocorrelation
(Section 4.3), describe the way in which it operates (Section 4.4), measure its intensity
(Sections 4.5 and 4.6) and model it (Section 4.7). These concepts are illustrated with the
Aragonez dataset (Section 4.1) and a meteorological data set (Subsection 4.8.2).

Spatial autocorrelation is not always easy to identify. One important reason for this is that
it may be confused with the existence of some kind of underlying trend in the data which,
once removed, would leave deviations (residuals) where spatial autocorrelation is no longer
important This issue will be addressed in Section 5.5 and, subsequently, in Chapter 5. The
borderline between what is an underlying trend and what is true spatial autocorrelation is
often hazy.

Besides the R packages discussed previously, a few additional R packages will be needed in
this Chapter. We begin by loading them (they must have been previously installed on your
platform).

library(gstat)

library(geoR)

4.1 Inspecting the Aragonez yields

Consider again the Aragonez dataset, which was introduced and geo-referenced in Chapter 3.
We load the (geo-referenced) object of class sf that was created (AragonezSF), and inspect
it with the head R command.
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load(file.path(getwd(), "datasets", "Aragonez.RData"))

head(AragonezSF) # the first six lines of the AragonezSF object

Simple feature collection with 6 features and 7 fields

geometry type: POINT

dimension: XY

bbox: xmin: -7.516431 ymin: 38.44163 xmax: -7.516231 ymax: 38.44193

epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

genotype block col row colm rowm yield geometry

1 RZ717 B1 4 2 0 93.75 2.417 POINT (-7.516431 38.44193)

2 RZ1158 B1 4 9 0 67.50 2.724 POINT (-7.516291 38.44172)

3 RZ1325 B1 4 6 0 78.75 2.647 POINT (-7.516351 38.44181)

4 RZ3313 B1 4 8 0 71.25 1.543 POINT (-7.516311 38.44175)

5 RZ3603 B1 4 12 0 56.25 0.865 POINT (-7.516231 38.44163)

6 RZ3604 B1 4 3 0 90.00 1.659 POINT (-7.516411 38.4419)

The dataset was originally collected to study the yields of di�erent genotypes, the names of
which are given in the data frame's �rst variable (the factor genotype), but this information
will be ignored for our purposes, and di�erent genotypes will (unwisely) be equated with
repetitions. Likewise, we ignore the experimental design, which divided the �eld trial into 4
di�erent blocks, whose names are the second variable (the factor block) in AragonezSF. This
is not a problem, since the �eld was divided into four blocks as a 2× 2 matrix, and therefore
the rows and columns of the rectangular grid provide even more detailed information regard-
ing any possible terrain e�ect that the block design could capture. The data frame columns
with names col and row provide the location of each cell in terms of its column and row
number, respectively. These may be used as a simple form of spatial coordinates. The two
subsequent data frame columns, called colm and rowm, also identify columns and rows but
indicating the distance from the center of each grid cell, in meters, to the reference point,
which is the southernmost point in the �eld. Since grid cells are rectangular, and not square,
the use of the latter two variables as geographical coordinates is more appropriate than just
column and row numbers, insofar as they provide information regarding the spatial distance
between the label points of each observation. The next column of the data frame, yield, is
our variable of interest: the yield (in kg/plant) for each grid cell.

An initial visual inspection of this dataset plots the yields on their spatial coordinates. We
can use the plot method for sf objects to create such a plot. Figure 4.1 shows that there
are spatial clusters of similar yields, with a pattern of increasing yields as we move from the
left to the right on the trial �eld.

OpenSpat 2018 62



Chapter 4

plot(AragonezSF[,"yield"], pch=16)
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Figure 4.1: A simple plot of the Aragonez yields, produced from the sf object AragonezSF.
The legend indicates yield classes (in kg/plant). Yields increase as we move from left to right
on the trial �eld. The pch argument controls the plot character, and 16 is the code for �lled
circles. Missing values appear as missing points in what would otherwise be a rectangular
grid of points.

A similar plot can be produced from the polygon-based sf object Aragonez3763Vor, created
in Chapter 3, as is shown in Figure 4.2. Voronoi tessellations occupy the entire available
region, and so missing values do not show up as missing polygons, but rather as irregularly
shaped polygons in the midst of the region.

Since many of the functions used in this Chapter are still only available for sp objects of
class SpatialPointsDataFrame, we show in Figure 4.3 how to produce a similar plot using
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plot(Aragonez3763Vor[,"yield"])

2
4

6

yield

Figure 4.2: A plot for the Aragonez yields, based on the polygons in the sf object
Aragonez3763Vor.

the sp:spplot function.

Despite the left-to-right pattern of increasing yields, which these Figures highlight, it is not
necessarily the case that spatial autocorrelation tools are needed to model this situation.
Just as in a classical simple linear regression between two variables Y and X, the under-
lying trend that we observe in Figure 4.3 may be described by some kind of relationship
which, once removed, leaves residual variability where no (or, at least, no signi�cant) spatial
autocorrelation is observable.

We now focus on the issue of detrending a numerical spatial variable, such as yield, in order
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AragonezPoints<-sf::as_Spatial(Aragonez3763SF)

spplot(AragonezPoints, zcol="yield", key.space="right")
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Figure 4.3: A similar plot of the Aragonez yields, generated from the AragonezPoints

sp object, using the sp::spplot function. The legend, which indicates yield classes (in
kg/plant), is placed to the right of the plot because of the key.space argument.

to study whether the remaining variability is a�ected by spatial autocorrelation.

4.2 Trends and detrending

In order to discuss trends, we will initially assume that the numerical variable of interest, Z,
depends on two spatial coordinates x and y, representing the location on the x0y plane of
each value of the random process Z. Following Plant ([2]), we will consider a fairly general
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decomposition of Z(x, y) into three terms:

Z(x, y) = T (x, y) + η(x, y) + ε(x, y) , (4.1)

where:

� T (x, y) is a deterministic (non-random) underlying spatial trend, which is sometimes
given as µ+ T (x, y), where µ is an overall mean;

� η(x, y) is a spatially autocorrelated random process, describing spatially correlated de-
viations from the underlying trend;

� ε(x, y) is an uncorrelated random process, describing independent error terms.

In Chapter 5 a more general situation will be considered, where the trend T is not just a
function of the spatial coordinates x and y, but a function of some other numerical predictors.

It is advisable to remove any underlying deterministic trend T (x, y), that is, to detrend

the process, in order to check whether spatial autocorrelation tools are needed or if, once
a suitable trend is removed, the classical setting of independent random errors adequately
models the situation.

One common approach to detrending is to �t a given type of surface by least-squares (re-
gression) �ts. Note that the assumption of independent observations is not needed when
�tting a surface with the least-squares criterion (it is only necessary for subsequent inferen-
tial results), and so standard regression software can be used to �t a trend even when spatial
autocorrelation exists. A general form of equation for the surface must be speci�ed, and
estimates obtained for the parameters in the surface equation. For example, a �at surface
(plane) can be �tted to a data set {(xi, yi, zi)}ni=1 with a linear regression of the variable z
on the coordinates x and y:

z = β0 + β1 x+ β2 y . (4.2)

A second-degree polynomial provides curvature, resulting in a paraboloid surface (which can
be either an elliptic or a hyperbolic paraboloid, depending on the �tted coe�cients):

z = β0 + β1 x+ β2 y + β3 x
2 + β4 y

2 + β5 xy . (4.3)

These two examples of surfaces, or other surfaces de�ned by polynomials of higher degree,
can be �tted in R using the lm command. Other curved surfaces can be considered, and �tted
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in R using the command for non-linear regressions, nls, which also minimizes least-squares
as a �tting criterion.

When the spatial region under observation is a regular grid, an alternative approach to �tting
a trend surface is a non-parametric approach originally suggested by Tukey (Tukey 1977)
called median polish. Arranging the observed values of Z in matrix form, successive sub-
tractions of row and column medians are carried out until these medians become zero. The
resulting detrended data can then be subtracted from the original data to obtain the trend.
This approach does not require any functional form to be speci�ed for the trend surface,
which is an advantage, but it has the disadvantage of making the results less interpretable
and less adaptable to other points on the x0y plane.

We now turn our attention to the analysis of a detrended random process, Z∗(x, y) =

Z(x, y)−T (x, y).

4.2.1 Detrending the Aragonez data set

Consider the Aragonez dataset once again. Create two new variables in the data frame, by:
(i) subtracting the mean yield (a constant); and (ii) removing a linear trend on the colm

and rowm spatial coordinates, as indicated in equation (4.2). The appropriate commands are
given below. A few comments regarding these commands:

� new variables in the data frame can be added by just writing their full name to the
left of R's attribution sign (see the commands below);

� R's linear regression command, lm, also accepts both a SpatialPointsDataFrame ob-
ject, or an sf object, as its data argument;

� all calls to the variables in the data frame should, for the sp object, more rigor-
ously be made by invoking the @data slot of AragonezPoints(an object of class
SpatialPointsDataFrame), as for example in: AragonezPoints@data$yield. But
R can cope with the omission of the slot @data in this context.

AragonezPoints$yieldct <- AragonezPoints$yield-mean(AragonezPoints$yield)

AragonezPoints$yieldldt <-

AragonezPoints$yield - fitted(lm(yield ~ rowm + colm , data=AragonezPoints))

# the first lines of the AragonezPoints data frame with the two new columns

head(AragonezPoints)
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genotype block col row colm rowm yield yieldct yieldldt

1 RZ717 B1 4 2 0 93.75 2.417 -0.13168302 0.87742187

2 RZ1158 B1 4 9 0 67.50 2.724 0.17531698 1.08176580

3 RZ1325 B1 4 6 0 78.75 2.647 0.09831698 1.04876126

4 RZ3313 B1 4 8 0 71.25 1.543 -1.00568302 -0.08456904

5 RZ3603 B1 4 12 0 56.25 0.865 -1.68368302 -0.82122965

6 RZ3604 B1 4 3 0 90.00 1.659 -0.88968302 0.10475672

Linear detrending is equivalent to taking the residuals in the above mentioned linear regres-
sion, so that the second command above could be replaced by:

AragonezPoints$yieldldt <- residuals(lm(yield ~ rowm + colm , data=AragonezPoints))

Centred and linearly detrended yields were also added to the sf objects Aragonez3763Vor
and AragonezGrid, that was created in Chapter 3.

Aragonez3763Vor$yieldct <- AragonezPoints$yieldct

Aragonez3763Vor$yieldldt <- AragonezPoints$yieldldt

head(Aragonez3763Vor)

Simple feature collection with 6 features and 9 fields

geometry type: POLYGON

dimension: XY

bbox: xmin: 53834.87 ymin: -135972.3 xmax: 53843.84 ymax: -135957.3

epsg (SRID): 3763

proj4string: +proj=tmerc +lat_0=39.66825833333333 +lon_0=-8.133108333333334 +k=1 +x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs

genotype block col row colm rowm yield geometry

1 RZ717 B1 4 2 0 93.75 2.417 POLYGON ((53837.5 -135959.4...

2 RZ1158 B1 4 9 0 67.50 2.724 POLYGON ((53839.54 -135958....

3 RZ1325 B1 4 6 0 78.75 2.647 POLYGON ((53836.11 -135965....

4 RZ3313 B1 4 8 0 71.25 1.543 POLYGON ((53841.53 -135967,...

5 RZ3603 B1 4 12 0 56.25 0.865 POLYGON ((53841.58 -135957....

6 RZ3604 B1 4 3 0 90.00 1.659 POLYGON ((53837.88 -135969,...

yieldct yieldldt

1 -0.13168302 0.87742187

2 0.17531698 1.08176580

3 0.09831698 1.04876126
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4 -1.00568302 -0.08456904

5 -1.68368302 -0.82122965

6 -0.88968302 0.10475672

AragonezGrid$yieldct <- AragonezPoints$yieldct

AragonezGrid$yieldldt <- AragonezPoints$yieldldt

head(AragonezGrid)

Simple feature collection with 6 features and 9 fields

geometry type: POLYGON

dimension: XY

bbox: xmin: -7.516453 ymin: 38.44161 xmax: -7.516209 ymax: 38.44195

epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

genotype block col row colm rowm yield geometry

1 RZ717 B1 4 2 0 93.75 2.417 POLYGON ((-7.516453 38.4419...

2 RZ1158 B1 4 9 0 67.50 2.724 POLYGON ((-7.516312 38.4417...

3 RZ1325 B1 4 6 0 78.75 2.647 POLYGON ((-7.516373 38.4418...

4 RZ3313 B1 4 8 0 71.25 1.543 POLYGON ((-7.516333 38.4417...

5 RZ3603 B1 4 12 0 56.25 0.865 POLYGON ((-7.516252 38.4416...

6 RZ3604 B1 4 3 0 90.00 1.659 POLYGON ((-7.516433 38.4419...

yieldct yieldldt

1 -0.13168302 0.87742187

2 0.17531698 1.08176580

3 0.09831698 1.04876126

4 -1.00568302 -0.08456904

5 -1.68368302 -0.82122965

6 -0.88968302 0.10475672

4.3 Detrended Plots

Once a spatial process has been detrended, any residual variability may, or may not, reveal
spatial autocorrelation. A spatial plot of the detrended values will help to highlight the
existence of any remaining spatial autocorrelation, which will then appear as clusters of
above-trend (positive) values and clusters of below-trend (negative) values of similar size.
If the remaining variability were independent (not spatially autocorrelated), positive and
negative values would be distributed at random.
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One simple visual aid are bubble plots. These are simply plots of the observations on the
underlying spatial coordinates, but where the symbol used to represent each observation is
scaled, and/or depicted with a certain colour coding, so as to provide information regarding
the observed values at each point.

In R, the sp::bubble command creates bubble plots from sp objects. The command requires
at least two arguments: (i) the name of a SpatialPointsDataFrame object providing the
spatial coordinates of these points; and (ii) argument zcol, providing the name of the
variable that will de�ne the bubbles. By default, the command assumes that the variable
has been detrended, and provides a two-colour code for negative, and for positive, deviations
from the trend. There is also a default scaling e�ect, to highlight the magnitude of the
data values. The bubble command has a number of arguments, which are described in the
corresponding help�le. Unfortunately, the bubble command does not, at present, accept a
vector of variable names in the zcol argument, which would allow multiple bubble plots to
be drawn side by side.

Figure 4.4 gives the bubble plot for the centred Aragonez yields (yields minus the mean
yield). The bubble plot provides similar information to the previous spplot of (uncentred)
yields: most below-average yields are concentrated on the left-hand side of the grid, with
most above-average yields concentrated in the upper right and lower right corners. Both the
sign and size of the deviations appears to be spatially clustered: merely centring the data
cannot eliminate the spatial pattern observed on the original yields.

Figure 4.4 suggests the existence of a linear trend on the spatial coordinates, in other words
a trend represented by a plane that slopes upwards as we move from left to right in the �eld.

The bubble plot for yields detrendend by subtracting a linear trend on the spatial coordinates
is given in Figure 4.5, using the variable yieldldt, as de�ned above.

The much more irregular layout in Figure 4.5 suggests that removing a linear trend has
partially broken down the pattern of similar values. But the persistence of clustered patches
of values of similar sign and magnitude suggests that there is still spatial autocorrelation
in the detrended data. The remaining clusters may, of course, result from an unsuitable
detrending. This can also occur in the familiar case of a 2-variable scatterplot, when a linear
regression is �tted to a curved relation: in this case, sequences of negative and positive
residuals would be highlighting the inadequate nature of a linear trend, and not (necessarily)
spatial autocorrelation. On the other extreme of the scale, there is the risk of over�tting
when detrending, leaving little residual variability left to explain.

The sp::spplot command is a more �exible and powerful command than sp::bubble. It
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bubble(AragonezPoints, zcol="yieldct")
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Figure 4.4: A sp::bubble plot for the centred Aragonez yields. The magenta points
represent negative (below-average) centred yields. Green points represent above-average
yields. The circles become larger as the deviation from the mean grows. The �ve values
indicated next to the colour keys are the �ve values used to build boxplots (the minimum
and maximum, as well as the three quartiles) and the symbols next to the values indicate
the corresponding point size.

uses the lattice package for graphical output in the Trellis graphics system (Cleveland,
1993, 1994). It caters for more types of spatial data classes than bubble. In particular, it is
a useful command to visualize spatial data of polygon type (although bubble also accepts
sp objects of class SpatialGridDataFrame). We illustrate the use of the spplot command
by creating an object of class SpatialPolygonsDataFrame for the AragonezGrid. As can
be seen in the plot for linearly detrended yields, in Figure 4.6, when polygons are created in
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bubble(AragonezPoints, zcol="yieldldt")

yieldldt
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Figure 4.5: A bubble plot for the Aragonez yields, detrended with a linear regression on
the x (column) and y (row) distances. The magenta points are associated with below-trend
yields. Green points represent above-trend yields. The circles become larger as the deviation
of the yields from the mean grows.

this way, missing values appear as empty polygons. The information provided by Figure 4.6
is essentially the same as in Figure 4.5.

In sp::spplot, the zcol argument may be a vector of variable names. When more than one
variable is requested through the zcol argument, separate plots are given for each variable,
with a common colour code for their values, as illustrated in Figure 4.7. Invoking the function
in this simple way may not particularly useful, unless the di�erent variables have comparable
values. This problem can be seen in Figure 4.7, since negative yields do not exist prior to
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AragonezPolygons <- as_Spatial(AragonezGrid)

spplot(AragonezPolygons, zcol="yieldldt")

−3
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−1

0

1

2

3
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5

Figure 4.6: An spplot for the Aragonez yields, detrended with a linear regression on the x
(column) and y (row) distances (in meters). When the sp object of class SpatialPolygons
is created in this way, missing values appear as missing polygons.

detrending (that is, for the yield variable).

It is tempting to introduce measures of spatial autocorrelation straight away. But indices
for spatial autocorrelation (such as Moran's I and Geary's c, which will be introduced in
Section 4.5), require a discussion of the all-important issue of spatial weights.
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spplot(AragonezPoints, zcol=c("yield","yieldct","yieldldt"), key.space="right")
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Figure 4.7: The spplot for the three yield variables in AragonezPoints.

4.4 Spatial weights and graphs

Spatial autocorrelation may be modelled in di�erent ways. It may be assumed that it a�ects
only the error terms, in other words, the deviations of the spatial process Z from some
underlying trend. Or one may assume that spatial autocorrelation is directly impacting the
spatial process Z, so that the values of Z at some location s1 are, in part, the result of
the values of Z in neighbouring locations, regardless of trend. It may also be the case that
spatial behaviour of Z is a�ected by some other variable which, once included in the model,
may account for all the observed spatial autocorrelation. These issues will be discussed in
Chapter 5. But all such models share a common feature, which is the notion of spatial
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Chapter 4

weights. A spatial weight wij is a means of both indicating whether some observation (or
error) at a spatial location sj a�ects an observation (or error) at location si and, if so, how
strong this e�ect is.

In order to better understand this key concept of spatial weights, we begin by relating it to
the one-dimensional autocorrelated error model discussed in Chapter 2. We assume that, in
equation (4.1), the trend T (x, y) is given by a constant µ (or, equivalently, Z(x, y) has been
essentially detrended, except maybe for a constant µ) and that the values of η(x, y) depend
on the values of η at other points in the vicinity of (x, y). More speci�cally, we assume that
each η is given by a linear combination of other error terms η, as follows:


Zi = µ+ ηi

ηi = λ

(
n∑
j=1

wijηj

)
+ εi

εi ∼ N (0, σ2) (i.i.d.) ,

(4.4)

where wij is a constant measuring the in�uence of the error term ηj, for observation Zj,
on the error term ηi, for observation Zi. The parameter λ may be thought of as an overall
measure of the intensity of spatial autocorrelation. The one-dimensional AR(1) model (2.8)
is a speci�c instance of this model, in which the only non-zero weights occur when j= i− 1,
in which case wi,i−1 =1.

Model 4.4 extends model (2.8), both in that it allows for more than one observation to a�ect
the i-th observation (which is better suited for spatial autocorrelation), and in that it allows
for more �exibility in de�ning the size of those weights, that is, the intensity of those e�ects.

A zero spatial weight, wij =0, indicates that ηj does not a�ect ηi, whereas non-zero weights
indicate that such an e�ect exists. Weights greater than 1 would imply that the e�ect of
a neighbouring observation tends to be greater than the observation itself, which is seldom
the case. As a general rule, we assume that the spatial weights wij verify the condition
0 ≤ wij ≤ 1.

As was seen, two di�erent (although inter-related) issues are at stake when de�ning spatial
weights:

� identifying which observations Zj (or errors) a�ect any given observation Zi (often
called the neighbours of Zi), in other words, which weights wij are non-zero; and

� specifying the intensity of those e�ects that do exist (in other words, the values of
non-zero weights wij).
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A discussion of the �rst of these issues is helped by the mathematical notion of a graph,
which will be very brie�y introduced in the next Subsection.

4.4.1 Graphs: some introductory concepts

A graph is a set V of vertices (or points, or nodes), pairs of which may be united by edges

(or lines, or arcs). The existence of an edge between a pair of vertices is associated with
some property of interest. The set of edges can be represented by E, and the graph is given
by both sets: G = (V,E). Figure 4.8 shows a graph with n=9 vertices and 12 edges.

● ● ●

● ● ●

● ● ●

7 8 9

4 5 6

1 2 3

Figure 4.8: A (undirected) graph with nine vertices (numbered by row), and 12 edges.

The number of vertices is called the order of the graph and denoted by |V |. The number of
edges, which is represented by |E|, is sometimes called the size of the graph.

In our context, the set of n points, or polygons, in space for which we have a set of obser-
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vations {zi}ni=1 is associated with the set of vertices, so that n= |V |. An edge connecting
a pair of vertices, i and j, indicates that observation (vertex) j a�ects observation (vertex)
i. In other words, there will be an edge uniting vertex i to vertex j if and only if wij is a
non-zero weight in the weights matrix.

The fact that observation j a�ects observation i may not necessarily imply that observation
i a�ects observation j. If this is the case, we need to specify directed edges: an edge with an
initial vertex vi and a terminal vertex vj will not be the same thing as an edge with initial
vertex vj and terminal vertex vi (which may even not exist). In this case, we speak of a
directed graph, or digraph.

Consider once again the Aragonez dataset. Let us assume that any given observation (vertex)
is in�uenced by observations (vertices) that are a distance of 4m or less, and that this
in�uence is symmetric, so that an undirected edge can be established between the two
vertices representing those observations in a graph. The resulting graph is given in Figure
4.9 (we will see later the R functions that were used to build it).

We say that a given vertex vi is incident with a given edge if that edge unites vi with another
vertex vj, in which case the edge can be identi�ed as eij =(vi, vj). For example, the central
vertex in Figure 4.8 is incident with 4 edges. The degree (or valency) of a vertex is the
number of edges incident with that vertex. Thus, vertex 5 in Figure 4.8 is of degree 4,
whereas the four corner vertices (1, 3, 7, 9) are of degree 2 and all other vertices in that
(very small) graph are of degree 3. For directed graphs, it is necessary to distinguish between
the in-degree and the out-degree of a vertex which are the number of edges that respectively
end, and begin, at that vertex.

In a graph, two vertices that are united by an edge are called adjacent. One way of fully
specifying a graph is through its adjacency matrix A, in which both rows and columns are
associated with the set of vertices. The matrix element aij is therefore associated with the
pair of vertices vi and vj, and it can take two values: aij = 1 if vi and vj are adjacent (that
is, if edge eij exists), and aij = 0 if they are not. Adjacency matrices for undirected graphs
are symmetric, that is, aij = aji for any i,j, or equivalently, At = A. For directed graphs,
the adjacency matrix is not symmetric (At 6= A).

For applications in spatial statistics, the standard convention is that a vertex is not adjacent
to itself, so that the diagonal elements in the adjacency matrix are all zero. For the example
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Figure 4.9: The graph of all non-zero spatial weights for the Aragonez dataset, assuming
that any observation is in�uenced by all other observations within a radius of 4 meters.

in Figure 4.8, and numbering the nine vertices by row, the adjacency matrix is:

A =



0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 1 0


(4.5)
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Since each matrix row corresponds to a vertex, the row sums of an adjacency matrix give us
the degree of each vertex. Each column also corresponds to a vertex, and the columns sums
also give the degree of each vertex. For undirected graphs, row sums are equal to column
sums, but this is not in general the case for directed graphs. The adjacency matrix of a
directed graph is still de�ned as having aij =1 if and only if the edge eij with initial vertex
j and terminal vertex i exists (this is the convention that is coherent with the indices of the
spatial weights wij in equation 4.4). But it is no longer necessarily true that aij =aji. In this
case, the row sums of the adjacency matrix give the in-degree of each vertex, and column
sums give out-degrees.

For graphs of very high order (the number of vertices, n, is very big) adjacency matrices
become very large and very demanding in terms of storage memory. In such cases, and in
particular when the number of edges is not extremely large, a more e�cient way of storing
the information for an adjacency matrix is in an adjacency list, which is a list of n vectors,
where each vector (list object) i contains the vertex numbers adjacent to vertex i or, in the
case of a directed graph, the initial vertices for any edge with terminal vertex i. For the
above example, the list would have 9 objects, the �rst of which is the vector for vertex 1:
(2, 4); the second is the vector for vertex 2: (1, 3, 5); and so on.

If there is a sequence of edges that begins at edge vi and ends in edge vj, we say that there is
a walk between the vertices vi and vj, and a path if vi 6=vj. Thus, in Figure 4.8 there is a path
between vertices 1 and 5, since there is an edge uniting vertices 1 and 2, and another uniting
vertices 2 and 5. In this path, vertex 2 is called an inner vertex, and we say that vertices 1

and 5 are linked. The length of a path is the number of edges in that path. In the previous
example, the path is of length two. Two vertices may be linked by more than one path, and
in the example, there is also a path of length four connecting vertices 1 and 5, consisting
of the edges e12, e23, e36, and e65. This path, like any other, may also be represented by
its ordered set of vertices: (v1, v2, v3, v6, v5). The length of the shortest path connecting two
vertices is called the distance between the two vertices (if no such path exists, the distance
is set to ∞). The maximum distance in a graph is called the diameter of the graph.

We say graph is connected if all pairs of vertices are linked by a path. This is the case with
the graphs in both Figure 4.8 and Figure 4.9. A graph that is not connected has separate
components (maximal connected subgraphs), so that a path between any pair of vertices
exists if, and only if, those vertices belong to the same component. In our context, this
means that we are assuming that vertices that are in di�erent components are not spatially
autocorrelated. This may be an appropriate assumption in the case of, for example, physical
barriers that separate the locations where di�erent subsets of observations were made.
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A weighted graph is a graph in which edges have weights. Weights can be used to give
di�erent strengths to the connections between vertices. In our context, weighted graphs may
be used to represent the spatial weights associated with each pair of observation errors, ηi
and ηj. The following Subsection addresses the issue of how these weights can be assigned.

4.4.2 Spatial weights matrices

The n×n matrix W, whose (i, j)-th element is wij is called a spatial weights matrix. Spatial
weights matrices play a crucial role in the analysis of spatial data.

Whenever a directed graph is needed to describe the neighbours of each observation, because
an edge (vi, vj) does not always imply the existence of the edge (vj, vi), then a corresponding
spatial weights matrix cannot be symmetric. However, even when an undirected graph is in
order, because adjacencies are symmetric, it may still be the case that an associated weight
matrix is not symmetric. This depends on the precise way in which weights are assigned to
each pair of neighbours.

Before considering in more detail some speci�c ways of assigning spatial weights, a few
general comments are in order.

1. as seen above, it makes sense to assume that 0 ≤ wij ≤ 1, for all pairs (i, j), with
wij =0 if and only if observation (error) j does not in�uence observation (error) i.

2. if all non-zero weights are set equal to 1, the weight matrix W coincides with the
adjacency matrix A of the graph of adjacencies.

3. it may also be argued that a constraint should be imposed on the sum of all weights
describing e�ects on the i-th observation. For example, it may be required that the
sum of all weights associated with observations that in�uence the i-th observation be
set to 1, in other words,

∑n
j=1 wij = 1. One way of doing so is by assigning equal

weights to all observations that in�uence observation i, and so wij = 1
di
, where di is

the in-degree of vertex i in the graph of neighbours (or just degree, for an undirected
graph). This is called a row-normalized weight matrix. On statistical grounds, it may
be justi�ed with the idea that for a vertex of (in-)degree di = 4, the contribution of
each of the four individual observations that a�ect it is, in relative terms, not as big
as would be the case if the degree of that vertex were only 1 or 2.

4. Alternatively, it may be decided to impose an overall constraint on the size of the
weights, such as setting the sum of all weights to some value.
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We now consider some speci�c rules for assigning spatial weights.

4.4.3 Distance-based weights

For geostatistical data, it is usually appropriate to de�ne spatial weights matrices with weights
wij given by some function of the spatial separation between observations Zi = Z(si) and
Zj = Z(sj), assuming that this separation can be measured on some continuous scale. The
standard Euclidean distance between points is a common choice. In general, not all pairs
of observations will have non-zero weights (although this is conceptually possible), since it
may be considered appropriate to ignore spatial autocorrelation for points that are further
apart than some threshold distance. In particular, we may:

� De�ne weights by some non-increasing function, g, of the scalar Euclidean distance dij
between the coordinates of the points at which observations i and j were made:

wij = g(dij) . (4.6)

Di�erent choices for function g allow us to control the strength of the in�uence of points
that are at a given distance dij apart. Some frequent choices for distance functions g
are:

1. the radial distance weight function: a pair of observations at a distance closer
than some parameter d has weight 1, and the weight for observations made further
apart is zero:

wij =

{
1 , if 0 ≤ dij ≤ d

0 , if dij > d
(4.7)

2. the inverse (power) distance weights function: weights decrease with some
power of the distance. For some positive constant a:

wij =
1

daij
; (4.8)

This family of weight functions is often used in interpolation problems. The larger
the power a, the less in�uential are points that are further away.

3. the exponential distance weight function: weights decrease exponentially
with distance. For some positive constant a:

wij = e−a dij . (4.9)
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Implicit in equation (4.6) is the idea that the weights depend only on the scalar distance
dij, regardless of the direction which separates the points at which observations Zi and
Zj were made. This assumption, which is called the isotropy assumption, may, or
may not, be realistic.

� A more complex de�nition for a spatial weights matrix may assume that, for any given
direction, the weights would decrease with scalar distance, but the precise way in which
they would decrease would di�er, for di�erent directions. This is the anisotropy
assumption. In this case, wij would be a function of the distance vectors uniting each
pair (i, j) of observed points.

It may be considered appropriate to combine the use an exponential, or inverse distance,
weight function with a threshold, such that wij becomes zero when dij exceeds some thresh-
hold d. Other de�nitions of distance-based weights may be suggested by the speci�cities of
any given application. For example, geographical barriers (seas, mountain ranges, etc.) that
are considered to cut o� any autocorrelation between observations may suggest that a rule
specifying weights based on Euclidean distances be modi�ed, so as to exclude weights for a
pair of observations that lie on opposite sides of that geographical barrier. This corresponds
to deleting edges in the adjacency graph.

4.4.4 Neighbours and k-th order neighbours

For areal data, other possible de�nitions of a spatial weights matrix W may be more appro-
priate. Consider a process Z observed on some spatial arrangement of polygons, where the
concept of neighbouring polygon can be de�ned. It is assumed that only neighbouring
polygons (cells) a�ect any given observation Zi of the process. Neighbours can also be de-
�ned for values observed at points in space (and therefore for geostatistical data), either by
de�ning a distance-based concept of neighbourhood, or by creating a tessellation of regions
surrounding the points and using the resulting polygons to de�ne pairs of neighbours.

A standard convention is that a polygon is not a neighbour of itself. Possibilities for the
de�nition of neighbours include two famous conventions, the rook's case and the queen's

case:

� Rook's case: polygons are considered neighbours if they share a common border of
length greater than zero. The name rook's case originates from the adjacent chessboard
squares to which a rook can move, as illustrated in Figure 4.10. The patchwork of cells
does not have to be a rectangular grid for the de�nition to apply.
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Figure 4.10: For a given observation at the location with center ×, rook's case neighbours
are the cells (red circles at the center) with borders of length greater than zero.

� Queen's case: polygons are considered neighbours when they touch each other, even
if only at a single point, that is, when they have non-empty borders. The name
queen's case is again inspired by the possible movements of a queen on a chessboard,
as illustrated in Figure 4.11.

Other de�nitions of neighbours are, of course, possible, and may be justi�ed by the speci�c
nature of a given problem.

An initial de�nition of neighbours may be too restrictive, since spatial autocorrelation may
also be felt beyond these immediate neighbours. The concept of k-th order neighbours

may be useful in assessing this. Once a set of neighbours for each observation has been spec-
i�ed, we may consider neighbours of order k (k ∈N) in the following way. The initially
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Figure 4.11: For a given observation at the location with center ×, the queen's case neigh-
bours are all adjacent cells (red circles at the center), even if only adjacent at a single point

speci�ed neighbours are considered �rst-order neighbours. The second -order neighbours of
any given vertex are the neighbours of its neighbours (who are not �rst-order neighbours).
Third -order neighbours are the neighbours of the neighbours' neighbours (who are not neigh-
bours of order 1 or 2), and so on.

Once again, graph theory (see Subsection 4.4.1) has useful concepts to discuss this notion.
For any given vertex, its second-order neighbours are the vertices that are at a distance 2 (the
shortest path between them is of length two), third-order neighbours are at a distance 3 and,
in general, k-th order neighbours are at a distance k. Thus, by initially specifying �rst-order
neighbours we are introducing a possible concept of distance between observations, which is
not equivalent to Euclidean distances.
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In the example of Figure 4.8, vertices 3, 5 and 7 are the second-order neighbours of vertex
1 (they are at a distance two). Vertex 1 has two third-order neighbours (vertices 6 and 8)
and a single fourth-order neighbour (vertex 9).

4.4.5 De�ning neighbour-based weight matrices

Once the set of neighbours has been de�ned, the speci�c weights wij must be speci�ed
for each pair of neighbours. A few common options in the spatial data literature are the
following:

� The binary weights matrix is the adjacency matrix of the graph of neighbours: wij =

1 if the observation at polygon/point j a�ects the observation at polygon/point i, and
wij = 0 otherwise. If the associated graph is undirected, it will be a symmetric matrix.
For the example in Figure 4.8, the binary weights matrix is the adjacency matrix
4.5, and therefore symmetric. Binary weights are similar to a radial distance weight
function, although neighbours may be de�ned in ways that are not direct functions of
a distance.

� The row-normalized weights matrix, for which all non-zero weights wij in a given

row are equal, and the row sum is 1:
n∑
j=1

wij = 1. In a row-normalized weight matrix,

for a given a pair of neighbours i and j the weight is given by wij = 1
di
, where di is

the in-degree of vertex i in the graph of neighbours (or just degree, in the case of an
undirected graph). A matrix of this kind is in general not symmetric: wij 6= wji for
some i,j, even when the adjacency matrix is symmetric. Its usage is fairly common.
Again, for the rook's case of Figure 4.10, the row-normalized weights matrix would be:

W =



0 1
2

0 1
2

0 0 0 0 0
1
3

0 1
3

0 1
3

0 0 0 0

0 1
2

0 0 0 1
2

0 0 0
1
3

0 0 0 1
3

0 1
3

0 0

0 1
4

0 1
4

0 1
4

0 1
4

0

0 0 1
3

0 1
3

0 0 0 1
3

0 0 0 1
2

0 0 0 1
2

0

0 0 0 0 1
3

0 1
3

0 1
3

0 0 0 0 0 1
2

0 1
2

0


(4.10)

� The globally standardized by the mean number of edges weight matrix, which
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is the binary weights matrix (4.5) divided by |V ||E| , where |V | is the order of the graph
(i.e., the number of vertices in set V ) and |E| is the size of the graph (i.e., the number
of edges in set E). Thus, the non-zero weights (at the same positions as in the binary
weights matrix) have value |E||V | , and they add up to n= |V |, the number of observations.

� The globally standardized by the total number of edges weight matrix, which
is the binary weights matrix divided by |E|, the total number of edges (adjacent pairs
of vertices) that were speci�ed. In this case, all non-zero elements of W are 1

|E| , and
their sum total is 1.

4.4.6 De�ning neighbours with R packages

The R package spdep, by numerous authors, the �rst of which is Roger Bivand, provides a
large number of functions that assist in creating weights matrices. Creating a neighbour-
based weights matrix is, as described above, a two-stage process. In a �rst step it is necessary
to specify which observations are to be considered neighbours of any given observation Zi
(the second step involves deciding what spatial weight should be associated with each pair
(i, j) of neighbours).

Figure 4.12 summarizes the various commands that will now be covered.

Figure 4.12: Summary of R commands to create and work with neighbours lists and weight
matrices/lists. (*) At the moment, the knearneigh function has not yet been adapted to
accept sf inputs.

Package spdep provides a class called nb for neighbour lists. More details about this class
can be found in the nb vignette, which can be invoked (after loading the spdep package)
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with the command:

vignette("nb")

Objects of class nb store information about which pairs of objects are to be considered
neighbours. This information is stored in a compact way, that is, as an adjacency list (see
Subsection 4.4.1) with n vector components indicating the neighbours of each vertex i.

The following spdep commands create nb objects:

spdep::cell2nb assumes that we have a rectangular grid with nrow rows and ncol columns.
These two values must be speci�ed as arguments to the command. By default the command
uses the rook's case to create neighbours, but the argument type="queen" will use the
queen's case instead. The appropriate commands for the rook's case 3 × 3 example given
above is:

cell2nb(3,3)

Neighbour list object:

Number of regions: 9

Number of nonzero links: 24

Percentage nonzero weights: 29.62963

Average number of links: 2.666667

The displayed information states that there are 9 polygons, or cells (represented by graph
vertices), in the 3×3 grid, which in theory could provide 92 = 81 links (edges) between pairs
of neighbours, counting edges between each cell and itself (also called loops in graph theory),
and also counting directed edges uniting a same pair of vertices, such as edges e12 and e21,
as di�erent edges. In other words, there are a maximum of n2 graph edges in a directed

graph of neighbours, and allowing for edges from a vertex to itself. Of these, only 24 are,
in fact, existing pairs of neighbours (according to the default rook's case criterion), which
gives a percentage of 24

81
× 100% = 29.62963%. The average number of links (edges) per cell

(vertex), that is, the mean degree, is 24
9

= 2.666667. The way in which the information on
neighbours is stored can be seen by inspecting the output with R's str command, as shown
below. Each object in the adjacency list (the 'List of 9' component below) is the vector of
neighbours of each cell (graph vertex). The output below can be compared with Figure 4.8.
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# the structure of a 3x3 (rook's case) grid, as created by the cell2nb command.

str(cell2nb(3,3))

List of 9

$ : int [1:2] 2 4

$ : int [1:3] 1 3 5

$ : int [1:2] 2 6

$ : int [1:3] 1 5 7

$ : int [1:4] 2 4 6 8

$ : int [1:3] 3 5 9

$ : int [1:2] 4 8

$ : int [1:3] 5 7 9

$ : int [1:2] 6 8

- attr(*, "class")= chr "nb"

- attr(*, "call")= language cell2nb(nrow = 3, ncol = 3)

- attr(*, "region.id")= chr [1:9] "1:1" "2:1" "3:1" "1:2" ...

- attr(*, "cell")= logi TRUE

- attr(*, "rook")= logi TRUE

- attr(*, "sym")= logi TRUE

Although the Aragonez dataset is essentially associated with a rectangular grid, there are a
few missing values. It is therefore not possible to merely use the command cell2nb(nrow=26,
ncol=40) to de�ne the neighbours for this example.

spdep::dnearneigh creates a list of neighbours based on the scalar Euclidean distances
between the speci�ed point coordinates, and so may be appropriate for geostatistical data.
The function accepts as input a SpatialPoints object with a coordinates argument, or a
two-column matrix of coordinates from which standard Euclidean distances can be computed.
The command creates a list of neighbours, according to the criterion that the distance
between the speci�ed coordinates lies between a lower bound d1 (usually zero, although no
default value is supplied) and an upper bound d2.

We illustrate the use of this function with the Aragonez data set. Argument d1 is set to 0.
Given that the columns in the Aragonez data are separated by 2.25m, whereas the center
points for adjacent row cells are separated by 3.75m, setting the argument d2 = 3 will only
consider as neighbours points that are adjacent on the same row of the trial �eld. This can
be checked using the plot method for objects of class nb, which produces Figure 4.13.
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dnearneigh(AragonezPoints, d1=0, d2=3)

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 1958

Percentage nonzero weights: 0.1885664

Average number of links: 1.921492

The number of non-zero links (1958) is almost twice the number of points (1019) since, in
general each point has two row-wise adjacent neighbours. The di�erence results from the
fact that there are border points with only one neighbour, but also missing values, which
are clearly visible in Figure 4.13. The graph in Figure 4.13 is not connected. In general,
each row in the trial �eld is a separate component of the graph, but some rows have more
than one separate component. Note that the rows do not correspond to the physical wires in
the vineyard trellis, which are associated with each column. This is an inadequate choice of
neighbours for the Aragonez data set, both due to conceptual reasons (there is no plausible
reason why observation in adjacent rows should not be spatially autocorrelated) and (more
importantly) because it de�es the visual patterns provided by the plots in, for example,
Figure 4.7.

Figure 4.9 above was also created with spdep::dnearneigh command, but choosing an
alternative maximum distance: d2 = 4 meters, which connects adjacent points in a way
similar to the rook's case: for most points, the neighbours are the four cells immediately
above, to the right, below, and to the left. The resulting graph is connected: there is a path
between any two vertices (observations).

Choosing d2 = 5 gives the plot in Figure 4.14, which connects adjacent grid points in a
way similar to the queen's case of Figure 4.11, but with an extra-long horizontal connec-
tion. Points that are diagonally adjacent are neighbours, since they are at a distance of√

2.252 + 3.752 = 4.373214 meters. Points on the same row, but two columns apart, are
also neighbours since they are separated by a distance of 4.5m. The latter feature allows for
spatial dependence over gaps in the data, as can be seen in Figure 4.14. Thus, most grid
points will have 10 neighbours: one above; two to the right; one below; two to the left; and
four more in the diagonal directions. The actual number of non-zero links is slightly less,
due to border points and missing values, as can be seen in the following text output.
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par(cex=0.5, pch=16)

plot(dnearneigh(AragonezPoints, d1=0, d2=3),

coord=coordinates(AragonezPoints), col="red")
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Figure 4.13: Aragonez dataset neighbours, as given by the spdep::dnearneigh command,
with upper distance bound of 3 meters. Only corresponding points in adjacent columns
(which are separated by 2.25m) are paired up as neighbours.

dnearneigh(AragonezPoints, d1=0, d2=5)

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 9550

Percentage nonzero weights: 0.9197187
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Average number of links: 9.371933

par(cex=0.5, pch=16)

plot(dnearneigh(AragonezPoints, d1=0, d2=5),

coord=coordinates(AragonezPoints), col="red")
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Figure 4.14: Aragonez dataset dnearneigh neighbours, with upper distance bound of 5
meters.

The choice of distance bounds implicitly de�nes at what distance spatial autocorrelation
ceases to be important.

The adjacency matrices of graphs associated with the dnearneigh command are necessarily
symmetric, since dij = dji, so that aij = aji. But a subsequent weights matrix may not be
symmetric, depending on the way that weights are speci�ed.
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spdep::knearneigh whose name originates from the k-nearest neighbour classi�cation
methods. The knearneigh command accepts as input a set of point coordinates and a value
for k, the number of neighbours that is to be associated with each point (by default, k=1).
The knearneigh command does not directly produce nb objects, but rather objects of class
knn, originally de�ned in the class package by B. Ripley and W. Venables and previously
discussed in Chapter 3. However, the spdep package also provides a knn2nb function which
converts knn objects to nb objects.

We illustrate the use of these functions on the Aragonez dataset, with argument k=4. Notice
how the average number of links is exactly 4 (by design). For most points these will mean the
adjacent cells, in the rook's case sense, but for borderline points the four nearest neighbours
form a more complex pattern, as shown in Figure 4.15.

The adjacency matrices associated with graphs resulting from the k nearest neighbour rule
are not, in general symmetric. Asymmetry will be particularly felt for observation points
near the borders, or near missing values, in the dataset. It may also be the case that the sets
of k neighbours are de�ned with subjective software-dependent rules. Consider, for example,
the case of the Aragonez dataset, if k=3 is chosen: for most observations points, there will be
two vertices (immediately above, and below, the vertex in question) which share a common
third largest distance and are therefore tied for the de�nition of third nearest neighbour.

knn2nb(knearneigh(AragonezPoints, k=4))

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 4076

Percentage nonzero weights: 0.3925417

Average number of links: 4

Non-symmetric neighbours list

Since the k nearest neighbour adjacency matrices are, in general, non-symmetric, the corre-
sponding graphs are directed graphs (digraphs). The plot method for objects of class nb,
which is provided by the spdep package (see help(plot.nb) for details) provides a logical
argument called arrows which, when set to the logical value TRUE, creates a directed graph.
However, even for fairly small graphs, such as the one in Figure 4.15, it is hard to read the
plot produced by this option.
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par(cex=0.5, pch=16)

plot(knn2nb(knearneigh(AragonezPoints, k=4)),

coordinates(AragonezPoints), col="red")
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Figure 4.15: Neighbours in the Aragonez dataset, obtained with the spdep::knearneigh

function, with k = 4 neighbours for each point.

spdep::poly2nb is a function that accepts an object of class SpatialPolygonsDataFrame
as an input argument, and creates a neighbour list (of class nb) by pairing up regions with
(by default) a queen's case rule for neighbours. In the Aragonez data set, on average, each
grid point has almost 8 neighbours (7.503435), as would be expected in a full rectangular
grid with the queen's case. The corresponding plot is given in Figure 4.16.

OpenSpat 2018 93



Chapter 4

poly2nb(AragonezPolygons)

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 7646

Percentage nonzero weights: 0.7363528

Average number of links: 7.503435

4.4.7 Weights matrices in R

The spdep R package also provides two crucial functions to convert objects of class nb to
spatial weights matrices or objects that behave like them.

spdep::nb2mat accepts as input an object of class nb (produced by the commands in
the previous Subsection), and creates a spatial weights matrix. The use of this function is
illustrated below, with the 3× 3 rectangular grid, and using a rook's case neighbour pattern
(the default in the spdep::cell2nb function) and a normalized to row-sum weights criterion
(the default in the spdep::nb2mat function):

nb2mat(cell2nb(3,3))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

1:1 0.0000000 0.50 0.0000000 0.50 0.0000000 0.00 0.0000000 0.00 0.0000000

2:1 0.3333333 0.00 0.3333333 0.00 0.3333333 0.00 0.0000000 0.00 0.0000000

3:1 0.0000000 0.50 0.0000000 0.00 0.0000000 0.50 0.0000000 0.00 0.0000000

1:2 0.3333333 0.00 0.0000000 0.00 0.3333333 0.00 0.3333333 0.00 0.0000000

2:2 0.0000000 0.25 0.0000000 0.25 0.0000000 0.25 0.0000000 0.25 0.0000000

3:2 0.0000000 0.00 0.3333333 0.00 0.3333333 0.00 0.0000000 0.00 0.3333333

1:3 0.0000000 0.00 0.0000000 0.50 0.0000000 0.00 0.0000000 0.50 0.0000000

2:3 0.0000000 0.00 0.0000000 0.00 0.3333333 0.00 0.3333333 0.00 0.3333333

3:3 0.0000000 0.00 0.0000000 0.00 0.0000000 0.50 0.0000000 0.50 0.0000000

attr(,"call")

nb2mat(neighbours = cell2nb(3, 3))

The nb2mat function has an argument style, which controls the type of weights that are
assigned to the neighbour pairs (as discussed above), with the following conventions:
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par(cex=0.5, pch=16)

plot(poly2nb(AragonezPolygons), coords=coordinates(AragonezPolygons), col="red")
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Figure 4.16: Neighbours in the Aragonez dataset, obtained from a
SpatialPolygonsDataFrame object, using the spdep::poly2nb command. The
SpatialPolygonsDataFrame AragonezPolygons object was previously created from
the sf object AragonezGrid.

W (the default) gives a row-normalized weights matrix : the weights of each row add to 1.

B denotes a binary weights matrix, where all links have weight 1.

C is the globally standardized by the mean number of links (edges) weight matrix (the sum
of all weights is n, the number of observations).

U is the globally standardized by the total number of links (edges) weight matrix (its elements
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add to 1).

The globally standardized by the mean number of edges weight matrix for the 3 × 3 grid
of Figure 4.8 is given below. The mean number of edges is 2×12

9
= 2.6666667 (recall that

undirected edges are counted twice), the reciprocal of which is the value of all non-zero
matrix entries: 0.375.

nb2mat(cell2nb(3,3), style="C")

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

1:1 0.000 0.375 0.000 0.375 0.000 0.000 0.000 0.000 0.000

2:1 0.375 0.000 0.375 0.000 0.375 0.000 0.000 0.000 0.000

3:1 0.000 0.375 0.000 0.000 0.000 0.375 0.000 0.000 0.000

1:2 0.375 0.000 0.000 0.000 0.375 0.000 0.375 0.000 0.000

2:2 0.000 0.375 0.000 0.375 0.000 0.375 0.000 0.375 0.000

3:2 0.000 0.000 0.375 0.000 0.375 0.000 0.000 0.000 0.375

1:3 0.000 0.000 0.000 0.375 0.000 0.000 0.000 0.375 0.000

2:3 0.000 0.000 0.000 0.000 0.375 0.000 0.375 0.000 0.375

3:3 0.000 0.000 0.000 0.000 0.000 0.375 0.000 0.375 0.000

attr(,"call")

nb2mat(neighbours = cell2nb(3, 3), style = "C")

Spatial weights matrices are usually very large, and tend to be sparse (most points/cells are
not assumed to be spatially connected). Thus, it is advisable to avoid creating the (often

extremely large) n× n weights matrices for n observations of each variable.

spdep::nb2listw The authors of the spdep package have incorporated the functionality for
sparse matrices from R's Matrix package, to create a class listw of objects, which e�ciently
store the necessary information for (sparse) spatial weights matrices. In this class of objects,
the �rst component is an nb object specifying the neighbours, a second component is a list of
numeric vectors giving the non-zero spatial weights and a third component records the style
of weights used. The nb2listw command provides the same style argument as nb2mat,
and the default weighting method is again the normalized by row sum (W) method, as can
be seen by applying the nb2listw command to the 3× 3 cell grid:

nb2listw(cell2nb(3,3))

Characteristics of weights list object:
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Neighbour list object:

Number of regions: 9

Number of nonzero links: 24

Percentage nonzero weights: 29.62963

Average number of links: 2.666667

Weights style: W

Weights constants summary:

n nn S0 S1 S2

W 9 81 9 6.916667 36.80556

The �ve weights constants summary values that appear at the end of the output are,
respectively:

n - the number n of observations (sample size);

nn - the number n2 of elements in the n× n weight matrix;

S0 - the sum of all the weights in the weights matrix:

S0 =
n∑
i=1

n∑
j=1

wij . (4.11)

S1 - twice the sum of squares of all elements in the symmetric part of the weights matrix
W, which is de�ned as W+Wt

2
. A symmetric matrix is equal to its symmetric part, so

if W is symmetric, W+Wt

2
= W. In general, we have:

S1 = 2
n∑
i=1

n∑
j=1

(
wij + wji

2

)2

=
1

2

n∑
i=1

n∑
j=1

(wij + wji)
2 . (4.12)

S2 - If wi.=
n∑
j=1

wij is the row sum of W's i -th row, and w.i=
n∑
j=1

wji is the column sum of

W's i -th column, we have:

S2 =
n∑
i=1

(wi. + w.i)
2 . (4.13)

Below is a listw object for the nb neighbour list obtained from the AragonezPolygons

object, using the globally standardized by the total number of edges style:
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nb2listw(poly2nb(AragonezPolygons), style="U")

Characteristics of weights list object:

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 7646

Percentage nonzero weights: 0.7363528

Average number of links: 7.503435

Weights style: U

Weights constants summary:

n nn S0 S1 S2

U 1019 1038361 1 0.0002615747 0.004005657

We now store some of the spatial weights matrices created above, for future reference.

Wd3 <- nb2listw(dnearneigh(AragonezPoints, d1=0, d2=3))

Wd5 <- nb2listw(dnearneigh(AragonezPoints, d1=0, d2=5))

print(Wd5)

Characteristics of weights list object:

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 9550

Percentage nonzero weights: 0.9197187

Average number of links: 9.371933

Weights style: W

Weights constants summary:

n nn S0 S1 S2

W 1019 1038361 1019 221.4423 4083.586

WBd5 <- nb2listw(dnearneigh(AragonezPoints, d1=0, d2=5), style="B")

WBk4 <- nb2listw(knn2nb(knearneigh(AragonezPoints, k=4)), style="B")

WCp <- nb2listw(poly2nb(AragonezPolygons), style="C")

We focus next on numerical indicators that measure the degree of spatial autocorrelation.
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4.5 Moran's I and Geary's c

In this Section we assume that there is a random sample (Z1, Z2, ..., Zn) of a fully numerical
spatial process Z, as is the case with the Aragonez dataset yields. We also assume that
a spatial weights matrix W has been de�ned (as discussed in Section 4.4). Each matrix
element wij measures the intensity of the e�ect of observation Zj on observation Zi.

Probably the most frequent measure of spatial autocorrelation is Moran's I indicator, which
was originally developed in the 1950's to test the null hypothesis of zero autocorrelation for
the (fully numerical) random process Z. As a starting point for this indicator, we consider
the following expression:

n∑
i=1

n∑
j=1

wij(Zi − Z)(Zj − Z)

n∑
i=1

n∑
j=1

wij

(4.14)

Expression (4.14) resembles a weighted covariance, not between di�erent variables measured
at corresponding points, but between the values of the same variable (the sample values
Zi), measured at all possible pairs of points. The sum of the weights in the denominator is

S0 =
n∑
i=1

n∑
j=1

wij (eq. 4.11).

Moran's I indicator compares this `Moran covariance' with the value that would result if
the spatial weights matrix were an identity matrix (W = I), so that wij = 1 for i = j and
wij = 0 if i 6= j. This pseudo-`weight matrix' I assumes that value Zi is determined only by
itself, and by no other value, which is what we would expect with independent observations.
In a sense, Moran's I is measuring how well the spatial weights wij applied to neighbouring
values Zj are capable of reconstituting the observed values Zi.

Moran's I is therefore de�ned as the ratio:

I =

n∑
i=1

n∑
j=1

wij(Zi−Z)(Zj−Z)

n∑
i=1

n∑
j=1

wij

n∑
i=1

(Zi−Z)2

n

=
n

S0

·

n∑
i=1

n∑
j=1

wij(Zi − Z)(Zj − Z)

n∑
i=1

(Zi − Z)2
. (4.15)

The contribution of the i-th observation to the value of Moran's I is sometimes used as a
measure of local spatial autocorrelation. More speci�cally, a local Moran's Ii is de�ned so

that I=

n∑
i=1

Ii

S0
, with Ii given by:
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Ii = n ·
(Zi − Z)

n∑
j=1

wij(Zj − Z)

n∑
i=1

(Zi − Z)2
. (4.16)

The behaviour of Moran's I indicator is not entirely trivial. The expected value of I in the
absence of spatial autocorrelation is not zero, but −1

n−1 (see Plant [2], 2012, for the Cli� and
Ord, 1981, reference). Larger values of I are associated with positive autocorrelation, and
smaller values of I suggest negative autocorrelation.

Geary's c is a somewhat related indicator, which instead of using `Moran's covariance', uses
a weighted sum of the squared distances between the observed variable values at all possible
pairs of observed points:

c =
n− 1

2S0

·

n∑
i=1

n∑
j=1

wij(Zi − Zj)2

n∑
i=1

(Zi − Z)2
. (4.17)

The expected value of Geary's c in the absence of spatial autocorrelation is 1. Smaller
values (necessarily non-negative) indicate positive autocorrelation, and values c > 1 indicate
negative autocorrelation.

It must be stressed that both indicators depend on a given spatial weights matrix, and so on
a given assumption about the relevant spatial e�ects. A noteworthy fact is that, given the
de�nition of both I and c, the value of each indicator remains the same if a non-symmetric
weight matrix W is replaced by its symmetric part, that is, by the symmetric matrix W+Wt

2

(which replaces both wij and wji with their mean value).

Both Moran's I and Geary's c have been used to test the null hypothesis of no spatial

autocorrelation. It has been proven that, for Normally distributed variables, both indicators
have asymptotic Normal distribution, given the null hypothesis of no spatial autocorrelation.
But the variance of I (or c) in this asymptotically Normal distribution can be computed in
two di�erent ways, depending on the additional assumptions that are made:

� The resampling option: we make the standard assumption that the sample was chosen
at random, and a new sample would give di�erent values.

� Alternatively, the randomisation option: we can work conditionally on the observed
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values of the variables and merely assume that those values could be reassigned at
random to di�erent spatial locations.

In both cases, the test statistics are the normalized indicator, that is, in the case of Moran's
I, I−E[I]√

V [I]
. For moderate or large samples, it can be safely assumed that this statistic has

a Normal distribution. The derivation of the test assumes that the weights matrix is sym-
metric, but replacing a non-symmetric weights matrix W with its symmetric part leaves the
value of I intact (as was seen above) and so this is not a restrictive option.

The R package spdep provides a useful suite of functions written by Roger Bivand. The func-
tions spdep::moran and spdep::geary compute the value of each indicator. The functions
spdep::moran.test and spdep::geary.test perform tests for the absence of spatial auto-
correlation (the null hypothesis). Both the moran.test and the geary.test functions will,
by default, carry out the test with the randomisation-based variance. If the randomisation
argument is set to the logical value FALSE, the resampling-based variance is used.

An alternative function, called spdep::lm.morantest, caters for Moran's I in the case of
residuals from a linear regression which are not, by construction, independent. This will
the case whenever detrending has been done via a regression. Asymptotic normality and
resampling are assumed.

Alternatively (and in particular for smaller samples where asymptotic Normality is question-
able), the function spdep::moran.mc performs a permutations-based test that does not as-
sume asymptotic Normality. In these permutation tests, the variable values are re-assigned at
random to the di�erent spatial locations, a large number of times. For each re-assignmment,
the value of the Moran indicator is computed and empirical quantiles are calculated for this
large set of reassignment-based values of I or c. The empirical quantile of our true indicator
value is registered. In the absence of spatial autocorrelation, these true empirical quantiles
of I or c would not be expected to be extreme. If they are, this suggests the existence of
spatial autocorrelation. The number of permutations must be speci�ed when invoking the
moran.mc command, through the nsim argument.

Since the values of Moran's I and of Geary's c are also displayed when using the test func-
tions, we illustrate the use of these functions, with the Aragonez dataset, for the weights
matrices computed in Subsection 4.4.7, and the two variants of detrended yields discussed
in Subsection 5.5.

First, we consider the value of Moran's I, for yieldct, that is the yields detrended by simply
subtracting the mean value. We begin with the Wd5 spatial weights matrix, which gives the
row-normalized weights for neighbours de�ned as points at a distance of up to 5m. By
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default, the test carried out by the function is a one-sided hypothesis test, testing the null
hypothesis of no autocorrelation against the alternative that there is positive autocorrelation.
This option can be changed through the argument alternative.

moran.test(AragonezPoints$yieldct, listw=Wd5)

Moran I test under randomisation

data: AragonezPoints$yieldct

weights: Wd5

Moran I statistic standard deviate = 22.221, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.3218883674 -0.0009823183 0.0002111239

The positive, somewhat large, value of I = 0.3218884 is considered highly signi�cant assum-
ing asymptotic Normality with the randomisation option for the variance (p < 2.2× 10−16,
that is, less than machine precision and so indistinguishable from zero). This means a very
clear rejection of the independence null hypothesis, in favour of the alternative hypothesis
that positive spatial autocorrelation exists. This is entirely coherent with what was observed
in the plots.

The expected value of I under independence, which is also show in the output (E[I]= −1
n−1 =

−9.8231827 × 10−4), is therefore considered signi�cantly smaller than the calculated value,
0.3218884. It should be noted that this is the same value of I that would be obtained if the
original variable yield were invoked, since the nature of Moran's I involves a subtraction of
the mean. Thus, for a constant mean trend, there is considerable evidence of positive spatial
autocorrelation. But, as noted previously, an undetected underlying deterministic spatial
trend may be confused with spatial autocorrelation. It may be the case that a di�erent
deterministic trend (with di�erent detrended variable values) is compatible with the absence
of spatial autocorrelation. We now check the performance of the linearly detrended variable
yieldldt.

moran.test(AragonezPoints$yieldldt, listw=Wd5)
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Moran I test under randomisation

data: AragonezPoints$yieldldt

weights: Wd5

Moran I statistic standard deviate = 11.375, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.1643071995 -0.0009823183 0.0002111388

The value of Moran's I is now noticeably smaller than before (I = 0.1643072), but the corre-
sponding p-value for the null hypothesis of no spatial autocorrelation is still indistinguishable
from zero, so there is still strong indication of spatial autocorrelation.

The spdep::lm.morantest function is better suited in this case, since the yieldldt values
are residuals from a linear regression of the variable yield on the linear predictors of row
and column positions. The �rst argument to the lm.morantest function is the original linear
regression whose residuals are to be tested for spatial autocorrelation. In our example, the
signi�cance of the test result is practically indistinguishable from that obtained with the
moran.test function, although it can be observed that the expected value and variance of
I are now di�erent.

lm.morantest(lm(yield ~ rowm + colm, data=AragonezPoints), listw=Wd5)

Global Moran I for regression residuals

data:

model: lm(formula = yield ~ rowm + colm, data = AragonezPoints)

weights: Wd5

Moran I statistic standard deviate = 11.588, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Observed Moran I Expectation Variance

0.1643071995 -0.0029377790 0.0002082996
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Finally, we illustrate the results of the permutations-based test (which does not assume
asymptotic Normality of the test statistic), again for the linearly detrended yields. The
value of Moran's I produced by the function sp::moran.mc is the same, but its associated
p-value is computed through the empirical quantiles associated with the permutations.

moran.mc(AragonezPoints$yieldldt, listw=Wd5, nsim=10000)

Monte-Carlo simulation of Moran I

data: AragonezPoints$yieldldt

weights: Wd5

number of simulations + 1: 10001

statistic = 0.16431, observed rank = 10001, p-value = 9.999e-05

alternative hypothesis: greater

The use of Geary's c gives similar results, keeping in mind that the absence of spatial
autocorrelation is indicated by the value c = 1 and that positive autocorrelation corresponds
to values 0 < c < 1. Note, however, that the author of the geary.test function code
has multiplied the test statistic by minus 1, in other words, the test statistic is E[c]−c√

V [c]
.

Therefore, the default value of the alternative argument ("greater") also means positive
autocorrelation.

geary.test(AragonezPoints$yieldct, listw=Wd5)

Geary C test under randomisation

data: AragonezPoints$yieldct

weights: Wd5

Geary C statistic standard deviate = 21.853, p-value < 2.2e-16

alternative hypothesis: Expectation greater than statistic

sample estimates:

Geary C statistic Expectation Variance

0.6787219164 1.0000000000 0.0002161427
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geary.test(AragonezPoints$yieldldt, listw=Wd5)

Geary C test under randomisation

data: AragonezPoints$yieldldt

weights: Wd5

Geary C statistic standard deviate = 11.208, p-value < 2.2e-16

alternative hypothesis: Expectation greater than statistic

sample estimates:

Geary C statistic Expectation Variance

0.8352664464 1.0000000000 0.0002160266

The use of Normality-based tests does not produce major di�erences. This is illustrated
below for the case of Moran's I. Note that the value of I does not change with the type of
test used to judge its signi�cance.

moran.test(AragonezPoints$yieldct, listw=Wd5, randomisation=F)

Moran I test under normality

data: AragonezPoints$yieldct

weights: Wd5

Moran I statistic standard deviate = 22.21, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.3218883674 -0.0009823183 0.0002113264

moran.test(AragonezPoints$yieldldt, listw=Wd5, randomisation=F)

Moran I test under normality
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data: AragonezPoints$yieldldt

weights: Wd5

Moran I statistic standard deviate = 11.37, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.1643071995 -0.0009823183 0.0002113264

These tests are naturally a�ected by the speci�c spatial weights matrix that is used. For
the Aragonez data set, the overall conclusion that spatial autocorrelation exists seems fairly
robust, even for the yieldldt linearly detrended yields. This is illustrated below, for Moran's
I and using permutation tests, with (i) the binary weights matrix using the maximum
distance of 5m to de�ne pairs of neighbours (WBd5); and (ii) the globally standardized by the
mean number of edges (links) weight matrix, based on the poly2nb de�nition of neighbours
(WCp).

moran.test(AragonezPoints$yieldldt, listw=WBd5)

Moran I test under randomisation

data: AragonezPoints$yieldldt

weights: WBd5

Moran I statistic standard deviate = 11.351, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.1624319200 -0.0009823183 0.0002072468

moran.test(AragonezPolygons$yieldldt, listw=WCp)

Moran I test under randomisation

data: AragonezPolygons$yieldldt
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weights: WCp

Moran I statistic standard deviate = 9.8516, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.1576682256 -0.0009823183 0.0002593378

4.6 K-th order neighbours and Moran's correlogram

If a list of (�rst-order) neighbours for each observation has been established, the concept
of kth-order neighbours can be de�ned, as was discussed in Subsection 4.4.4. This concept
proves useful in determining how indicators such as Moran's I vary as successive orders of
neighbours are used to compute I, thereby providing information about the way in which
autocorrelation e�ects evolve over increasingly distant sets of observations.

Given a neighbour's list, the function spdep::nblag computes the neighbours of successive
order, up to a value k provided by the maxlag argument. The use of this function is illustrated
below, for the yieldldt variable in the Aragonez dataset, using the 4 nearest neighbours list
computed with the knearneigh function (do not confuse the k=4 argument in this function
with the concept of k-th order neighbour, which is speci�ed by the maxlag argument).

nb.k4 <- knn2nb(knearneigh(AragonezPoints, k=4))

nblag(nb.k4, maxlag=3)

[[1]]

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 4076

Percentage nonzero weights: 0.3925417

Average number of links: 4

Non-symmetric neighbours list

[[2]]

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 7742
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Percentage nonzero weights: 0.7455981

Average number of links: 7.597645

Non-symmetric neighbours list

[[3]]

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 11217

Percentage nonzero weights: 1.08026

Average number of links: 11.00785

Non-symmetric neighbours list

attr(,"call")

nblag(neighbours = nb.k4, maxlag = 3)

The output of the nblag function is a list of length maxlag, which indicates the summary
characteristics of the neighbour's list for each order (lag). Thus, the �rst object in the output
list summarizes the �rst-order neighbours list (the output is identical to that of nb.k4). The
second list object summarizes the neighbours of order 2: there are in all 7728 second-order
neighbours (at a distance 2 in the neighbours' graph), of the n = 1019 cells/points in our
rectangular grid, for an average of 7728

1019
= 7.5839058 edges per vertex (links per cell), which

means that 0.0074425 × 100% of the 10192 possible links are actually established in this
second-order neighbour relation. Likewise, the third-order neighbours connect slightly over
1% of all possible pairs of cells/points.

The function spdep::sp.correlogram computes Moran's I for the neighbours of each suc-
cessive order, when the method="I" argument value is used. Other arguments which must
be speci�ed are the original neighbours list (an object of class nb), the variable for which
the I indicator is to be calculated (argument var) and the order up to which neighbours are
to be computed (argument order). The style of the weight matrix may be speci�ed. By
default it is style="W", that is, a row-normalized weights matrix. Here are the results for
the yieldldt linearly detrended yields, with the nb.k4 neighbours speci�ed above (k = 4
nearest neighbours for each point), with the default weights matrix of style W:

sp.correlogram(nb.k4, var=AragonezPoints$yieldldt, method="I", order=3)

Spatial correlogram for AragonezPoints$yieldldt

method: Moran's I
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estimate expectation variance standard deviate

1 (1019) 0.19952493 -0.00098232 0.00047807 9.1703

2 (1019) 0.12454917 -0.00098232 0.00024658 7.9942

3 (1019) 0.10268912 -0.00098232 0.00016876 7.9803

Pr(I) two sided

1 (1019) < 2.2e-16 ***

2 (1019) 1.305e-15 ***

3 (1019) 1.460e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Each row in the output corresponds to the output of a moran.test function with the same
arguments, but with neighbours of order k in the k-th row. As would be expected, the value
of Moran's I decreases as the order k of neighbours grows, in other words, spatial correlation
tends to be stronger for smaller spatial lags.

Plotting the values of Moran's I against the order k of the neighbours produces a Moran's

correlogram. It is easy to request a plot of Moran's correlogram, since there is a plot method

for the output of the function sp.correlogram (which is of class spcor). Figure 4.17 shows
a Moran's correlogram of order up to 10.

Although Moran's I falls sharply after lag 1, there is evidence of spatial autocorrelation for
neighbours of up to about lag k= 6. The largest lag for which the Moran's randomisation
test (the default test for the sp.correlogram function) would reject the null hypothesis of
no spatial autocorrelation (for a signi�cance level α=0.05) is k=7.

If signi�cant spatial autocorrelation exists for lags larger than 1, it may be advisable to
rede�ne the �rst-order neighbours, so as to include the relevant neighbours of higher order.
This can be done using the spdep::nblag_cumul function. The nblag_cumul command
accepts the output from an nblag command, as illustrated below.

nb.k4lg6 <- nblag_cumul(nblag(nb.k4, maxlag=6))

nb.k4lg6

Neighbour list object:

Number of regions: 1019

Number of nonzero links: 75326

Percentage nonzero weights: 7.254317
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plot(sp.correlogram(nb.k4, var=AragonezPoints$yieldldt, method="I", order=10))
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Figure 4.17: Moran's correlogram for the linearly detrended Aragonez yields, based on a
k = 4 nearest neighbours list and a row-normalized weight matrix, with lags of up to 10.
This Moran's correlogram was produced by the function sp.correlogram. Vertical bars
indicate intervals that extend to two standard deviations from the mean, in each direction.

Average number of links: 73.92149

Non-symmetric neighbours list

The argument value method="C" gives similar results, using Geary's "c" indicator.
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4.7 Variograms and related tools

For geostatistical data, that is, variables Z(s) varying continuously over some space S, the
(semi-)variogram is an important tool in assessing spatial patterns.

4.7.1 Covariograms, variograms and semi-variograms

We begin by introducing some concepts. We assume that Z(s) is a fully numerical random
spatial process where s ∈ S. Note that s is a vector. We de�ne:

the mean function µsµsµs as the function that, for each location s ∈ S gives the expected
value µs = E[Z(s)].

the covariogram C(s1, s2)C(s1, s2)C(s1, s2) , or auto-covariance function, is the function that, for any
pair of locations s1, s2 ∈ S, gives the covariance between Z(s1) and Z(s2):

C(s1, s2) = Cov[Z(s1), Z(s2)] = E[(Z(s1)− µs1)(Z(s2)− µs2)] . (4.18)

We de�ne the following terms, associated with a random spatial process Z(s):

spatial lag s1 − s2s1 − s2s1 − s2 is the di�erence between two locations s1 and s2 where Z(s) is observed.
It should be noted that the spatial lag is usually a 2-dimensional (or 3-dimensional,
depending on the nature of the space S) vector.

second-order (or weakly) stationary if µs does not depend on the location s (is constant
over S) and C(s1, s2) depends only on the spatial lag, that is (and simplifying notation):

µs = µ , ∀ s ∈ S ; and (4.19)

C(s1, s2) = C`(s1 − s2) , ∀ s1, s2 ∈ S. (4.20)

isotropic when the covariogram C(s1, s2) depends only on the scalar distance between
the points s1 and s2, and not on the precise direction in which that distance oc-
curs: C(s1, s2) = Cs(d(s1, s2)). Thus, an isotropic process necessarily satis�es the
covariogram condition for second-order stationarity, although the converse is not true.
Anisotropic usually denotes a second-order stationary process which does not have
isotropy, that is, for which the covariogram C(s1, s2) only depends on the spatial lag,
but in ways that vary according to the direction of the spatial lag vector s1 − s2.

An extremely useful concept is the variogram, 2γ(s1, s2)γ(s1, s2)γ(s1, s2). It is de�ned as follows.
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variogram is the function
2γ(s1, s2) = V [Z(s1)− Z(s2)] . (4.21)

semi-variogram is the function

γ(s1, s2) =
1

2
V [Z(s1)− Z(s2)] . (4.22)

The semi-variogram is often (as in some R packages) just called a variogram, which may be
confusing. The reason for the constant 2 has to do with the relation between the variogram
and the previously de�ned covariogram, in particular for second-order stationary processes
Z(s), for which:

2γ(s1, s2) = V [Z(s1)− Z(s2)] = V [Z(s1)] + V [Z(s2)]− 2Cov[Z(s1), Z(s2)]

= C(s1, s1) + C(s2, s2)− 2C(s1, s2) .

In the case of a second-order stationary process, C(s1, s1) = C(s2, s2) = C`(0), and C(s1, s2) =

C`(d), where d = s1−s2 denotes the spatial lag vector. Thus, for second-order stationary

processes Z(s), the semi-variogram is simply:

γ(d) = C`(0)− C`(d) . (4.23)

With the further assumption of isotropy, the semi-variogram becomes a function of a single

real variable, the scalar distance d = d(s1−s2) associated with the spatial lag:

γs(d) = Cs(0)− Cs(d) . (4.24)

4.7.2 Properties of the semi-variogram

Here are some of the properties of the semi-variogram function, with special emphasis on
the case of isotropy.

� By de�nition, the semi-variogram is nonnegative: γ(s1, s2) ≥ 0, for any pair of
locations s1, s2. This property carries over to the isotropic version: γs(d) ≥ 0, ∀ d.

� By de�nition, for any process Z(s) the semi-variogram is a symmetric function:
γ(s1, s2) = γ(s2, s1), ∀ s1, s2. In the case of an isotropic process, the semi-variogram is
an even function: γs(d) = γs(−d), which implies that only positive spatial lags, d > 0,
need to be considered.
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� γ(s, s) = 0γ(s, s) = 0γ(s, s) = 0 necessarily �ows from the de�nition of a semi-variogram. For isotropic

processes, this implies that γs(0) = 0γs(0) = 0γs(0) = 0.

� In the absence of spatial autocorrelation, C(s1, s2) = 0, whenever s1 6= s2. Hence,
the semi-variogram becomes γ(s1, s2) = 1

2
[C(s1, s1) + C(s2, s2)]. With second order

stationarity, this is just the constant variance V [Z(s)]. In the case of isotropy, we have
γs(d) = Cs(0) = V [Z(s)], ∀ d 6= 0. Note that, in the absence of spatial autocorrela-

tion, the graph of the semi-variogram γs is a horizontal line at height Cs(0), with a

discontinuity at the origin, as can be seen in the left plot of Figure 4.19.

� The variogram is not, in general, continuous at the origin. This may be thought of as a
feature of the semi-variogram itself, or as a consequence of the necessary discretization
that any measurement of the covariances underlying the semi-variogram necessarily
imply, in practical terms. In the case of isotropic processes, lim

d→0
γs(d) = c0lim

d→0
γs(d) = c0lim

d→0
γs(d) = c0 is called

the nugget e�ect. The nugget e�ect can be viewed as the part of the variance of
the random process Z(s) that has not been explained by the spatial autocorrelation
process.

� Since the e�ect of spatial autocorrelation drops o� as observation points are fur-
ther apart, it is reasonable to assume that the covariance C(s1, s2) tends to zero,
as the distance between observations tends to in�nity. Thus, in an isotropic process,
lim

d→+∞
γs(d) = Cs(0) = V [Z(s)]lim

d→+∞
γs(d) = Cs(0) = V [Z(s)]lim

d→+∞
γs(d) = Cs(0) = V [Z(s)], the constant variance of the second-order stationary

process Z(s). This limiting value is called the sill of the semi-variogram.

� the range r of a spatial process Z(s) is loosely de�ned to be the size of the region of
the space S for which spatial correlation e�ects are felt. In the case of an isotropic
stationary process, a rigorous de�nition for the range is the largest value of d for which

the semi-variogram is smaller than the sill, γ(d) < V [Z(s)]. For semi-variograms, in
which the sill is an unattained asymptotic value, the range is often de�ned to be the
distance d for which the semi-variogram becomes some proportion, very close to 1 (say
95%), of the sill.

� the di�erence between the sill and the nugget is the partial sill, p. It can be viewed
as that part of V [Z(s)] that is explained by the spatial autocorrelation process.

The notions of sill, range and nugget for a generic semi-variogram are shown in Figure 4.18.

If, as seen above, the semi-variogram γs for data without spatial autocorrelation is a hori-
zontal line at height Cs(0), with a discontinuity at the origin, the typical semi-variogram, in
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Figure 4.18: De�nitions of sill, nugget and range in semi-variograms. The partial sill is the
di�erence between the sill and the nugget.

the case of isotropic spatially correlated processes, is a non-decreasing curve, contained in
the horizontal interval de�ned by the nugget and the sill, as shown in the plot on the right of
Figure 4.19. The nature of the underlying points in the plots will be described in Subsection
4.7.3, and the way in which the curve was obtained and plotted is described in Subsection
4.7.4.
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Figure 4.19: Semi-variogram patterns. On the left, a semi-variogram for independent spatial
data. On the right, a semi-variogram for data with spatial correlation.

4.7.3 Empirical variograms

In practice, and assuming isotropy, the semi-variogram is estimated by the empirical semi-

variogram, from the sample (z(s1), z(s2), ..., z(sn)):

γ̂(d) =
1

2

1

|Neigh(d)|
∑

(i,j)∈Neigh(d)

(z(si)− z(sj))
2 , (4.25)

where, for any given distance d = dist(s1, s2), Neigh(d) denotes the set of pairs of locations
s1, s2 which are the given distance d, |Neigh(d)| is the cardinality (size) of this set, and
the summation is over all pairs of locations si, sj at that given distance. Usually, and to
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ensure the existence of enough pairs Neigh(d) of observations, instead of considering a single
distance d, the range of distances is partitioned into small intervals (bins) [dmin, dmax], and for
each interval, we consider the pairs (i, j) such that dmin < dist(si, sj) < dmax. To interpret
the empirical semi-variogram, we must consider the properties of the semi-variogram which
it is estimating.

Several packages in R provide commands to compute empirical semi-variograms. Among
them, the gstat package, co-authored and maintained by Edzer Pebesma, and the geoR

package, co-authored and maintained by Paulo J. Ribeiro Jr.

gstat package The gstat::variogram function computes the empirical semi-variogram,
accepting as input arguments a formula to detrend the variable (similar to the R formulas for
linear regression), and a SpatialPointsDataFrame or sf object. Alternatively, the latter
argument may be replaced by the name of the data frame containing the variable and a
list of coordinates for each observed point. This command is invoked here to compute the
empirical semi-variogram of the Aragonez variable yieldct (centred yields):

variogram(yield ~ 1, data=AragonezPoints)

np dist gamma dir.hor dir.ver id

1 1944 3.026404 0.8617851 0 0 var1

2 6513 5.666938 0.9560390 0 0 var1

3 13187 9.613532 0.9693001 0 0 var1

4 14887 13.512151 1.0027140 0 0 var1

5 20259 17.441649 1.0266800 0 0 var1

6 20529 21.302718 1.0582606 0 0 var1

7 24687 25.061267 1.0702769 0 0 var1

8 28165 29.142116 1.1049442 0 0 var1

9 26756 33.097528 1.1325510 0 0 var1

10 28621 36.892389 1.1600034 0 0 var1

11 29117 40.763906 1.1997004 0 0 var1

12 29146 44.621526 1.2327257 0 0 var1

13 28860 48.412351 1.2727498 0 0 var1

14 29956 52.323021 1.3368361 0 0 var1

15 27872 56.240912 1.3874178 0 0 var1

The dist column indicates the distances d between observed points, and the column gamma

gives the corresponding value of the semi-variogram value γ(d), based on the empirical value
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computed from the np available points. This empirical semi-variogram can be plotted by
enclosing the previous command inside a plot() call. This is possible because an appropriate
plot method has been provided by the R package gstat for objects of class gstatVariogram,
which is the class of the output objects from the variogram command.

plot(variogram(yield ~ 1, data=AragonezPoints), pch=16)
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Figure 4.20: The plot of the empirical semi-variogram for the Aragonez yields, detrended
by the (constant) mean, as produced by the variogram command in package gstat.

In Figure 4.20 it is not apparent that the semi-variogram has reached the sill, and therefore
the range is also unclear. The nugget e�ect appears to be close to 0.85. To check whether
the curve is approaching a horizontal asymptote, the cutoff argument in the command
variogram will be set to a larger value (75m), as illustrated below.
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variogram(yield ~ 1, data=AragonezPoints, cutoff=75)

np dist gamma dir.hor dir.ver id

1 4775 3.885159 0.9006839 0 0 var1

2 11662 8.016826 0.9640507 0 0 var1

3 17587 12.546920 0.9995182 0 0 var1

4 27227 17.609841 1.0286987 0 0 var1

5 27150 22.604166 1.0598021 0 0 var1

6 32791 27.481308 1.0921583 0 0 var1

7 35735 32.444811 1.1267466 0 0 var1

8 39019 37.578379 1.1697366 0 0 var1

9 33814 42.471293 1.2151499 0 0 var1

10 42088 47.444342 1.2590447 0 0 var1

11 34834 52.536738 1.3352649 0 0 var1

12 36149 57.389630 1.4167549 0 0 var1

13 35044 62.448067 1.4409542 0 0 var1

14 31021 67.475473 1.5638226 0 0 var1

15 26936 72.392091 1.6330283 0 0 var1

The resulting empirical semi-variogram is plotted in Figure 4.21.

Increasing the cutoff argument has its drawbacks: as the distance d grows, the values of
γ will be estimated with fewer points, becoming prone to erratic behaviour if the number
of pairs becomes very small. For the 75 cuto� value chosen above, the estimated sill ap-
pears to be larger than 1.7, but it is still unlikely that an asymptotic stabilization has been
achieved. This could be the result, either of a non-stationary variance in the process, or of
an inappropriately removed underlying trend (see Plant, [2]).

The authors of the gstat::variogram provide the possibility of removing a deterministic
trend directly in this command. To �lter out a linear trend along the coordinates, as was
done to create variable yieldldt in the Aragonez data, a linear regression on column and row
distances (AragonezPoints variables colm and rowm) is given in the command's formula,
as illustrated below .

variogram(yield ~ colm + rowm, data=AragonezPoints)

np dist gamma dir.hor dir.ver id

1 1944 3.026404 0.8612585 0 0 var1

2 6513 5.666938 0.9533967 0 0 var1

3 13187 9.613532 0.9616996 0 0 var1

4 14887 13.512151 0.9861200 0 0 var1

5 20259 17.441649 0.9984865 0 0 var1

OpenSpat 2018 118



Chapter 4

plot(variogram(yield ~ 1, data=AragonezPoints, cutoff=75), pch=16)
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Figure 4.21: The plot of the empirical semi-variogram for the Aragonez yields, detrended
by the (constant) mean, but with a cuto� value of 75m.

6 20529 21.302718 1.0167690 0 0 var1

7 24687 25.061267 1.0102689 0 0 var1

8 28165 29.142116 1.0295995 0 0 var1

9 26756 33.097528 1.0337417 0 0 var1

10 28621 36.892389 1.0427308 0 0 var1

11 29117 40.763906 1.0539613 0 0 var1

12 29146 44.621526 1.0555425 0 0 var1

13 28860 48.412351 1.0741435 0 0 var1

14 29956 52.323021 1.0991958 0 0 var1

15 27872 56.240912 1.1142427 0 0 var1
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The corresponding plot is given in Figure 4.22. The semi-variogram �attens out, suggesting

plot(variogram(yield ~ colm + rowm, data=AragonezPoints), pch=16)
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Figure 4.22: The plot of the empirical semi-variogram for the Aragonez yields, detrended
by a linear regression on column and row distances.

that the linear detrending has been more successful than detrending by just a constant value.
The sill appears to be slightly above 1 and the nugget value at 0.8. The range of values of d
for which γ(d) is clearly smaller than the sill appears to end at about d = 20, although the
exact borderline is debatable.

The package geoR An alternative way of computing the empirical semi-variogram is
through the geoR::variog function. One possible way of invoking this function is to provide
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the matrix of coordinates via the coords argument, and the vector with the detrended val-
ues through the data command. Alternatively, we can provide the original data vector and
request a speci�c form of detrending, using the trend argument. Below we show how to use
this command with our dataset, using the previously linearly detrended variable yieldldt.
As the full output is rather lengthy, we show only the components u and v which correspond
to the lags d and the values g(d), respectively, as well as the output component n which
indicates the number of points used to compute each of the estimates above.

AragPointsVariog <- variog(coords=coordinates(AragonezPoints),

data=AragonezPoints$yieldldt)

variog: computing omnidirectional variogram

AragPointsVariog$u

[1] 4.977219 14.931657 24.886094 34.840532 44.794970 54.749408

[7] 64.703845 74.658283 84.612721 94.567159 104.521596 114.476034

[13] 124.430472

AragPointsVariog$v

[1] 0.9431928 0.9913348 1.0151768 1.0393587 1.0617242 1.1096586 1.1409804

[8] 1.1868190 1.2239065 1.2387683 1.2562398 1.2209068 1.0539211

AragPointsVariog$n

[1] 15572 44191 60139 73986 75903 71073 66636 51950 34997 16787 5712

[12] 1553 172

Unlike the gstat::variogram command, geoR::variog uses, by default, all the spatial
lags d (as midpoints of intervals, or bins) for which it �nds pairs of points. The number of
corresponding points, given in the output component n, decreases substantially as the spatial
lag d grows, and the estimated values of γ(d) drop, for large d, as can be seen in Figure 4.23.
This Figure resulted from applying a plot command to the above variog function, using
the plot method provided by the geoR package. The variog command also has max.dist
argument to control the maximum distance d that is used, therefore avoiding this undesirable
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e�ect.

plot(variog(coords=coordinates(AragonezPoints), data=AragonezPoints$yieldldt))

variog: computing omnidirectional variogram
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Figure 4.23: The plot of the empirical semi-variogram for the Aragonez yields, detrended
by a linear regression on column and row distances, obtained using the variog command
form package geoR.

4.7.4 Variogram models

Several functions have been proposed for smooth semi-variogram curves. The gstat package
provides tools to �t many such models, plot smooth curves on the empirical semi-variogram,
and obtain estimates for the sill, the nugget e�ect and the range. The basic function is
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the gstat::fit.variogram command. This takes two main arguments: an empirical semi-
variogram, and a corresponding model function. The model function is speci�ed with the
help of the gstat::vgm command, which requires as arguments initial estimates of the nugget
e�ect c0, the range r and the partial sill p (the di�erence between the sill and the nugget,
that is, p = sill − c0), as well as the type of model function. Some common types are:

exponential model: for d > 0, the semi-variogram is given by the function

γ(d) = c0 + p
[
1− e−

d
r

]
, (4.26)

where c0 is the nugget, r the range and p the partial sill. As the distance d increases,
this function grows towards an asymptotic sill (given by c0 + p), which is not attained.

spherical model: for 0 < d < r, the semi-variogram is given by the function

γ(d) = c0 + p

[
3

2

d

r
− 1

2

(
d

r

)3
]
, (4.27)

with γ(d) = sill = c0 + p for d > r. This model assumes that for d > r there ceases
to be spatial dependence and thereafter the semi-variogram γ(d) is constant (as is the
case when no spatial autocorrelation exists).

gaussian model: for d > 0, the semi-variogram is given by the function

γ(d) = c0 + p

[
1− e−

d2

r2

]
, (4.28)

with constants de�ned as above.

Table 4.1 collects these and other frequent semi-variogram models for isotropic spatial de-
pendence.

The commands to �t the exponential and the spherical model to the empirical semi-variogram
obtained with the linearly detrended Aragonez yields are given below.

AragVarioLin <- variogram(yield~colm+rowm, data=AragonezPoints,

locations=coordinates(AragonezPoints))

m.fit <- fit.variogram(AragVarioLin, model=vgm(psill=0.3,"Exp", range=7, nugget=0.8))

m.fit
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Model Formula
Exponential γ(d) = c0 + p [1− exp(−d/r)]
Gaussian γ(d) = c0 + p

[
1− exp

[
− (d/r)2

]]
Linear γ(d) = c0 + p [1− (1− d/r)1(d < r)]
Rational quadratic γ(d) = c0 + p

[
(d/r)2/

[
1 + (d/r)2

]]
Spherical γ(d) = c0 + p

[
1−

[
1− 1.5(d/r) + 0.5(d/r)3

]
1(d < r)

]
Table 4.1: Some common isotropic semi-variogram models γ(d) for spatial correlation struc-
tures, where the variable d stands for distance between points of observation. The parameter
c0 is the nugget e�ect, p the partial sill (sill minus nugget) and r is the range. The notation
1(d < r) stands for an indicator variable for that condition: if d < r is true, it takes the
value 1, and multiplies the expression to its left, whereas if d > r, it takes the value zero and
the expression which it multiplies disappears.

model psill range

1 Nug 0.7906716 0.000000

2 Exp 0.2483298 7.297103

m2.fit <- fit.variogram(AragVarioLin, model=vgm(psill=0.3,"Sph", range=7, nugget=0.8))

m2.fit

model psill range

1 Nug 0.7277332 0.000000

2 Sph 0.2759964 9.032198

While both models estimate a sill value slightly greater than 1 and a nugget e�ect close to
0.75, the estimates for the range di�er substantially: the spherical model, which assumes that
the semi-variogram becomes constant after a given value of d is more sensitive to the e�ects
of small oscillations in the estimated values of γ(d). The exponential model appears to be
better suited in this case. Plotting the �tted model curves on the empirical semi-variogram
plot gives the results in Figures 4.24 and 4.25.

These and other variogram models can be quickly viewed using the gstat::show.vgms

function, with the result in Figure 4.26.

The geoR package also provides functionality to �t variogram models to an empirical semi-
variogram model, namely the geoR::lines.variomodel command. The use of this com-
mand is illustrated below, after �tting an empirical variogram with the max.dist argument
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plot(AragVarioLin, m.fit)
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Figure 4.24: The empirical semi-variogram and the exponential semi-variogram model,
�tted with the commands in package gstat.

set to a maximum spatial lag of 80. In a lines.variomodel command, it is necessary to
de�ne:

� the model type (cov.model argument);

� the initial estimates of the partial sill and the range (cov.pars argument); and

� the initial estimate of the nugget (nugget argument).

The results of the following commands are shown in Figure 4.27.
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plot(AragVarioLin, m2.fit)
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Figure 4.25: The empirical semi-variogram and the spherical semi-variogram model �tted
with the commands in package gstat.

AragVariog <- variog(coords=coordinates(AragonezPoints),

data=AragonezPoints$yieldldt, max.dist=80)

variog: computing omnidirectional variogram

Variogram models play an important role in spatial statistical models, as they are used to
de�ne the structure of the (co-)variance matrices for the error terms. Variogram models will
be further discussed in Chapter 5.
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show.vgms()
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Figure 4.26: Various variogram model curves provided by the gstat package.

4.7.5 Anisotropy

Anisotropy is harder to identify, and to work with, than isotropy. The authors of the gstat
package provide an argument alpha for the gstat::variogram function, which allows the
user to de�ne a vector of angles giving the main directions along which to inspect if the
resulting semi-variograms are similar. Let us compare the results of the function call without
the alpha argument (page 118) with the empirical semi-variogram γ for each of two directions
speci�ed by alpha: 0 degrees (vertical) and 90 degrees (horizontal). The number of points
used to estimate γ in each direction (np), for any given distance d, is now smaller. When
very few points are used, the empirical semi-variogram may become erratic. This tends to
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plot(AragVariog, pch=16)

lines.variomodel(cov.model="exp", cov.pars=c(0.2, 20), nugget=0.9)

●

● ●
● ● ●

● ●
● ● ●

● ●

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

distance

se
m

iv
ar

ia
nc

e

Figure 4.27: An exponential semi-variogram model, �tted on the empirical semi-variogram
for the Aragonez linearly detrended yields, with the commands in package geoR.

occur if too many angular directions are speci�ed. It is also possible to see that the distance
bins chosen (by default) by the variogram command are not the same in the vertical (0
degrees) and the horizontal (90 degrees) directions, re�ecting the fact that in the horizontal
directions there are points separated by smaller distances than in the vertical (recall that
columns are separated by 2.25m, whereas in a vertical direction, the separation between two
adjacent points is 3.75m). Isotropy should produce similar estimates of γ in both directions,
whereas if anisotropy is present, we would expect to see di�erent behaviour in the empirical
semi-variograms for each angular sector.
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Enclosing the above command within a plot function produces the graphs in Figure 4.28
which suggest that the di�erences between both semi-variograms are not substantial. Isotropy
appears to be a reasonable assumption.

variogram(yield ~ colm + rowm , data=AragonezPoints, alpha=c(0,90))

np dist gamma dir.hor dir.ver id

1 965 3.761890 0.8553530 0 0 var1

2 2782 5.937408 0.9799105 0 0 var1

3 7021 9.841740 0.9568937 0 0 var1

4 7459 13.651210 0.9929169 0 0 var1

5 9349 17.644283 1.0216893 0 0 var1

6 11031 21.423086 1.0491466 0 0 var1

7 11696 25.208794 1.0482439 0 0 var1

8 14136 29.217699 1.0542855 0 0 var1

9 13115 33.227594 1.0453946 0 0 var1

10 14459 36.916577 1.0690293 0 0 var1

11 14372 40.867855 1.0663127 0 0 var1

12 14254 44.649496 1.0609603 0 0 var1

13 14835 48.420389 1.0816942 0 0 var1

14 15112 52.398543 1.1151889 0 0 var1

15 13430 56.296716 1.1327193 0 0 var1

16 979 2.301436 0.8670795 90 0 var1

17 3731 5.465264 0.9336268 90 0 var1

18 6166 9.353679 0.9671719 90 0 var1

19 7428 13.372512 0.9792947 90 0 var1

20 10910 17.268009 0.9786036 90 0 var1

21 9498 21.162923 0.9791656 90 0 var1

22 12991 24.928447 0.9760794 90 0 var1

23 14029 29.065957 1.0047252 90 0 var1

24 13641 32.972477 1.0225382 90 0 var1

25 14162 36.867693 1.0158808 90 0 var1

26 14745 40.662587 1.0419223 90 0 var1

27 14892 44.594754 1.0503568 90 0 var1

28 14025 48.403849 1.0661568 90 0 var1

29 14844 52.246134 1.0829139 90 0 var1

30 14442 56.189018 1.0970608 90 0 var1

Package geoR also provides a function geoR::variog4 that computes the empirical vari-
ograms for four di�erent directions speci�ed by the user.
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plot(variogram(yield ~ colm + rowm , data=AragonezPoints, alpha=c(0,90)))
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Figure 4.28: The empirical semi-variograms, computed for linearly detrended Aragonez
yields which, in relation to the each observation, are in the angular sectors de�ned by the
two main bisecting lines. With anisotropy, we would expect to see di�erences in the semi-
variograms for points that tend to be along the vertical (0 degrees) and the horizontal (90
degrees) directions.

4.7.6 Correlograms

For second-order stationary isotropic models, the correlogram, or autocorrelation function,
may be easier to interpret, although it is intimately connected to the semi-variogram. It
basically considers the correlation coe�cient between observations that are separated by a
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spatial lag d:

ρ(d) =
Cov[Z(s), Z(s+ d)]√
V ar[Z(s)]V ar[Z(s+ d)]

=
Cs(d)

Cs(0)
. (4.29)

The relation between the semi-variogram γ(d) and the correlogram ρ(d) therefore follows
directly:

γ(d) = Cs(0)− Cs(d) = Cs(0)

[
1− Cs(d)

Cs(0)

]
⇔ γs(d) = Cs(0) [1− ρ(d)]. (4.30)

The intuitively obvious relation lim
d→+∞

ρ(d) = 0 is coherent with the idea that the sill is

the asymptotic value of the semi-variogram as d tends to in�nity. It is also natural that
γs(0) = 0, since ρ(0) = 1.

The behaviour of the autocorrelation function for neighbours of increasing order k can be
visualized with the spdep::sp.correlogram function, by choosing the option �corr� in
the method argument, as shown in Figure 4.29.

4.8 Two or more spatial variables

Let us brie�y consider some concepts relating to spatial correlation between di�erent vari-
ables. The study of relations between di�erent variables has a long tradition in standard
statistics. Methods such as linear and non-linear regression, generalized linear models, mixed
models, and others, are part of standard statistical courses. If spatial autocorrelation and
cross-correlation between di�erent variables exists, it should be taken into account.

An important preliminary consideration is whether the variables that have been observed are
collocated (co-located), that is, if they are observed at the same set of locations. To simplify
what follows, we will assume that di�erent variables are indeed collocated. If the observed
variables are not collocated, it is necessary to interpolate in order to obtain a collocated set
of data, an issue that will be dealt with in Chapter 6.
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plot(sp.correlogram(nb.k4, var=AragonezPoints$yieldldt, method="corr", order=10))
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Figure 4.29: The autocorrelation function for the linearly detrended Aragonez yields, based
on a k = 4 nearest neighbours list and a row-normalized weight matrix, with lags of up to 10.
This correlogram was produced by the function spdep::sp.correlogram. Autocorrelation
seems become negligeable at about lag 6.

4.8.1 The cross-variogram

Consider a set of di�erent variables {Z[i]}i that are isotropic spatial processes. The variogram
function for any single variable Z[i] was de�ned in equation (4.21) as:

2γii(d) = V ar
(
Z[i](s)− Z[i](s+ d)

)
(4.31)

The most frequent de�nition to extend this concept to a pair of di�erent variables, Z[i] and
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Z[j], is (see, for example Bivand et al, [7]):

2γij(d) = Cov
[(
Z[i](s)− Z[i](s+ d)

)
,
(
Z[j](s)− Z[j](s+ d)

)]
(4.32)

Cressie [1] gives an alternative de�nition, which is better suited for some purposes:

2γij(d) = V ar
(
Z[i](s)− Z[j](s+ d)

)
(4.33)

Note that both these extensions give the standard variogram when i=j.

The gstat package computes and plots cross-variograms when multiple variables are sup-
plied. We will illustrate their use with a second, meteorological dataset, and inspired by a
similar example in Bivand et al [7].

4.8.2 A meteorological dataset

A small meteorological dataset was downloaded from the website of the European Centre
for Medium-Range Weather Forecasts (ECMWF)1. The data are not direct measurements,
but rather reanalysis data, that is, data that has been collected from various sources and
processed, in this case by the ERA-Interim data assimilation system. It is natural that
reanalysis data be smoother, with 'nicer' properties than directly observed data.

For a given hour of June 18, 2016, reanalysis values were obtained, relative to a rectangular
grid covering 24 longitudes from 9W to 8E and 23 latitudes from 36N to 52N. The variables
in the dataset are:

Short name Long name Units
t2m temperature at 2 meters ◦K
stl1 soil temperature level 1 (surface) ◦K
stl2 soil temperature level 2 ◦K
sund sunshine duration (s)
tp total precipitation (m)

The data format in the ERA-Interim website is NetCDF (see also Exercise E.2.3, in Appendix
E). With the help of the R packages ncdf4 and raster, the dataset was transformed into an
R data frame, called meteo, whose �rst six lines are shown below:

1apps.ecmwf.int/datasets/interim-full-daily
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load(file="datasets/meteo.RData")

head(meteo)

lon lat t2m stl1 stl2 sund tp

1 -9.00 52.5 283.7192 284.7060 286.6936 23399.97 0.0012258549

2 -8.25 52.5 283.6690 284.8637 286.8675 22049.91 0.0009417163

3 -7.50 52.5 284.0929 285.2671 287.2538 22219.33 0.0010797265

4 -6.75 52.5 284.6273 285.6325 287.4712 22949.73 0.0012786235

5 -6.00 52.5 285.9954 285.8502 285.8498 24637.31 0.0007062872

6 -5.25 52.5 285.9974 285.9481 285.9473 25986.71 0.0007062872

The longitudes were converted to the range −9 to 8, so that contiguous plotting of any
results could be ensured. The temperatures are in degrees Kelvin, but since the data will
be detrended, it is irrelevant if the units are given in degrees Celsius. Total precipitation
is recorded in meters and sunshine duration in seconds. The standard linear correlation
coe�cients are given below (to two decimal places). Unsurprisingly, they reveal strong posi-
tive correlations between the three temperature variables and negative correlations between
rainfall and the temperature variables. Somewhat surprisingly, sunshine duration is almost
uncorrelated with most variables, with only a small negative correlation with total precipi-
tation.

round(cor(meteo[,3:7]),d=2)

t2m stl1 stl2 sund tp

t2m 1.00 0.97 0.86 -0.01 -0.47

stl1 0.97 1.00 0.95 0.02 -0.50

stl2 0.86 0.95 1.00 0.05 -0.50

sund -0.01 0.02 0.05 1.00 -0.24

tp -0.47 -0.50 -0.50 -0.24 1.00

We now build objects of class sf, and then of class SpatialPointsDataFrame, as described
in Subsection 4.1. Two di�erent objects of class sf are built, one using the standard EPSG
4326, in longitudes and latitudes, and another using the EPSG 3034 conformal mapping CRS
for Europe, which has the advantage of providing coordinates in meters, and is therefore
better suited to calculating distances between observations.
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meteo4326.sf <- st_as_sf(meteo, coords=c("lon","lat"), crs=4326)

meteo.sf <- st_transform(meteo4326.sf, crs=3034)

meteo.sp <- as_Spatial(meteo.sf)

The plot method for objects of class sf provides a �rst visualization of the dataset.

plot(meteo.sf, pch=16)
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Figure 4.30: The meteorological variables in the meteo dataset, as plotted by the plot func-
tion, using the meteo.sf object of class sf (the coordinate reference system is EPSG:3034,
giving distances in meters). A clear North-South gradient is visible for the temperature
variables: temperature at 2 meters (t2m) and surface temperatures level 1 (slt1) and level
2 (slt2).

It is helpful to place the dataset on a map of Europe, and this will be done using the
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mapview R package, and its function mapView. The commands are given in the simplest
form. A tab should open in your browser, with the observed locations appropriately geo-
referenced. A small dialogue window on the left of the browser window will allow you to
select di�erent types of maps. Figure 4.31 illustrates the result of the comand, with the
�ESRI.WorldImagery� map option. Clicking on any of the circles will open a window with
the information regarding that location, as illustrated in Figure 4.32.

mapView(meteo.sp, zcol="stl1")

+
− 286

288
290
292
294
296
298
300

meteo.sp	-	stl1

500	km
300	mi

Leaflet	|	Tiles	©	Esri	—	Source:	Esri,	i-cubed,	USDA,	USGS,	AEX,
GeoEye,	Getmapping,	Aerogrid,	IGN,	IGP,	UPR-EGP,	and	the	GIS
User	Community

Figure 4.31: The meteorological variable slt1 (surface temperature level 1) in the meteo

dataset.

Several variables can be made available, using the mapView function, simply by providing
a vector with their names to the zcol argument. This possibility will be illustrated below.
But �rst, the object of class SpatialPointsDataFrame object, meteo.sp, will be converted
into an object of class SpatialPolygonsDataFrame object. This will be done using the
dismo::voronoi function. The voronoi function takes the coordinates of a set of points (in
the example, as provided by the SpatialPointsDataFrame object meteo.sp) and creates

OpenSpat 2018 136



Chapter 4

Figure 4.32: The meteorological variable slt1 (surface temperature level 1) in the meteo

dataset, with the information on a given location, interactively selected on the browser
window.

Voronoi polygons (also known as Thiessen or nearest neighbour polygons). These are poly-
gons that cover two-dimensional space, that is, de�ne a tessellation of the space. For each
given point in the set of coordinates, the associated Voronoi polygon is de�ned as the set of
all locations in space that are closer to the given point than to any other point in the set.
The voronoi function uses the deldir function in the package with the same name, that also
de�nes tessellations and triangulations in space. The mapView command is invoked, with
results given in Figure 4.33. As can be observed, the default sizes of the external polygons
are too large (especially when the region is not aligned with the axes), but these can be
controlled by the argument ext.

meteo.voronoi <- voronoi(as_Spatial(meteo4326.sf))

mapView(meteo.voronoi[,"tp"])

4.8.3 Cross-variograms in R

We now use the gstat package to produce the cross-variograms for these meteorological
variables. We begin by de�ning an object gobj, of class gstat, which collects variables
and allows for the possibility of detrending in ways that are de�ned within the command.
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Figure 4.33: The meteo.voronoi polygons, created by the voronoi function, superimposed
by the mapView function on their appropriate geographical coordinates. The background map
is the Thunderforest.Landscape option on the browser window. The screenshot displays
variable tp, total precipitation.

Objects of class gstat may be attached to each other, so as to produce a sequence of models
for the di�erent variables. Inspired by Bivand et al [7], each variable in the meteo dataset,
will be detrended using a linear trend on the geographical coordinates:

gobj <- gstat(NULL, "t2m", t2m ~ coords.x1 + coords.x2, meteo.sp)

gobj <- gstat(gobj, "stl1" , stl1 ~ coords.x1 + coords.x2, meteo.sp)

gobj <- gstat(gobj, "stl2" , stl2 ~ coords.x1 + coords.x2, meteo.sp)

gobj <- gstat(gobj, "sund" , sund ~ coords.x1 + coords.x2, meteo.sp)

gobj <- gstat(gobj, "tp" , tp ~ coords.x1 + coords.x2, meteo.sp)

gobj

data:

t2m : formula = t2m`~`coords.x1 + coords.x2 ; data dim = 552 x 5
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stl1 : formula = stl1`~`coords.x1 + coords.x2 ; data dim = 552 x 5

stl2 : formula = stl2`~`coords.x1 + coords.x2 ; data dim = 552 x 5

sund : formula = sund`~`coords.x1 + coords.x2 ; data dim = 552 x 5

tp : formula = tp`~`coords.x1 + coords.x2 ; data dim = 552 x 5

Having collected the �ve models, a call to gstat's variogram function will compute both
the empirical variograms and the empirical cross-variograms, as shown in Figure 4.34. It is
useful to compare the resulting empirical cross-variograms with the correlation coe�cients
computed above. The variables whose cross-variograms have a clearer pattern are best suited
for subsequent use in spatial models that use information from multiple variables.

Variogram models may be �tted to the empirical variograms and cross-variograms, using the
gstat::fit.lmc function, as shown in Figure 4.35, where an exponential model was �tted
in all cases. The numerical estimates of the ranges, nuggets and partial sills can be viewed
by just writing the name of the object that results from invoking the fit.lmc function.
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vario.meteo <- variogram(gobj)

plot(vario.meteo)
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Figure 4.34: The variograms and cross-variograms for the variables in the meteo dataset,
after detrending with a linear regression on the geographical coordinates.
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vmeteo.fit <- fit.lmc(vario.meteo, gobj,

vgm(psill=6, "Sph", range=750000, nugget=1))

plot(vario.meteo, vmeteo.fit)
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Figure 4.35: Fitted spherical variogram models for the variograms and cross-variograms
for the variables in the meteo dataset, after detrending with a linear regression on the
geographical coordinates.
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Chapter 5

Regression Models for Spatially Autocorrelated

Variables

Some parts of this chapter are inspired from the book `Spatial Data Analysis In Ecology and

Agriculture using R'. R.E. Plant, CRC Press, 2012.

In these chapter we study linear models which are quite used in practice for regression. In
practice, when using these models the error terms are classically assumed to be independent
and identically distributed according to a Gaussian distribution. However this is often not
the case when dealing with spatial dataframes, and in the previous chapter we studied how
to detect a spatial autocorrelation. In this chapter, we will see that ignoring such a spatial
structure of the error terms can have consequences (section 5.1), and we will study the
possible linear models that can be used in presence of spatially autocorrelated variables
(sections 5.3 to 5.6).

The following R packages will be needed in this chapter. We begin by loading them (they
must have been previously installed on your platform).

library(RColorBrewer)

library(gstat)

library(spdep)

library(spatialreg)
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5.1 Origins and Consequences of Spatial Autocorrelation

When we detect an apparent spatial autocorrelation (on residuals for instance), this spatial
autocorrelation may or may not be the result of a spatial autocorrelation. In 1984, Miron
identi�ed three origins of apparent or real spatial autocorrelation: interaction, reaction and
missspeci�cation.
To explain these notions, we will take the example of a population of plants growing in a
particular region. Suppose Yi represents a measurement of plant productivity such as tree
height or population density, and that the population is su�ciently dense relative to the
spatial scale that the productivity measurement may be modeled as varying continuously
with the location. We noteXi1 the amount of light available at location i andXi2 the amount
of available nutrients at location i. Using these two explanatory variables, the simplest model
is the classical linear model:

Yi = β0 + β1Xi1 + β2Xi2 + εi, with εi ∼
i.i.d.
N (0, σ2). (5.1)

In matrix notation:

Y = Xβ + ε (5.2)

ε ∼ Nn(0, σ2I).

Below, we explain the three notions separately, but they can be combined in a same model.

5.1.1 Origin: interaction

Spatial autocorrelation induced by interaction occurs when the response variables at di�erent
sites interact with each other. For instance, negative autocorrelation may occur if trees in
close proximity compete with each other for light and nutrients, so that relatively productive
tree populations tend to inhibit the growth of other trees. Positive autocorrelation would
occur if existing trees produced acorns that do not disperse very far, which in turn results in
more trees in the vicinity. If Y is positively autocorrelated, then the true underlying model
is:

Y = Xβ + ρWY + ε (5.3)

ε ∼ Nn(0, σ2I),

with WY the spatial lag.
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Illustration using simulated data

We generate a dataset simu_modlin satisfying model (5.2) with β = (0, 0.5, 0.3) and a
dataset simu_interaction satisfying model (5.3) with β = (0, 0.5, 0.3) and ρ = 0.6. Each
dataset contains 1000 observations and X1 and X2 are simulated independently using gaus-
sian distributions.

We can see that �tting the classical linear model (5.2) on simu_modlin gives good results,
the β vector is well estimated, and the variance of the residuals is approximately 0.0001:

mod <- lm(Ylin ~ X1 + X2)

print(coef(mod), digits = 2)

(Intercept) X1 X2

-0.00021 0.49979 0.30028

var(mod$res)

[1] 9.560601e-05

However, if we �t the classical linear model (5.2) on simu_interaction, we note that the
estimation of the β vector is biased, and the variance of the residuals is 0.06:

mod <- lm(Yinter ~ X1 + X2)

print(coef(mod), digits = 2)

(Intercept) X1 X2

0.027 0.550 0.327

var(mod$res)

[1] 0.06299029

The di�erence is not very large on the estimates because Y is not very large, but you can note
the e�ect of positive interaction among the Y on the estimates of the regression coe�cients.
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You can also note how the variance of the residuals is increased. Indeed, as the lag term is
not included in the �tted model (5.2), some of the variability that would be assigned to this
term, if it were present, is instead assigned to the regression coe�cients, and the other is
assigned to the error term. For example, the true marginal e�ect of X1, which is measured
by β1, will be incorrectly estimated because it will include some of the e�ects of the lagWY .
The e�ects of the lag which are not assigned to β1 or β2 will be assigned to the error term,
in�ating the variance of the residuals.

5.1.2 Origin: reaction

Spatial autocorrelation induced by reaction occurs when the response variables are reacting
to an external factor that varies in space, and when this factor is not taken into account by
the model. For instance, if nearby plants are reacting to availability of water (which varies
in the `space'). In this case, the inclusion of this external factor in the linear model may
be appropriate. It may be su�cient to explain the spatial autocorrelation, and to obtain
non-autocorrelated residuals. For instance, the true model should be:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi, with εi ∼
i.i.d.
N (0, σ2), (5.4)

with Xi3 the distance from the river at location i.

Illustration using simulated data

1. We generate a dataset simu_reaction1 satisfying model (5.4) with β = (0, 0.5, 0.3, 0.8)

and X3 correlated with X2.

We can see that �tting model (5.4) on simu_reaction1 gives good results, the β vector
is well estimated:

print(coef(lm(Yreact1 ~ X1 + X2 + X3)), digits = 2)

(Intercept) X1 X2 X3

0.0088 0.4837 0.3315 0.7716

However, if we �t model (5.1) on simu_reaction1, we note that the estimation of β2
is biased. The reason is that the e�ect of X3 has been `loaded' on X2.
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mod <- lm(Yreact1 ~ X1 + X2)

print(coef(mod), digits = 2)

(Intercept) X1 X2

0.51 0.50 1.01

X3 maybe interpreted as a `spatial' variable, but its role in the model is identical to
that of another explanatory variable without any spatial connotation.

2. We generate a dataset simu_reaction2 satisfying model (5.4) with β = (0, 0.5, 0.3, 0.8),
and X3 non correlated with X1 or X2 but spatially autocorrelated.

We can see that �tting model (5.4) on simu_reaction2 gives good results, the β vector
is well estimated, and the variance of the residuals is approximately 1.

mod <- lm(Yreact2 ~ X1 + X2 + X3)

print(coef(mod), digits = 2)

(Intercept) X1 X2 X3

0.027 0.483 0.327 0.777

var(mod$res)

[1] 1.004552

If we �t model (5.1) on simu_reaction2, we note that the estimation of the β vector
is not biased. However, the variance of the residuals is doubled: it is approximately
1.86.

mod <- lm(Yreact2 ~ X1 + X2)

print(coef(mod), digits = 2)

(Intercept) X1 X2

0.051 0.469 0.312

var(mod$res)

[1] 1.90547

OpenSpat 2018 147



Chapter 5

This is because the e�ect of X3 which is not taken into account in this model is entirely
loaded in the error term. As X3 was spatially autocorrelated, the result is that the
residuals are spatially autocorrelated:

lm.morantest(mod,W)

Global Moran I for regression residuals

data:

model: lm(formula = Yreact2 ~ X1 + X2)

weights: W

Moran I statistic standard deviate = 6.7573, p-value = 7.027e-12

alternative hypothesis: greater

sample estimates:

Observed Moran I Expectation Variance

0.1550852149 -0.0010125073 0.0005336302

5.1.3 Origin: misspeci�cation

In this case, the measured autocorrelation is not due to interaction or reaction but to the
incorrect form of the model. For instance if we assume homoscedastic errors when in fact
they are heteroscedastic. The true model should be for instance:

Y = Xβ + ε (5.5)

εi ∼
i.i.d.

N (0, σ2 × exp(1 + 2Xi2)).

Here the variance of the errors increases with the amount of available nutrients Xi2. In this
case, the measured autocorrelation can be induced by the wrong modelisation, it is then
an apparent autocorrelation and not a real autocorrelation (this autocorrelation cannot be
explained by spatial considerations).

Illustration using simulated data

We generate a dataset simu_modmiss satisfying model (5.5) with β = (0, 0.5, 0.3). X2 is
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spatially autocorrelated and the error variance is an increasing function of X2.

We can see that �tting the classical linear model (5.2) on simu_modmiss gives a biased
estimate for the β vector, and indicates a spatial autocorrelation of the residuals while in
reality none exists:

mod <- lm(Ymiss ~ X1 + X2)

print(coef(mod, digits = 2))

(Intercept) X1 X2

30.95456 -68.36515 84.34902

lm.morantest(mod, W)

Global Moran I for regression residuals

data:

model: lm(formula = Ymiss ~ X1 + X2)

weights: W

Moran I statistic standard deviate = 2.3661, p-value = 0.008989

alternative hypothesis: greater

sample estimates:

Observed Moran I Expectation Variance

0.159988117 -0.014521469 0.005439884

Indeed, the error terms are uncorrelated, but because the error variance is a function of X2

and high values ofX2 tend to be near other high values ofX2, a test for spatial autocorrelation
of the residuals has a high type I error rate.

5.1.4 Consequences of the spatial autocorrelation on classical linear

models

Whatever the origin of apparent two-dimensional spatial autocorrelation, the e�ects of this
autocorrelation on standard statistical methods are similar to those for one-dimensional au-
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tocorrelation discussed in Chapter 2. The presence of autocorrelation decreases the e�ective
sample size, as there are no longer n independent sources of information. Thus, the standard
statistical techniques which are derived under the assumption of independence will provide
mistaken signi�cance levels and p-values, as well as mistaken con�dence levels for con�dence
intervals. You can have some details by reading the Appendix D.
In particular, using simulations we have seen that spatial e�ects can impact the results of
a classical linear model if not taken into account. For the three possible origins of spatial
autocorrelation, we have seen the following consequences:

Interaction We obtain biased estimates of the regression coe�cients, and the variance of
the residuals is in�ated, which can result in in�ated type I or type II error rates of
certain tests.

reaction If the reaction variable (not included in the model) is correlated to a variable
present in the model, the estimate of the coe�cient associated with the variable present
in the model will be biased. If the reaction variable (not included in the model) is
not correlated to a variable present in the model, but is spatially autocorrelated, the
variance of the residuals will be in�ated, resulting in Type I or type II error rates
increased for certain tests, and an indication of spatial autocorrelation when none
really exists.

Misspeci�cation If the model is misspeci�ed, that can lead to both biased estimates of the
regression coe�cient and indication of spatial autocorrelation when none really exists.

5.2 Working example: Las Rosas

In section 5.1, we showed that a classical linear model is impacted when spatial e�ects are not
taken into account. To analyze spatial data, an adapted methodology can be summarized
as follows:

1. Fit the data with a classical linear model like (5.2).

2. Check the model assumptions on the residuals: normality, homoscedasticity and inde-
pendence.

• To detect non-normality, some plots are possible: histogram, Q-Q plot.

• To detect heteroscedasticity or the exclusion of a reaction variable, we will plot
the residuals against the �tted values, and against the di�erent variables included
or not in the model.
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• To detect dependence, note that the spatial autocorrelation often manifests itself
in autocorrelation of the residuals. Hence we will try to detect a spatial autocor-
relation of the residuals: bubble plots, semi-variograms, Moran correlogram, test
for spatial autocorrelation of the residuals using the Moran's I.

3. If we detect some problems on the residuals:

• Non-normality: the model can be misspeci�ed. You can try a transformation of
your variable to be explained and/or of your explanatory variables. It can also
be the consequence of a relevant explanatory variable forgotten in the model.

• Heteroscedasticity: you can take into account this heteroscedasticity in your
model, see Chapter 5.6.

• Spatial autocorrelation: you �rst need to check that you have not forgotten a
reaction variable, and that you are not in presence of heteroscedasticity (misspec-
i�ed model). If this is not the case, you need to �t a more complicated model
with an autocorrelation structure. Two models speci�cally designed for spatial
data are presented in sections 5.3 and 5.4. You can also use an extended linear
model with a spatial autocorrelation structure, see section 5.6.

In section 5.2, the Las Rosas dataset ([6]) has been presented and a SpatialPointsDataFrame
object Xutm containing the yield and relevant geographical variables to explain it has been
created. We can inspect its structure using the str command.

load(file.path("datasets","LasRosas.RData"))

str(Xutm)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 1704 obs. of 10 variables:

.. ..$ YIELD : num [1:1704] 4225 4308 4301 4443 4343 ...

.. ..$ N : num [1:1704] 125 125 125 125 125 ...

.. ..$ elev : num [1:1704] 272 272 272 272 272 ...

.. ..$ slope : num [1:1704] 0.022 0.0238 0.0256 0.027 0.0282 ...

.. ..$ slopeX: num [1:1704] 13.4 14.5 15.7 16.6 17.4 ...

.. ..$ accu : num [1:1704] 72.5 70.4 68.3 65.9 61.2 ...

.. ..$ aspect: num [1:1704] 4.46 4.5 4.53 4.55 4.58 ...

.. ..$ hshade: num [1:1704] 0.864 0.864 0.864 0.864 0.864 ...
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.. ..$ x : num [1:1704] 420774 420781 420787 420794 420800 ...

.. ..$ y : num [1:1704] 6342855 6342853 6342850 6342847 6342845 ...

..@ coords.nrs : num(0)

..@ coords : num [1:1704, 1:2] 420774 420781 420787 420794 420800 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:1704] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:2] "LONGITUDE" "LATITUDE"

..@ bbox : num [1:2, 1:2] 420773 6342608 421412 6342981

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "LONGITUDE" "LATITUDE"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr "+proj=utm +zone=20 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs +towgs84=0,0,0"

The yield, as well as relevant variables to explain it, can be represented using the function
spplot. We can for instance represent the yields measured at each location on a map, with
a color and a size proportional to the measured diameters, see �gure 5.1.

We will use the data matrix Xutm@data, where slot @data returns a data.frame, which we
can explore. For instance we can build the correlation matrix for Xutm.

round(cor(Xutm@data[,1:8]),3)

YIELD N elev slope slopeX accu aspect hshade

YIELD 1.000 0.079 -0.881 -0.627 -0.107 0.889 -0.144 0.378

N 0.079 1.000 -0.022 0.008 0.003 -0.001 0.002 -0.043

elev -0.881 -0.022 1.000 0.584 0.123 -0.954 0.108 -0.306

slope -0.627 0.008 0.584 1.000 -0.051 -0.525 0.033 -0.368

slopeX -0.107 0.003 0.123 -0.051 1.000 0.016 0.965 0.708

accu 0.889 -0.001 -0.954 -0.525 0.016 1.000 0.015 0.424

aspect -0.144 0.002 0.108 0.033 0.965 0.015 1.000 0.613

hshade 0.378 -0.043 -0.306 -0.368 0.708 0.424 0.613 1.000

Interestingly, the correlations between YIELD and accu or elev, or even slope, are much
stronger than the correlation between YIELD and the amount of nitrogen fertilizar N.
In order to �t a standard linear regression to the data, we will not put two variables too

OpenSpat 2018 152



Chapter 5

correlated in the model. Hence, because of high correlations, we decide here to take into
account accu but not elev, and aspect but not slopeX.
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Water accumulation
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Figure 5.1: Maps of the yield, the dose of N, the aspect of the soil, the accumulation of
water, the slope and the amount of radiation in the �eld.
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Chapter 5

This decision is conforted by the Figure 5.2, generated by the code below.

par(mfrow=c(3,3))

plot(YIELD ~ N, data=Xutm)

plot(YIELD ~ elev, data=Xutm)

plot(YIELD ~ slope, data=Xutm)

plot(YIELD ~ slopeX, data=Xutm)

plot(YIELD ~ accu, data=Xutm)

plot(YIELD ~ aspect, data=Xutm)

plot(YIELD ~ hshade, data=Xutm)

par(mfrow=c(1,1))

Looking at these scatterplots of Figure 5.2, we can see that the relationships between the
yield and elev and between the yield and accu are similar, as well as the relationships
between the yield and aspect and between the yield and slopeX. Moreover, we have the
feeling that except for the scatterplot between the yield and N, the others can be separated in
two scatterplots having di�erent relationships with the yield. We suspect that the separation
can be made regarding on the elevation, or the water accumulation. As we decided to keep
only the water accumulation in our model, we decide to transform it into a factor with two
levels: low and high, using the code below.

Xutm@data$accuf <- rep('low',dim(Xutm@data)[1])

for (i in 1:dim(Xutm@data)[1]){

if(Xutm@data$accu[i] > -25){Xutm@data$accuf[i] <- 'high'}

}

Xutm@data$accuf <- as.factor(Xutm@data$accuf)

We plot again the yield against the explanatory variables we want to keep, but using colors
to distinguish locations with low or high water accumulation. It appears clear that we indeed
have di�erent relationships between the yield and these explanatory variables, depending on
the water accumulation level, see Figure 5.3

par(mfrow=c(2,3))

plot(YIELD ~ N, col=Xutm@data$accuf, data=Xutm)

plot(YIELD ~ accu, col=Xutm@data$accuf, data=Xutm)

plot(YIELD ~ slope, col=Xutm@data$accuf, data=Xutm)
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Figure 5.2: Plots of the yield against the possible explanatory variables: N, elev, slope,
slopeX, accu, aspect, and hshade.

plot(YIELD ~ aspect, col=Xutm@data$accuf, data=Xutm)

plot(YIELD ~ hshade, col=Xutm@data$accuf, data=Xutm)

par(mfrow=c(1,1))
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Figure 5.3: Plots of the yield against the explanatory variables: N, accu, slope, aspect and
hshade. We suspect interactions between accuf and slope, accuf and aspect, and accuf

and hshade.

We then decide to use a linear model to explain the yield with the following explanatory
variables: N, accuf, slope, aspect, hshade and the interactions between accuf and slope,
accuf and aspect, and accuf and hshade.

model.lm <- lm(YIELD ~ accuf + N + slope + aspect + hshade + accuf*slope

+ accuf*aspect + accuf*hshade, data=Xutm@data)

drop1(model.lm,test="F")

Single term deletions

Model:

YIELD ~ accuf + N + slope + aspect + hshade + accuf * slope +

accuf * aspect + accuf * hshade

Df Sum of Sq RSS AIC F value Pr(>F)

OpenSpat 2018 157



Chapter 5

<none> 276691762 20462

N 1 18869062 295560825 20572 115.591 < 2.2e-16 ***

accuf:slope 1 96569568 373261331 20970 591.580 < 2.2e-16 ***

accuf:aspect 1 3455382 280147145 20481 21.168 4.521e-06 ***

accuf:hshade 1 16482486 293174248 20559 100.971 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(model.lm)

Call:

lm(formula = YIELD ~ accuf + N + slope + aspect + hshade + accuf *

slope + accuf * aspect + accuf * hshade, data = Xutm@data)

Residuals:

Min 1Q Median 3Q Max

-1767.17 -222.15 17.28 236.15 1517.32

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.570e+04 8.007e+03 8.204 4.53e-16 ***

accuflow -1.004e+05 9.520e+03 -10.549 < 2e-16 ***

N 2.601e+00 2.419e-01 10.751 < 2e-16 ***

slope -5.925e+04 1.626e+03 -36.436 < 2e-16 ***

aspect -1.600e+02 1.643e+01 -9.739 < 2e-16 ***

hshade -6.949e+04 9.314e+03 -7.461 1.37e-13 ***

accuflow:slope 7.863e+04 3.233e+03 24.322 < 2e-16 ***

accuflow:aspect 1.471e+02 3.197e+01 4.601 4.52e-06 ***

accuflow:hshade 1.116e+05 1.110e+04 10.048 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 404 on 1695 degrees of freedom

Multiple R-squared: 0.8796,Adjusted R-squared: 0.879

F-statistic: 1548 on 8 and 1695 DF, p-value: < 2.2e-16
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All the interactions are statistically signi�cant, and this regression explains 88% of the yield
variability.

The equation of the model is the following, with Y ieldij the value of yield at the jth location
having level i of accu.

Y ieldij = β0 + αi + β1Nij + β2slopeij + β3aspectij + β4hshadeij

+ γ2islopeij + γ3iaspectij + γ4ihshadeij + εij, (5.6)

εij ∼
i.i.d.
N (0, σ2). (5.7)

Using this modelisation, the error terms are assumed to be independent, to follow the Gaus-
sian distribution and to be homoscedastic. In particular, no spatial correlation of the error
term is assumed. Before going further in the analysis (con�dence intervals, tests, interpreta-
tion,...), we then need to validate these assumptions. Several tests and �gures should be done.

First, we look at the basic diagnosis plots given by R, see Figure 5.4.

par(mfrow=c(2,2))

plot(model.lm)

Concerning the homoscedasticity, the variance does not seem to increase or decrease with
the �tted values. Concerning the normality assumption, we observe some deviations for
the tails (both extremities of the Q-Q plot). But importantly, we detect a pattern in the
residuals, they do not appear to be independent, a trend seems to have been forgotten. As
we suspect a trend to have been forgotten in the residuals, it is necessary to also plot the
residuals against every possible explanatory variable, see Figure 5.5. Here some patterns
appear again, the residuals seem to be correlated.

As we are in presence of spatial data, a �nal step is to check if the residuals are spatially
independent. We can �rst represent the residuals on a map. We are looking for signs of
spatial autocorrelation among the residuals, see Figure 5.6. Each residual is represented by
a bubble whose size and color are proportional to its value. Here it is not di�cult to tell
from this �gure that a spatial autocorrelation exists.

Xutm$resmodel.lm <- model.lm$res

spplot(Xutm, "resmodel.lm", col.regions=brewer.pal(9,"Oranges"),cex=.2*(1:5),

key.space="bottom", main="Residuals of model.lm")
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Figure 5.4: Diagnostic plots for model.lm.

Next, we look at the semi-variogram for the residuals of model.lm, see Figure 5.7. Here we
can see an increase, hence we can suspect that the residuals are not independent but it is
not easy to have an idea if the residuals are signi�cantly independent or not. Some tests will
be necessary.

library(gstat)

vgm <- variogram(resmodel.lm~1, Xutm, cutoff = 350)

plot(vgm)

OpenSpat 2018 160
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Figure 5.5: Residuals of model.lm against every possible explanatory variable.
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Residuals of model.lm
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Figure 5.6: Bubble map for residuals of model.lm.
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Remark 5.2.1 Note that in R what is called `variogram' is in reality the semi-variogram!

It is γ(.) which is plotted when using the functions Variogram or variogram, see sections

4.7.1 and 4.7.2.

Similarly to the semi-variogram, we can represent the Moran correlogram (see section 4.6
for the de�nition of the Moran Correlogram). It gives a measurement of the change in the
correlation structure as distance between cells is increased. The value of the spatial lag
at which I is no longer signi�cantly positive can be used as an indication of the range of
autocorrelation of the data.

In the following code we create a list of neighbors using the k-nearest neighbors method,
then we compute and plot the Moran correlogram, for a maximum lag of 10, and for a
row-standardised weights matrix (see Figure 5.8). There is evidence of spatial autocorre-
lation. The largest lag for which the Moran's randomisation test (the default test for the
sp.correlogram function) would reject the null hypothesis of no spatial autocorrelation (for
a signi�cance level α = 0.05) is k = 9. Thus, it would be advisable to de�ne the original
neighbours list in a less restrictive way than was done for nlist.

library(spdep)

nlist <- knn2nb(knearneigh(Xutm,k=4))

I.d <- sp.correlogram(nlist,Xutm$resmodel.lm,order=10,method="I", style="W")

plot(I.d)

Finally, we present the test whether or not the residuals of model.lm are spatially auto-
correlated. We �rst create a list of neighbors and an associated spatial weights matrix W
(row-standardised). To create the list of neighbors, we can use the k-nearest neighbors
method (using knn2nb). Then we can test for spatial autocorrelation using lm.morantest.
Here, the alternative tested is that the moran statistic is greater than the expected value
(hence we suspect a positive autocorrelation, and not a negative autocorrelation). The test
is based on the resampling assumption.

library(spdep)

nlist <- knn2nb(knearneigh(Xutm,k=8))

W <- nb2listw(nlist,style="W")
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Figure 5.8: Moran correlogram for residuals of model.lm.

lm.morantest(model.lm,W)

Global Moran I for regression residuals

data:

model: lm(formula = YIELD ~ accuf + N + slope + aspect + hshade +

accuf * slope + accuf * aspect + accuf * hshade, data = Xutm@data)

weights: W

Moran I statistic standard deviate = 56.299, p-value < 2.2e-16

alternative hypothesis: greater

sample estimates:

Observed Moran I Expectation Variance

0.6629755568 -0.0046606672 0.0001406322
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The Moran's I is 0.66, while the expected value is -0.005. The p-value is < 2.2e-16, hence
we reject the null hypothesis and accept the alternative, that is the spatial autocorrelation
of the residuals of model.lm.

We will then have to take into account this spatial autocorrelation of the residuals in our
modelisation.

In the following we will present models designed specially for spatially autocorrelated data.

5.3 Spatial Lag Model

5.3.1 Without explanatory variable

A spatial lag model with zero mean value and no explanatory variable has the form:

Y = ρWY + ε (5.8)

ε ∼ Nn(0, σ2I),

where WY represents the spatial lag.

Interpretation The value of Y at one location is directly associated with the values of the
process Y at nearby locations. For instance high productiovity of a plant at one location is
associated with high productivity at nearby locations (but there is no notion of causality).

5.3.2 With explanatory variables

If we want to include explanatory variables, the model becomes:

Y = ρWY +Xβ + ε (5.9)

ε ∼ Nn(0, σ2I).

Interpretation This model can be interpreted using di�erent points of view.

1. We are interested in the model for its own sake: speci�cation of the spatial weights
matrix W and estimation of ρ are then indicators of the nature and strength of spatial
interaction.

OpenSpat 2018 165



Chapter 5

2. We have Y = (I − ρW )−1(Xβ + ε), and E(Y ) = (I − ρW )−1Xβ. In this formulation,
we are interested by the non-linear e�ect of the spatial autocorrelation on the expected
value of Y . The in�uence of the spatial structure is modelled through the error term
and through the explanatory variables (in�uence of the neighborhood through the
explanatory variables).

The prediction Ŷ = (I − ρ̂W )−1Xβ̂ is mainly driven by the neighborhood. If we use the
formula Ŷ = Xβ̂ (like for the classical linear model), we can see that we have a bias
−(ρW )−1Xβ.

5.3.3 About the variance-covariance matrix of Y

Using this model the variance-covariance matrix of Y is the following:

var(Y ) = E
[
(Y − E[Y ])(Y − E[Y ])′

]
= E

[
(I − ρW )−1εε′((I − ρW )−1)′

]
= (I − ρW )−1E[εε′](I − ρW ′)−1

= (I − ρW )−1var[ε](I − ρW ′)−1

= σ2(I − ρW )−1(I − ρW ′)−1. (5.10)

This variance-covariance matrix is impacted by the magnitude of the variance of the error
term σ2, and by the spatial structure through the term (I − ρW )−1(I − ρW ′)−1.
Note that this variance-covariance matrix is enforced by the model, we do not have to specify
it. The spatial autocorrelation structure of Y is then enforced by the model.

5.3.4 Fitting the model

The parameters of the model are β, σ2 and ρ. They will be estimated using the maximum
likelihood approach. However, the expressions of β̂, σ̂2 and ρ̂ that maximise the likelihood
are not easy to obtain (it would be much easier if ρ was known). The approach is therefore
to use a numerical scheme analogous to the Newton-Raphson method:

• A value of ρ̂ is �xed.

• The maximum likelihood estimates β̂ and σ̂2 are calculated with ρ̂ �xed.

• The two preceding steps are iterated: another value of ρ̂ increasing the likelihood is
�xed, β̂ and σ̂2 are calculated to maximise the likelihood, then �x ρ̂ again,. . .
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library(spdep)

library(spatialreg)

nlist <- knn2nb(knearneigh(Xutm,k=8))

W <- nb2listw(nlist,style="W")

summary(Xutm@data[,1:8])

YIELD N elev slope

Min. : 574.2 Min. : 0.00 Min. :268.0 Min. :0.007235

1st Qu.:2290.1 1st Qu.: 39.00 1st Qu.:271.0 1st Qu.:0.016802

Median :3826.5 Median : 50.60 Median :273.6 Median :0.024580

Mean :3412.5 Mean : 64.93 Mean :273.7 Mean :0.024072

3rd Qu.:4511.8 3rd Qu.: 99.80 3rd Qu.:276.2 3rd Qu.:0.031336

Max. :5347.9 Max. :124.60 Max. :280.0 Max. :0.041564

slopeX accu aspect hshade

Min. :-23.7891 Min. :-143.137 Min. :1.850 Min. :0.8509

1st Qu.:-11.8105 1st Qu.: -67.273 1st Qu.:2.108 1st Qu.:0.8589

Median : -1.7972 Median : 20.225 Median :2.964 Median :0.8625

Mean : 0.2142 Mean : -4.171 Mean :3.240 Mean :0.8613

3rd Qu.: 13.4638 3rd Qu.: 56.062 3rd Qu.:4.428 3rd Qu.:0.8637

Max. : 21.8369 Max. : 89.600 Max. :4.792 Max. :0.8669

Xutm$YIELD_scaled <- (Xutm$YIELD-mean(Xutm$YIELD))/sd(Xutm$YIELD)

# Xutm$N_scaled <- (Xutm$N-mean(Xutm$N))/sd(Xutm$N)

Xutm$slope_scaled <- (Xutm$slope-mean(Xutm$slope))/sd(Xutm$slope)

# Xutm$aspect_scaled <- (Xutm$aspect-mean(Xutm$aspect))/sd(Xutm$aspect)

Xutm$hshade_scaled <- (Xutm$hshade-mean(Xutm$hshade))/sd(Xutm$hshade)

f <- as.formula("YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled

+ accuf*slope_scaled + accuf*aspect + accuf*hshade_scaled")

mod.lag <- lagsarlm(f,data=Xutm,listw=W)

The interpretation of the spatial lag model is that there is some interaction between corn
plants.

Remark 5.3.1 If the YIELD, slope and hshade variables were not scaled, the R soft-

ware would not succeed in computing the spatial error model, an error would be indicated

(inversion of asymptotic covariance matrix failed).
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summary(mod.lag)

Call:lagsarlm(formula = f, data = Xutm, listw = W)

Residuals:

Min 1Q Median 3Q Max

-1.3179579 -0.1180341 0.0029359 0.1081311 0.6812413

Type: lag

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.02004197 0.02669322 0.7508 0.4527573

accuflow -0.20148029 0.05537151 -3.6387 0.0002740

N 0.00165631 0.00011166 14.8340 < 2.2e-16

slope_scaled -0.05422472 0.00865827 -6.2628 3.782e-10

aspect -0.01605523 0.00779494 -2.0597 0.0394273

hshade_scaled -0.03632647 0.01541618 -2.3564 0.0184537

accuflow:slope_scaled 0.06974847 0.01518287 4.5939 4.351e-06

accuflow:aspect -0.00077238 0.01448327 -0.0533 0.9574698

accuflow:hshade_scaled 0.06926005 0.01876857 3.6902 0.0002241

Rho: 0.8753, LR test value: 1919.8, p-value: < 2.22e-16

Asymptotic standard error: 0.01351

z-value: 64.788, p-value: < 2.22e-16

Wald statistic: 4197.5, p-value: < 2.22e-16

Log likelihood: 346.279 for lag model

ML residual variance (sigma squared): 0.033335, (sigma: 0.18258)

Number of observations: 1704

Number of parameters estimated: 11

AIC: -670.56, (AIC for lm: 1247.2)

LM test for residual autocorrelation

test value: 32.674, p-value: 1.0897e-08
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5.4 Spatial Error Model

5.4.1 Formulation

Y = Xβ + η (5.11)

η = λWη + ε

ε ∼ Nn(0, σ2I).

Interpretation

1. Using this modelisation, we use a classical linear model, but with a correlated structure
for the error term. This autocorrelation is generally considered to be a nuisance:
when studying this model the primary interest is often the relationship between the
explanatory variables X and the response variable Y . The spatial autocorrelation is
just taken into account through the error term.

2. For the spatial error model, the in�uence of the spatial structure is modelled only on
the error term: Y = Xβ + (I − λW )−1ε.

The prediction Ŷ = Xβ̂ is driven by the values of the explanatory variables at the location
for which we want the prediction. Be careful, to have an unbiased estimation of β, you must
use the spatial error model and not the classical linear model if your data are driven by this
spatial error model.

Remark 5.4.1 This model can be written as a classical linear model:

Y − λWY = Xβ − λWY + η

= Xβ − λW (Xβ + η) + η

= Xβ − λWXβ + ε

= (X − λWX)β + ε

Ỹ = X̃β + ε

5.4.2 About the variance-covariance matrix of Y

For this spatial error model we have Y = Xβ + (I − λW )−1ε and E[Y ] = Xβ. hence
Y − E[Y ] = (I − λW )−1ε. We can then use exactly the same calculations as for the spatial
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lag model, and we obtain the same formula for the variance covariance matrix (5.10), except
that ρ is replaced by λ:

var(Y ) = σ2(I − λW )−1(I − λW ′)−1. (5.12)

The same remarks can be made, especially that the spatial autocorrelation structure of Y is
enforced by the model.

5.4.3 Fitting the model

The approach is the same as for the spatial lag model, with ρ replaced by λ.

mod.err <- errorsarlm(f,data=Xutm,listw=W)

summary(mod.err)

Call:errorsarlm(formula = f, data = Xutm, listw = W)

Residuals:

Min 1Q Median 3Q Max

-1.22572240 -0.10186036 0.00092688 0.10447445 0.71212632

Type: error

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.13645551 0.28442272 3.9957 6.452e-05

accuflow -1.34933604 0.43064505 -3.1333 0.0017286

N 0.00196741 0.00011066 17.7797 < 2.2e-16

slope_scaled -0.42523669 0.06866555 -6.1929 5.908e-10

aspect -0.33772997 0.08921225 -3.7857 0.0001533

hshade_scaled 0.36372642 0.12239612 2.9717 0.0029614

accuflow:slope_scaled 0.58286320 0.09749498 5.9784 2.254e-09

accuflow:aspect 0.15722109 0.13008315 1.2086 0.2268089

accuflow:hshade_scaled -0.09240629 0.14049648 -0.6577 0.5107229
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Lambda: 0.93964, LR test value: 1934.2, p-value: < 2.22e-16

Asymptotic standard error: 0.009443

z-value: 99.506, p-value: < 2.22e-16

Wald statistic: 9901.5, p-value: < 2.22e-16

Log likelihood: 353.489 for error model

ML residual variance (sigma squared): 0.031593, (sigma: 0.17774)

Number of observations: 1704

Number of parameters estimated: 11

AIC: -684.98, (AIC for lm: 1247.2)

The interpretation of the spatial error model is that the yield at one location is supposed
mainly driven by the values of the explanatory variables at this location, and the error terms
are spatially autocorrelated.

5.5 Choosing between Spatial Lag, Error and SAC models

Once spatial autocorrelation has been detected in residuals of a classical linear model, we
have to take into account this autocorrelation and to choose between the spatial lag model
and/or the spatial error model. These two models can be combined in a SAC/SARAR model
of the form:

Y = ρW1Y +Xβ + η (5.13)

η = λW2η + ε

ε ∼ Nn(0, σ2I),

where W1 can be equal to W2 and X cannot simply be a vector of ones (for identi�ability).
For more details on these models, you can read [8].

The problem with choosing between a spatial lag, a spatial error or a SAC model can be
expressed as two hypothesis tests:

1st test:

{
H0 : ρ = 0,

H1 : ρ 6= 0
and 2nd test:

{
H0 : λ = 0,

H1 : λ 6= 0

� If H0 is non-rejected for both tests, that means that we have to keep a classical linear
model, there is no spatial autocorrelation of the residuals.
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� If H0 is non-rejected for the second test and H1 accepted for the �rst test we choose a
spatial lag model.

� If H0 is non-rejected for the �rst test and H1 accepted for the second test, we choose
a spatial error model.

� If H1 is accepted for one of these tests, we can try to �t a SAC model, and to compare
it with a spatial lag or a spatial error model (spatial lag and spatial error model are
nested into a SAC model).

These tests are carried out using the maximum likelihood approach. An alternative is the
use the AIC criteria to choose between these models.

f <- as.formula("YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled

+ accuf*slope_scaled + accuf*aspect + accuf*hshade_scaled")

model.lm_scaled <- lm(f, data=Xutm)

mod.lag <- lagsarlm(f,data=Xutm,listw=W)

mod.err <- errorsarlm(f,data=Xutm,listw=W)

LR.sarlm(model.lm_scaled,mod.lag)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = -1919.8, df = 1, p-value < 2.2e-16

sample estimates:

Log likelihood of model.lm_scaled Log likelihood of mod.lag

-613.6159 346.2790

LR.sarlm(model.lm_scaled,mod.err)

Likelihood ratio for spatial linear models

data:
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Likelihood ratio = -1934.2, df = 1, p-value < 2.2e-16

sample estimates:

Log likelihood of model.lm_scaled Log likelihood of mod.err

-613.6159 353.4890

AIC(mod.lag,mod.err)

df AIC

mod.lag 11 -670.5580

mod.err 11 -684.9779

The p-values are very small for both spatial lag and spatial error models. They are both
preferable to the classical linear model. Using the AIC criteria, we prefer the spatial error
model. As the H1 hypothesis is accepted for both tests, we can �t a SAC model and compare
it to the spatial lag, or to the spatial error model.

mod.sac <- sacsarlm(f,data=Xutm,listw=W)

LR.sarlm(mod.sac,mod.lag)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = 104.3, df = 1, p-value < 2.2e-16

sample estimates:

Log likelihood of mod.sac Log likelihood of mod.lag

398.4283 346.2790

LR.sarlm(mod.sac,mod.err)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = 89.879, df = 1, p-value < 2.2e-16
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sample estimates:

Log likelihood of mod.sac Log likelihood of mod.err

398.4283 353.4890

AIC(mod.lag,mod.err,mod.sac)

df AIC

mod.lag 11 -670.5580

mod.err 11 -684.9779

mod.sac 12 -772.8566

It appears that the spatial SAC model is quite better than the spatial lag or the spatial
error model: we both have interaction between corn plants, and the error terms are spatially
correlated.

summary(mod.sac)

Type: sac

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.75765011 0.77749616 2.2607 0.023781

accuflow -1.16490866 0.61228927 -1.9025 0.057100

N 0.00151935 0.00011262 13.4915 < 2.2e-16

slope_scaled -0.17491748 0.13328369 -1.3124 0.189395

aspect -0.52703547 0.20278078 -2.5990 0.009348

hshade_scaled 0.38036320 0.21454549 1.7729 0.076249

accuflow:slope_scaled 0.18923146 0.14064994 1.3454 0.178494

accuflow:aspect 0.26730067 0.17766099 1.5046 0.132439

accuflow:hshade_scaled -0.26141594 0.18786214 -1.3915 0.164065

We can improve this SAC model, by performing model selection. We can try to remove
explanatory variables or interactions between them and to include variables which are not
present in mod.sac. Here we do not have variables not included in the model. But we can try
to remove some interaction. In particular, when looking at the summary of mod.sac, it ap-
pears that the interactions accu*slope, accu*hshade and accu*aspect are not signi�cant.
We can then try to simplify the model by �rst removing accu*slope.
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f2 <- as.formula("YIELD_scaled ~ accuf + N + slope_scaled + aspect

+ hshade_scaled + accuf*aspect + accuf*hshade_scaled")

mod.sac2 <- sacsarlm(f2,data=Xutm,listw=W)

LR.sarlm(mod.sac, mod.sac2)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = 1.6409, df = 1, p-value = 0.2002

sample estimates:

Log likelihood of mod.sac Log likelihood of mod.sac2

398.4283 397.6078

summary(mod.sac2)

Type: sac

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.66913033 0.81695206 2.0431 0.04104

accuflow -0.99822066 0.60807547 -1.6416 0.10067

N 0.00151476 0.00011243 13.4726 < 2e-16

slope_scaled -0.10539026 0.12812374 -0.8226 0.41075

aspect -0.50983334 0.20672089 -2.4663 0.01365

hshade_scaled 0.36139428 0.21795862 1.6581 0.09730

accuflow:aspect 0.28738455 0.17766510 1.6176 0.10576

accuflow:hshade_scaled -0.30201642 0.18562952 -1.6270 0.10374

Using a Likelihood-Ratio test the model mod.sac2 is better than mod.sac. Then, by look-
ing at the summary we see that we can continue to simplify the model, by removing the
interaction accu*aspect.
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f3 <- as.formula("YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled + accuf*hshade_scaled")

mod.sac3 <- sacsarlm(f3,data=Xutm,listw=W)

LR.sarlm(mod.sac2, mod.sac3)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = 2.572, df = 1, p-value = 0.1088

sample estimates:

Log likelihood of mod.sac2 Log likelihood of mod.sac3

397.6078 396.3219

summary(mod.sac3)

Type: sac

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1470900 0.7703550 1.4890 0.13648

accuflow -0.0170678 0.0496118 -0.3440 0.73083

N 0.0015136 0.0001124 13.4661 < 2e-16

slope_scaled -0.0824190 0.1285267 -0.6413 0.52135

aspect -0.3345291 0.1766718 -1.8935 0.05829

hshade_scaled 0.1320709 0.1711735 0.7716 0.44037

accuflow:hshade_scaled -0.0085828 0.0390317 -0.2199 0.82595

The interaction accu*aspect is at the limit of the signi�cant level (p-value of 0.10), but
we can remove it. By looking at the summary of mod.sac3, we can try to remove the last
interaction accu*hshade.
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f4 <- as.formula("YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled")

mod.sac4 <- sacsarlm(f4,data=Xutm,listw=W)

LR.sarlm(mod.sac3, mod.sac4)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = 0.04834, df = 1, p-value = 0.826

sample estimates:

Log likelihood of mod.sac3 Log likelihood of mod.sac4

396.3219 396.2977

summary(mod.sac4)

Type: sac

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.14654210 0.76990060 1.4892 0.13643

accuflow -0.01694282 0.04960867 -0.3415 0.73271

N 0.00151400 0.00011239 13.4715 < 2e-16

slope_scaled -0.08138525 0.12841259 -0.6338 0.52622

aspect -0.33388599 0.17662274 -1.8904 0.05871

hshade_scaled 0.12672191 0.16932172 0.7484 0.45421

The interaction interaction accu*hshade can indeed be removed. Then, by looking at the
summary of mod.sac4, we see that we can remove accuf.

f5 <- as.formula("YIELD_scaled ~ N + slope_scaled + aspect + hshade_scaled")

mod.sac5 <- sacsarlm(f5,data=Xutm,listw=W)
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LR.sarlm(mod.sac4, mod.sac5)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = 0.11589, df = 1, p-value = 0.7335

sample estimates:

Log likelihood of mod.sac4 Log likelihood of mod.sac5

396.2977 396.2397

summary(mod.sac5)

Type: sac

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.14286973 0.77325648 1.4780 0.13941

N 0.00151338 0.00011237 13.4679 < 2e-16

slope_scaled -0.08042127 0.12851282 -0.6258 0.53146

aspect -0.33420918 0.17686740 -1.8896 0.05881

hshade_scaled 0.12711273 0.16947486 0.7500 0.45323

The variable accuf can indeed be removed. Then by looking at the summary of mod.sac5,
we see that we can remove slope_scaled.

f6 <- as.formula("YIELD_scaled ~ N + aspect + hshade_scaled")

mod.sac6 <- sacsarlm(f6,data=Xutm,listw=W)

LR.sarlm(mod.sac5, mod.sac6)

Likelihood ratio for spatial linear models
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data:

Likelihood ratio = 0.37328, df = 1, p-value = 0.5412

sample estimates:

Log likelihood of mod.sac5 Log likelihood of mod.sac6

396.2397 396.0531

summary(mod.sac6)

Type: sac

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.26179451 0.77180194 1.6349 0.10208

N 0.00151327 0.00011229 13.4770 < 2e-16

aspect -0.36893656 0.16958743 -2.1755 0.02959

hshade_scaled 0.14790879 0.16488224 0.8971 0.36969

The variable slope_scaled can indeed be removed. Then by looking at the summary of
mod.sac6, we see that we can remove hshade_scaled.

f7 <- as.formula("YIELD_scaled ~ N + aspect")

mod.sac7 <- sacsarlm(f7,data=Xutm,listw=W)

LR.sarlm(mod.sac6, mod.sac7)

Likelihood ratio for spatial linear models

data:

Likelihood ratio = 0.73526, df = 1, p-value = 0.3912

sample estimates:

Log likelihood of mod.sac6 Log likelihood of mod.sac7

396.0531 395.6855
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summary(mod.sac7)

Type: sac

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.23727293 0.80598355 1.5351 0.12476

N 0.00150883 0.00011217 13.4515 < 2e-16

aspect -0.35675187 0.17054142 -2.0919 0.03645

The variable hshade_scaled can indeed be removed. By looking at the summary of mod.sac7,
we can see that an other simpli�cation of this model is not advisable (the p-values are all
smaller than the limit of the threshod commonly used of 5%). Hence we choose the model
mod.sac7. The same conclusion is obtained using the AIC.

AIC(mod.sac,mod.sac2,mod.sac3,mod.sac4,mod.sac5,mod.sac6,mod.sac7)

df AIC

mod.sac 12 -772.8566

mod.sac2 11 -773.2157

mod.sac3 10 -772.6437

mod.sac4 9 -774.5954

mod.sac5 8 -776.4795

mod.sac6 7 -778.1062

mod.sac7 6 -779.3710

This model is quite simple compared to the classical linear model obtained before! This is
because we have taken into account the spatial autocorrelation. From an agronomic point
of view, we are surprised that the variable corresponding to water accumulation is not kept
in the model. Maybe, the e�ect of water accumulation is mimiced by the spatial lag (that
is the mean yield of the neighborhood in our case with a row-standardised spatial weight
matrix). Indeed, you can see on Figure 5.1 that the yield and the water accumulation give
very similar maps.

In the following, we check that the assumptions are veri�ed on the residuals of mod.sac7.
First, the normality assumption seems to be veri�ed. We have slight deviations form the
qqline on the tails, but it is acceptable, see Figure 5.9.
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par(mfrow=c(1,2))

hist(mod.sac7$residuals)

qqnorm(mod.sac7$residuals)

qqline(mod.sac7$residuals)

Histogram of mod.sac7$residuals
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Figure 5.9: Histogram of residuals of mod.sac7 and associated QQ plot.

Concerning the homoscedasticity, the variance do not seem to increase with �tted values or
with another variable, see Figure 5.10.

Xutm$res.sac7 <- mod.sac7$residuals

par(mfrow=c(3,3))

plot(res.sac7 ~ fitted(mod.sac7), data=Xutm)

plot(res.sac7 ~ N, data=Xutm)

plot(res.sac7 ~ elev, data=Xutm)

plot(res.sac7 ~ slope, data=Xutm)

plot(res.sac7 ~ slopeX, data=Xutm)

plot(res.sac7 ~ accu, data=Xutm)

plot(res.sac7 ~ aspect, data=Xutm)

plot(res.sac7 ~ hshade, data=Xutm)
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Figure 5.10: Residuals of mod.sac7 against every possible explanatory variable.

We then have a look at the spatial organization of the residuals, see Figure 5.11. This �gure
is quite better than the one obtained on the classical linear model, see Figure 5.6.

Xutm$res.sac7 <- mod.sac7$residuals

spplot(Xutm, "res.sac7", col.regions=brewer.pal(9,"Oranges"),

cex=.2*(1:5), aspect=1/2, main="Residuals of mod.sac7")

To be sure that the residuals of mod.sac7 are not spatially autocorrelated we can have a
look at the semi-variogram, see Figure 5.12. Here again it is quite good, we do not detect
any increase at the beginning of the semi-variogram. It was not the case for the classical
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Figure 5.11: Bubble map for residuals of mod.sac7.

linear model, see Figure 5.7.

vgm <- variogram(res.sac7~1, cutoff=150, Xutm)

plot(vgm)

OpenSpat 2018 183



Chapter 5

distance

se
m

iv
ar

ia
nc

e

0.005

0.010

0.015

0.020

0.025

50 100

●

●

●
●

●

●
●

● ●
● ● ● ● ● ●

Figure 5.12: Semi-variogram for the residuals of mod.sac7.

We can also represent the Moran's correlogram, see Figure 5.13.

nlist <- knn2nb(knearneigh(Xutm,k=8))

I.d2 <- sp.correlogram(nlist,Xutm$res.sac7,order=10,method="I", style="W")

plot(I.d2)

Some con�dence intervals for the values of this Moran correlogram do not include zero.
However, we can note that:

1. This Moran correlogram is sensitive to outliers. And on Figure 5.9 we can note that
there are some outliers.

2. We have lots of observations (more than 1700). Hence the tests performed are quite
powerful, and the con�dence intervals are quite accurate (maybe too much, sometimes
a di�erence can be statistically signi�cant but biologically negligeable).

3. If we look at the Moran correlogram associated to residuals from the classical linear
model model.lm (Figure 5.8), we can see that the Moran's statistics are quite smaller
(between -0.05 and 0.05 versus 0.8), hence the improvement is important.
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Figure 5.13: Moran correlogram for residuals of mod.sac7.

Eventually, we present the test whether or not the residuals of mod.sac7 are spatially au-
tocorrelated. Here we can see that they can not be considered as positively autocorrelated.
Interestingly, they can be considered as negatively autocorrelated (we are at the limit of the
threshold of 5%). It is coherent with the �rst values observed on the Moran's correlogram,
which are negative. However, as explained before, the Moran's I around -0.02 or -0.05 for
the �rst lags are quite small compared to the values observed for the classical linear model,
so the improvement of using a spatial SAC model is important.

moran.mc(Xutm@data$res.sac7,W,nsim=1000,alternative="greater")

Monte-Carlo simulation of Moran I

data: Xutm@data$res.sac7

weights: W

number of simulations + 1: 1001
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statistic = -0.020985, observed rank = 53, p-value = 0.9471

alternative hypothesis: greater

moran.mc(Xutm@data$res.sac7,W,nsim=1000,alternative="less")

Monte-Carlo simulation of Moran I

data: Xutm@data$res.sac7

weights: W

number of simulations + 1: 1001

statistic = -0.020985, observed rank = 35, p-value = 0.03497

alternative hypothesis: less

We can obtain �tted values of yield using this spatial SAC model (predictions of yield for
the data on which the model was �tted), see Figure 5.14.

head(fitted(mod.sac7))

1 2 3 4 5 6

0.8811450 0.8716522 0.8747162 0.9147915 0.9467749 0.9179487

Xutm@data$fitted <- (fitted(mod.sac7)*sd(Xutm$YIELD))+mean(Xutm$YIELD)

spplot(Xutm, "fitted", col.regions=brewer.pal(9,"Oranges"),

cex=.2*(1:5), aspect=1/2, main="Fitted values of yield using the spatial SAC model")

A question of interest is about predictions for new data. For instance, imagine that we want
to predict the yield in the �eld if the nitrogen content is increased uniformely by one unit
(using fertilizer). For such predictions, we need to be very careful, as with any statistical
model. Indeed, our model is valid only for the ranges of values observed in our dataset for
all variables. Moreover, yield depends on water and nitrogen with interaction between them
(too much nitrogen without enough water can impact negatively the plant). This kind of

OpenSpat 2018 186



Chapter 5

Fitted values of yield using the spatial SAC model

●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

[1308,2030]
(2030,2753]
(2753,3475]
(3475,4198]
(4198,4920]

Figure 5.14: Bubble map for the �tted yield for the spatial SAC model.

biological e�ects are not taken into account by our model, as in the dataset such conditions
were not observed. Additionally, the �nal model was selected using AIC and likelihood ratio
tests on an explanatory basis, and not on a predictive basis. That means that it is maybe
not the best model for prediction. To select such a model, cross-validation should be used.
If you still want to make some predictions on the observed �eld but for new values of the
predictors, you should remember that a spatial process can be decomposed into the sum of a
deterministic trend, a spatially autocorrelated random process and an uncorrelated random
process (see section ). Looking at the spatial lag model, the predictions are given by the
following formula:

Ŷ = (I − ρ̂W )−1Xβ̂

In this formula the spatial autocorrelated part is taken into account. Concerning the spatial
error model, the predictions are given by the following formula:

Ŷ = Xβ̂

Indeed, the spatial autocorrelated part (the signal) is given by (I−λW )−1ε, and is predicted
by 0 as ε is predicted as 0. Hence, we have the same formula than in a classical linear
model, the di�erence is that β is not estimated in the same way. The consequence is that
the autocorrelated spatial part of the process is estimated by 0, we "loose" the spatial auto-
correlation, only the deterministic trend is predicted. Concerning the spatial SAC model we
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observe the same thing, only the trend can be safely estimated, the spatially autocorrelated
part of the process is not estimated.
As a consequence, our advice is to use the predict.sarlm function only for spatial lag
models, as they are the only model able to predict a non-null autocorrelated spatial part
of the process. In the following, only predictions for a spatial lag model are presented. We
will predict the yield in the �eld if the nitrogen content is increased uniformely by one unit
(using fertilizer). As explained before, these predictions should be interpreted carefully.

Xutm2 <- Xutm

Xutm2@data$N <- Xutm@data$N + 1

newpred <- as.data.frame(predict.sarlm(mod.lag, newdata=Xutm2@data,

listw = W, pred.type="TS"))

head(newpred)

fit trend signal

1 0.4821111 0.14613577 0.3359753

2 0.4546835 0.13409381 0.3205896

3 0.4286981 0.12223805 0.3064601

4 0.3613864 0.11290496 0.2484815

5 0.3086342 0.10375643 0.2048778

6 0.2627418 0.09649667 0.1662452

In the R output, the trend is the deterministic trend, the signal is the spatially autocorre-
lated part, and the noise is the residual. The fit is the sum of the trend and the signal,
the noise is estimated by 0. This �t corresponds to the previsions we want to make. These
predictions are represented in Figure 5.15.

Xutm@data$pred.lag <- (newpred$fit*sd(Xutm$YIELD))+mean(Xutm$YIELD)

spplot(Xutm, "pred.lag", col.regions=brewer.pal(9,"Oranges"),

cex=.2*(1:5), aspect=1/2, main="Predicted values of yield using mod.lag")
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Predicted values of yield using mod.lag
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Figure 5.15: Bubble map for the predicted yield for the model mod.lag when the nitrogen
content is increased by one unit uniformly.

5.6 Extended Linear Models

5.6.1 Classical Linear Model versus Extended Linear Model

Let Y be the quantitative variable to explain. The explanatory variables can be quantitative
or qualitative, and are given in a matrix X. The classical linear model can be written as
follows:

Y = Xβ + ε with ε ∼ Nn(0, σ2I). (5.14)

Possible extensions of this linear model concern the variance-covariance matrix of the resid-
uals. Indeed, in classical linear models like (5.14), the residuals (therefore the observations)
are supposed independent and homoscedastic. Concerning the independence, you can note
that all the correlation terms of the variance-covariance matrix are null (the values outside
the diagonal). Concerning the homoscedasticity, you can note that all the variance terms of
the variance-covariance matrix are the same (the values on the diagonal).

In extended linear models (also called Generalized Least Squares models), the form of the
variance-covariance matrix can be di�erent, to take into account heteroscedasticity and/or
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non-independance of the residuals. These models are as follows:

Y = Xβ + ε with ε ∼ Nn(0,Λ). (5.15)

1. If Λ is diagonal, but with varying coe�cients on the diagonal, heteroscedasticity will
be taken into account.

2. If Λ has non-null coe�cients outside the diagonal, correlation between the residuals
will be taken into account, that is the dependence structure of the residuals will be
taken into account. This dependence can be temporal, spatial or more general.

5.6.2 Modelling Spatial Correlation

The extended linear model for spatial data (5.15) is more general than the regression models
for spatially autocorrelated data presented in sections 5.3 and 5.4. Indeed, the models for
spatially autocorrelated data are special cases of extended linear models. To compare the
two approaches, you can note that in extended linear models the variance-covariance matrix
Λ can take any form (it just needs to be symmetric and positive-de�nite). In the regression
models designed for spatially autocorrelated data, the form of the variance-covariance matrix
is enforced by the model.

To model spatial dependency using an extended linear model, we need to choose the form
of the variance-covariance matrix Λ, which is equivalent to choose a model for the semi-
variogram. There are two possibilities for choosing the form of the semi-variogram:

• This choice can be made by looking at the form of the semi-variogram. Figure 5.16
shows di�erent semi-variogram patterns with di�erent ranges. The formulae associated
with these patterns are given in Table 4.1.

• Choosing the model by looking at plots can be di�cult and subjective. Another option
is to choose a model using classical model selection methods: AIC, BIC, or tests
between nested models.

Once a model has been chosen for the semi-variogram, the parameters of the extended linear
model (regression coe�cients and coe�cients of the variance-covariance matrix) are esti-
mated using the maximum likelihood estimators.
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Figure 5.16: Di�erent semi-variogram patterns: Spherical, Exponential, Rational quadratic,
Linear and Gaussian. Each pattern has a nugget of 0.1. The value of the range is 0.5, 0.7 or
0.9.

Below, the models presented in Table 4.1 are implemented in R.
For this example, we do not know which form of semi-variogram is classicaly used to model
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dependence of yield in a �eld, and we do not feel con�dent to choose a model from the form
of the semi-variogram (left part of Figure 5.17). The choice is then made using the AIC
criteria.

library(nlme)

model2.lm <- gls(YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled

+ accuf*slope_scaled + accuf*aspect + accuf*hshade_scaled, data=Xutm)

modSpher <- gls(YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled

+ accuf*slope_scaled + accuf*aspect + accuf*hshade_scaled,

data=Xutm, correlation=corSpher(form=~x+y,nugget=T))

modLin <- gls(YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled

+ accuf*slope_scaled + accuf*aspect + accuf*hshade_scaled,

data=Xutm, correlation=corLin(form=~x+y,nugget=T))

modRatio <- gls(YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled

+ accuf*slope_scaled + accuf*aspect + accuf*hshade_scaled,

data=Xutm, correlation=corRatio(form=~x+y,nugget=T))

modGaus <- gls(YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled

+ accuf*slope_scaled + accuf*aspect + accuf*hshade_scaled,

data=Xutm, correlation=corGaus(form=~x+y,nugget=T))

modExp <- gls(YIELD_scaled ~ accuf + N + slope_scaled + aspect + hshade_scaled

+ accuf*slope_scaled + accuf*aspect + accuf*hshade_scaled,

data=Xutm, correlation=corExp(form=~x+y,nugget=T))

AIC(modSpher,modLin,modRatio,modGaus,modExp)

df AIC

modSpher 12 -837.72045

modLin 12 -14.27035

modRatio 12 -785.46606

modGaus 12 -752.27858

modExp 12 -836.82643

We need to check that the chosen model modSpher solves the problem of spatial dependency,
and that the assumptions are veri�ed on the residuals of modSpher. Figure 5.17 shows the
semi-variogram of the raw residuals of modSpher and the semi-variogram of the studentized
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Figure 5.17: (left) Semi-variogram for the raw residuals of modSpher. (right) Semi-variogram
for the studentized residuals of modSpher.

residuals of modSpher. The Figure 5.17 validates our choice for modSpher. Indeed, it is
expected that the raw residuals show a spatial dependency, but we have taken into account
this dependency and we have modelled it. The chosen modelisation seems correct as the
Studentized residuals did not show any spatial dependence.

VarioSpher_raw <- Variogram(modSpher, form =~ LONGITUDE + LATITUDE,

robust = TRUE, maxDist = 350, resType = "pearson")

plot(VarioSpher_raw,smooth=FALSE)

VarioSpher_normalized <- Variogram(modSpher, form =~ LONGITUDE + LATITUDE,

robust = TRUE, maxDist = 350, resType = "normalized")

plot(VarioSpher_normalized,smooth=FALSE)

Then, we represent the Studentized residuals of modSpher on a map, see Figure 5.18. Com-
paring this map with Figure 5.6, it seems that a good part of the spatial autocorrelation
among the residuals has been taken into account.
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Xutm@data$resSpherNorm <- as.numeric(resid(modSpher,type="normalized"))

spplot(Xutm, "resSpherNorm", col.regions=brewer.pal(9,"Oranges"),

cex=.2*(1:5), aspect=1/2, main="Normalized residuals of modSpher")

Normalized residuals of modSpher
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Figure 5.18: Bubble map for residuals of modSpher.

Looking at a Moran's test on the residuals, it seems that the spatial autocorrelation among
the residuals has been taken into account.

moran.mc(Xutm@data$resSpherNorm,W,nsim=1000,alternative="greater")

Monte-Carlo simulation of Moran I

data: Xutm@data$resSpherNorm

weights: W

number of simulations + 1: 1001

statistic = -0.023487, observed rank = 26, p-value = 0.974

alternative hypothesis: greater
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We also check the normality of the residuals of modSpher.

par(mfrow=c(1,2))

hist(Xutm@data$resSpherNorm,main="Studentized residuals of modSpher")

qqnorm(Xutm@data$resSpherNorm)

qqline(Xutm@data$resSpherNorm)

Studentized residuals of modSpher

Xutm@data$resSpherNorm
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Figure 5.19: Histogram of residuals of mod.Spher and associated QQ plot.

Predictions are possible from extended linear model using the function predict or predict.gls
from the package nlme. We can make predictions for the data on which the model was �tted,
or for new data. Concerning new data, we can still try to make previsions for the yield if
the nitrogen content is increased uniformely by one unit.

pred_extended <- predict(modSpher)

head(pred_extended)

1 2 3 4 5 6

0.26553978 0.20447253 0.14433762 0.09495807 0.06079698 0.05992729
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Xutm2 <- Xutm

Xutm2@data$N <- Xutm@data$N + 1

newpred_extended <- predict(modSpher, newdata=Xutm2@data)

head(newpred_extended)

[1] 0.26756172 0.20649447 0.14635956 0.09698002 0.06281892 0.06194923

Remark 5.6.1 Using the package nlme, modelling both a heteroscedasticity and a spatial

correlation is possible, by using both arguments weights and correlation in a same model.

Remark 5.6.2 In practice, it is easier to use a regression model designed for spatially au-

tocorrelated data, as you do not have to specify a form for the variance-covariance matrix.

However, if one of these two models does not give a satisfactory result, you can try an ex-

tended linear model. You will then have to choose the form of the variance-covariance matrix

yourself, using the form of the semi-variogram, or criteria like AIC. Morevover, the regres-

sion models for spatially autocorrelated data are often more intuitive than extended linear

models.
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Spatial Estimation and Interpolation

The list of speci�c R packages used in this part to carry out spatial estimation and interpo-
lation are:

a graph : ggplot2, gridExtra

b Spatial data management : sp, spdep, raster

c Spatial data analysis : gstat nlme

d Spatial data map representation : mapview lattice

The package name appears before the function (package::function()) for pedagogical reasons
and in order to clarify the origin of the unusual R functions used in the coding.

6.1 Interpolation Map with IDW (Inverse Distance Weight)

The variable of interest Z(s) was measured on six di�erent sites {sA, sB, sC , sD, sE, sF}.

Now we need to interpolate its value at a new site on �gure 6.1 ?

6.1.1 Principle of the IDW interpolation

The IDW or Inverse Distance Weighted interpolation gives an estimation of Z(snew) built as
a weighted linear combination of the neighborhood values. The weight is:

� high for sites nearby snew
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Figure 6.1: Illustration
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� low for neighbours far away from snew

6.1.2 De�nition of "Neighborhood"

Several de�nitions exist (for more details see section 4.4.2), among them:

� Neighborhood(snew) = k nearest neighbours/sites (positioning)

� Neighborhood(snew) = neighbours/sites inside a circle centered on snew and with a
given radius R.

Nnew will denote the number of sites in the Neighborhood(Snew) in the following.

6.1.3 Equation of the IDW

Each site si of the neighborhood has a weight inversely proportional to the distance dist(si snew)

between (si) and the site to be estimated (snew):

Ẑ(snew) =

∑Nnew
i=1

Z(si)
dist(si,snew)∑Nnew

i=1
1

dist(si,snew)

A broader de�nition uses a power function of the distance between si and snew:

Ẑ(snew) =

∑Nnew
i=1

Z(si)
dist(si,snew)P∑Nnew

i=1
1

dist(si,snew)P

6.1.4 Algorithm

1. De�ne the neighborhood

2. Create a grid of interpolation

3. Calculate the IDW interpolation at each node of the grid.

4. Plot the interpolation surface on a graph

5. Analyse the sensitivity of the interpolation to the de�nition/size of the neighborhood
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6.1.5 Properties, Limits of the IDW Approach

� The IDW interpolation is an exact estimation. It gives the observed values as esti-
mated for the sampled/observed sites.

� The interpolation surface is continuous/smooth

� The interpolation does not depend on the site con�guration but on the distances be-
tween sites.

6.1.6 Example: SIC97

Data description

Dataset from the Spatial Interpolation Comparison exercise 1997 (SIC97) Reference: Journal
of Geographic Information and Decision Analysis, vol.2, no.2, pp. 1-11 (1997)

This dataset is made of 467 daily rainfall measurements made in Switzerland on 8th May
1986 (sic_full). From them, 100 observed data (sic_obs) were used to estimate the
rainfall at the remaining 367 locations. The aim of this SIC was to compare di�erent spatial
interpolation tools.

The data is provided within the package gstat and �gure 6.2 gives a spatial representation
of the rainfall sites.

# load data from package gstat

library(gstat)

data(sic97)

# transform SpatialPointsDataFrame into Data Frame

mydata <- data.frame(sic_full$rainfall,coordinates(sic_full))

myobs <- data.frame(sic_obs$rainfall,coordinates(sic_obs))

# Use classic ggplot2 commands on the Data Frame

ggplot(data=mydata,aes(x=X,y=Y))+

geom_point(shape=21,colour = "black", fill = "white",size=2) +

geom_point(data=myobs,shape=21,colour = "black",

fill = "green",size=2)
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Figure 6.2: Representation of the SIC97 full rainfall dataset with the restricted observed
sites �lled in green
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# sp package allow to plot directly from SpatialPointsDataFrame:

#plot(sic_obs)

We will use the dataset sic_obs to illustrate how to create an interpolation map using R.

Grid

First, we need a grid. Some R functions implemented in the package sp can help us to create
a rectangular grid as follows:

Xcell <- 100

Ycell <- 100

Xwidth <- (max(mydata$X)-min(mydata$X))/Xcell

Ywidth <- (max(mydata$Y)-min(mydata$Y))/Ycell

# From package sp

mydata.grid <- sp::GridTopology(c(min(mydata$X),min(mydata$Y)),

c(Xwidth,Ywidth), c(Xcell,Ycell))

mydata.grid <- sp::SpatialGrid(mydata.grid)

Map

Now we estimate the rainfall at each node of the grid with a neighborhood de�ned by a circle
with a radius of maxdist = 100000

# IDW interpolation

obs_idw <- gstat::idw(rainfall~1,sic_obs,mydata.grid, maxdist=100000)

[inverse distance weighted interpolation]

summary(obs_idw)

Object of class SpatialGridDataFrame

Coordinates:

min max
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[1,] -161475.5 171227.5

[2,] -110079.8 104289.2

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

1 -159812 3327.03 100

2 -109008 2143.69 100

Data attributes:

var1.pred var1.var

Min. : 17.27 Min. : NA

1st Qu.:134.12 1st Qu.: NA

Median :169.56 Median : NA

Mean :181.14 Mean :NaN

3rd Qu.:225.47 3rd Qu.: NA

Max. :583.40 Max. : NA

NA's :10000

full_idw <- gstat::idw(rainfall~1,sic_full,mydata.grid, maxdist=100000)

[inverse distance weighted interpolation]

IDW interpolator is an exact interpolator which gives the observed value at each observed
site. The map looks pixelated (not smooth) because IDW interpolator does not take into
account the correlation structure of the rainfall between sites. Increasing the number of
observations like in �gure 6.3 improves the estimation but highlights the pixelated appearance
of the map.

g1 <- sp::spplot(obs_idw["var1.pred"],main="Obs")

g2 <- sp::spplot(full_idw["var1.pred"],main="Full")

gridExtra::grid.arrange(g1,g2,nrow=2)
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Figure 6.3: IDW interpolation map
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6.2 Kriging

Now, let us consider an interpolator which takes into account spatial correlation between
two sites. Kriging was �rst developped and used for natural resource evaluation (see books
like Webster [9], Goaverts [? ] and in French Arnaud and Emery [10]).

6.2.1 The Principle of Kriging

� To characterize the spatial structure of the random process studied by a variogram.

� To construct a linear combination that best predicts/estimates the value at a given
point by taking into account the correlations between points in the neighborhood

� To quantify uncertainty related to prediction (variance of the prediction/estimation)

6.2.2 The andom Process

A random process, RP Zs,is de�ned as a set of usually dependent random variables Z(s),
one for each site s in the study area Γ.

RP Zs = {Z(s),∀s ∈ Γ}

To any set of N sites a vector of N random variates corresponds; with a probability (or
multivariate cdf) of:

F (Z(s(1)), . . . , Z(s(N))) = Prob(Z(s(1)) ≤ z1, . . . , Z(s(N)) ≤ zN)

The set of all such N-multivariate cdf for any positive integer N constitutes the spatial law
of RP Zs.

In practice, the analysis in this part will be limited to no more than two sites at a time and
will mainly require the notion of variogram (section 4.7):

� Covariance: C(si, sj) = E[Z(si)Z(sj)]− E[Z(si)]E[Z(sj)]

� Variogram: 2γ(si, sj) = V ar[Z(si)− Z(sj)]

6.2.3 Characterizing the Spatial Structure

This section is a brief reminder of section 4.7.
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Figure 6.4: Variogram model parameters

The variogram is a method which measures the average 'pattern dissimilarity' between two
samples according to their distance. The experimental variogram is computed from the data
and adjusted with a mathematical model de�ned by three parameters (see �gure 6.4).

� The nugget: the variance between two points at distances smaller than the shortest
sampling interval. This variance is due to a measurement error or to spatial disconti-
nuity.

� The range: distance above which sites are non correlated.

� The sill: The variance between 2 non correlated sites.

The variogram shape is also determined by i) the slope or speed at which destructuring occurs
according to distance, and ii) the direction in which the variogram was computed/constructed
(depends on the spatial anisotropy).
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Figure 6.5: Shape of the di�erent mathematical models used for semivariograms

OpenSpat 2018 207



Chapter 6

6.2.4 The kriging estimator

In the context of kriging, we want to create an estimator de�ned as a linear combination∑Nnew
i=1 λiZ(si) (where si is an observed site from the Neighborhood(Snew)) that best esti-

mates the value at the new site.

This estimator is a random variable and by de�nition its variance must be non negative. We
need the variance of any �nite linear combination of random variables Z(si), si ∈ Γ, to be
non negative. To ensure this positive de�nite condition, The RP Zs is assumed to

be stationary.

The mathematical model of a variogram must ful�l the positive de�nite condition. In fact,
few permissible mathematical models exist. Among them, the most usual are the exponential
and the Gaussian models for smooth increases of the variance before the range (see �gure
6.5). Conversely, the linear and spherical models are preferred for rapid incrementing of the
variance before the range.

To go further, the mathematical de�nition of the positive de�nite condition is: the variance
of any �nite linear combination of random variables Z(si), si ∈ Γ, must be non negative.
This variance can be expressed as a linear combination of the covariance values:

V ar[
n∑
i=1

λiZ(si)] =
n∑
i=1

n∑
j=1

λiλjC(si, sj) ≥ 0

This variance can be rewritten in terms of a semivariogram model, as γ(h) = C(0)− C(h):

V ar[
n∑
i=1

λiZ(si)] =
n∑
i=1

λi

n∑
j=1

λj −
n∑
i=1

n∑
j=1

λiλjγ(si, sj) ≥ 0

Therefore, the variance of the kriging estimator is known and de�ned by the variogram
(model) and the weights of the linear combination (λi). Furthermore, the value of the
weights are conditioned by the variogram because of the positive de�nite condition.

6.2.5 Stationarity Assumptions and kriging models

The RP Zs is assumed stationary to use variogram or kriging statistical tools.

A su�cient condition for the existence of the variogram is the intrinsic stationarity. Often,
the RP is assumed to be stationary of order 2 (which implies the intrinsic stationarity).
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� Second order stationary:

� Expected value exists and is constant (E[Z(si)] = m,∀si ∈ Γ).

� The covariance function C(h) exists and depends only on the distance h.

� Intrinsic stationarity: Increments Z(si)− Z(sj) are second order stationary.

As introduced in section 4, the RP Zs is usually decomposed into a residual component
(random function Rs) and a trend component (deterministic function T (s)). Sometimes the
residual component is again divided into two parts: a spatially autocorrelated process (η(si))
and a nugget (an uncorrelated random process (ε(si))). Conclusion :

Z(si) = R(si) + T (si)

where the RP Rs is assumed second order stationary with a mean value of zero.

Three kriging variants can be distinguished according to the function T (s) used for the trend.

1. Simple Kriging (constant known mean value): T (si) = m, ∀si ∈ Γ

2. Ordinary Kriging (locally constant unknown mean):

∀sj ∈ Neighborhood(snew), T (sj) = m(snew)

3. Universal kriging (non constant unknown mean)

6.2.6 Ordinary Kriging

Estimator (de�nition and properties)

The value at a new site Ẑ(snew) is estimated from the samples in its neighborhood Z(s1),
Z(s2), . . ., Z(sNnew) by a linear combination:

Ẑ(snew) = λ1(snew)Z(s1) + λ2(snew)Z(s2) + . . .+ λNnew(snew)Z(sNnew)

where λi(snew), 1 ≤ i ≤ Nnew, are determined by solving the system of equations corre-
sponding to these two assumptions:

1. The expected value of the estimator is not biased.
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2. The variance of the estimator is minimal.

The �rst assumption implies the following constraint:
∑Nnew

i=1 λi(snew) = 1

Each predictor Ẑ(snew) is a random variable with a variance, often called the kriging vari-
ance.This variance depends only on the model variogram and on the spatial pattern of the
sites (those observed and those to be predicted). Therefore this variance does not depend
on the observed values Z(s1), Z(s2), . . . , Z(sNnew). The kriging variance is optimal for a
Gaussian RP Zs.

To go further using the ordinary Kriging system:

1. Remember that ∀sj ∈ Neighborhood(snew), T (sj) = m(snew), so:

Ẑ(snew) =
Nnew∑
i=1

λi(snew) (Z(si)−m(snew)) +m(snew)

=
Nnew∑
i=1

λi(snew)Z(si) + [1−
Nnew∑
i=1

λi(snew)]m(snew)

The unknown local mean value is �ltered from the linear estimator when the kriging
weights sum to 1.

2. The variance of the estimator is:

var[Ẑ(snew)− Z(snew)] =
Nnew∑
i=1

Nnew∑
j=1

λi(snew)λj(snew)C(si, sj) + C(0)

− 2
Nnew∑
i=1

λi(snew)C(si, snew)

The minimization of this error variance under the non bias condition leads to the
following system of linear equations:

∑Nnew
i=1 λi(snew) γ(si, sj)−m(snew) = γ(si, snew), i = 1, . . . , Nnew∑Nnew
i=1 λi(snew) = 1
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Figure 6.6: Semivariogram obtained with sic obs dataset

6.2.7 Example: Ordinary kriging map with SIC97 dataset

6.2.7.1 Experimental Variogram

Remember that each point of the experimental semivariogram represents half the variance
between two observed sites separated by a speci�ed distance. As the distance increases the
variability between sites is assumed to increase.

Package gstat do the automatic computation of the experimental variogram.

# package gstat

v <- gstat::variogram(rainfall ~ 1, data= sic_obs)

plot(v)

We can see on �gure 6.6 that for adjacent sites, the nugget e�ect which is half the variance
(or semivariance) seems null. For a distance above 80000 the semivariance looks stabilized
and has attained a sill of almost 15000.
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Comments on the results v. The experimental variogram of the rainfall for sic_obs

dataset is computed with the following formula

2γ̂(h) =
1

| N(h) |
∑

i,j∈Neigh(h)

(Zsi − Zsj)2

where N(h) = {(i, j), dist(si, sj) = h} is the set of pairs of points separated by a distance
h and | N(h) | is the number of elements in N(h). When v is printed, only values at
some speci�c distances are given. Practical computation consists in cutting the interval of
observed distances ([hmin, hmax]) into bins of the same length and then,

1. For all pairs (si, sj) compute Vi,j = (Z(si)− Z(sj))
2

2. Plot Vi,j according to the distance dist(si, sj)

3. Compute the mean value of all the points in each bin to get the experimental variogram
point

head(v)

np dist gamma dir.hor dir.ver id

1 15 5078.697 554.700 0 0 var1

2 68 11926.084 3190.882 0 0 var1

3 111 19714.898 3683.126 0 0 var1

4 132 27743.181 8626.913 0 0 var1

5 142 35528.553 8879.391 0 0 var1

6 191 42984.622 11295.016 0 0 var1

The experimental variogram is sensitive to the choice of breaks and to hmax. This option
can be set in function variogram with option boundaries or width. Often hmax is not the
maximum distance but half its value to prevent border e�ects in the experimental variogram.
For function variogram it is by default, the length of the diagonal of the box spanning the

data divided by three.

Eventually, the experimental variogram can be computed along one or several direction(s),
when the processus Zs is spatially anisotropic (option alpha for function variogram).

Calibration of the Model Variogram
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Figure 6.7: Experimental Variogram Fitted with a Spherical Model

# automatic adjustment of a spherical model

# to the experimental variogram v

m.fit <- gstat::fit.variogram(v, vgm("Sph"))

m.fit

plot(v,m.fit)

model psill range

1 Nug 0.00 0.00

2 Sph 15292.38 82946.36

To choose the best model between the list of possible models, a visual inspection is often
enough but some statistical criteria like AIC or the weighted Sum of Squares (WSS) are also
used. Some R functions like fit.variogram do an automatic WSS �t (see �gure 6.7).
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to go further, WSS mathematical de�nition:

WSS =
K∑
k=1

w(hk) [γ̂(hk)− γ(hk)]
2

where 2γ̂(hk) and 2γ(hk) are respectively the experimental and the model variogram values
for sites separated by a lag/distance hk. The weight, w(hk), is usually proportional to the
number of site pairs at lag hk. For example, for function fit.variogram it is equal to the
number of point pairs divided by the distance hk.

6.2.7.2 Ordinary Kriging Map

NF.kriged = gstat::krige(rainfall ~ 1, sic_obs,

mydata.grid, model = m.fit,nmax=20)

g1 <- sp::spplot(NF.kriged["var1.pred"], main="Prediction")

g2 <- sp::spplot(NF.kriged["var1.var"],main="Variance")

gridExtra::grid.arrange(g1,g2,nrow=2)

[using ordinary kriging]

Kriging gives two results, a prediction and the variance of the prediction. Therefore, we can
draw two distinct maps (see �gure 6.8). Remember that kriging is an exact interpolator,
therefore the variance of the prediction is null on observed sites.

6.2.7.3 Cross Validation

If we want to check the kriging goodness of �t we must calculate residuals (the di�erence
between the observed and the estimated values at a site). In order to be unbiaised, we
recommend using residuals obtained by cross validation to respect the following rule: an
observation at a site must not participate in the construction of the model which will pre-
dict/estimate the value at this site.

The function krige.cv is implemented in R to perform cross validation for simple, ordinary
or universal point (co)kriging, kriging in a local neighbourhood.
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Figure 6.8: Ordinary Kriging Map Interpolation
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rainfall: 5−fold CV residuals
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Figure 6.9: Map of the cross validation residuals of the ordinary kriging model �t on sic obs
dataset

There are two options for the cross validation (leave one out or k-fold). On �gure 6.9 we
can see the results for 5-fold. There is still a spatial structure in the residuals (on the left
and at the bottom with clusters of high absolute values for residuals). Figure 6.9 gives more
information (bias in the prediction) than the variance map 6.8 (expected variability of the
prediction due to the spatial structure).

NF.kriged.cv = gstat::krige.cv(rainfall ~ 1, sic_obs,

model = m.fit, nmax=20, nfold=5)

sp::bubble(NF.kriged.cv, "residual",

main = "rainfall: 5-fold CV residuals")

|

| | 0%

|
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|
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|

|=================================================================| 100%

from R documentation: Leave-one-out cross validation (LOOCV) visits a data point, and

predicts the value at that location by leaving out the observed value, and proceeds with the

next data point. (The observed value is left out because kriging would otherwise predict

the value itself.) N-fold cross validation makes a partitions the data set in N parts. For all

observation in a part, predictions are made based on the remaining N-1 parts; this is repeated

for each of the N parts. N-fold cross validation may be faster than LOOCV.

6.2.7.4 Universal Kriging or Kriging with a Trend

Universal Kriging assumes a linear or quadratic trend (where spatial coordinates could be
used as explanatory variables).

Z(si) = T (si) +R(si)

with

1. Linear trend T (si) = β0 + β1xi + β2yi

2. Quadratic trend T (si) = β0 + β1xi + β2yi + β3x
2
i + β4y

2
i + β5xi yi

In the rainfall example, ordinary kriging gives poor results (because there is still spatial
structure in the residuals). So, we can try the universal kriging.

NF.kriged.UK.cv = gstat::krige.cv(rainfall ~ X+Y, locations=sic_obs,

model = m.fit, nfold=5,nmax=20)

#residuals=sic_nobs$rainfall-NF.kriged.UK$var1.pred

#NF.kriged.UK@data <- data.frame(NF.kriged.UK@data,residuals)

sp::bubble(NF.kriged.UK.cv,'residual',

main = "rainfall: residuals from Universal Kriging")
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rainfall: residuals from Universal Kriging
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Figure 6.10: Residuals of the universal kriging model �t on sic obs dataset
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Figure 6.10 shows the residuals obtained with universal kriging. This approach brings no
improvement. The remaining spatial structure was not due to a spatial unknown linear
trend.

Practical recommendation:

Do a Universal kriging or Estimating the trend and computing simple kriging predictions of
the residuals is equivalent to Universal Kriging when a linear trend is assumed (Cressie [1],
1993, section 3.4.5).So:

1. Estimate the trend with a regression.

2. Compute the residuals

3. Carry out the variogram estimation and kriging on the residuals but use the Simple

Kriging!

4. Add the trend to the kriging estimates

6.2.7.5 Comparison with IDW Approach

The neighborhood can be de�ned in the same way for kriging and IDW. But:

� IDW: each site has a weight inversely proportional to the distance to the site to predict
(snew).
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� Kriging: The weighting is built through the variogram model and the spatial pattern
of the sites.

For both interpolators, the value on a new site is estimated by a weighted linear combination
of the neighboring sites. For kriging, a variance of the prediction can be computed in
addition.

6.2.7.6 Using Ordinary Kriging to Predict the Rainfall Data (SIC97)

Kriging can be used to produce interpolation maps but also predictions. We will use the
kriging estimator established on the sic_obs dataset to predict the rainfall at the remaining
367 locations (sic_nobs dataset).

Histograms of observed and predicted valuesWe can compare the results of the kriging
prediction to the observation.

# nobs dataset

sic_nobs <- sic_full[-(1:100),]

# kriging predictions

NF.kriged.nobs = gstat::krige(rainfall ~ 1, sic_obs,

model = m.fit, newdata=sic_nobs,nmax=20)

[using ordinary kriging]

# summary of the observation and the prediction

summary(data.frame(sic_nobs$rainfall,

NF.kriged.nobs@data$var1.pred))

sic_nobs.rainfall NF.kriged.nobs.data.var1.pred

Min. : 0.0 Min. : -1.695

1st Qu.: 90.0 1st Qu.: 90.027

Median :171.0 Median :172.192

Mean :186.7 Mean :184.582

3rd Qu.:270.5 3rd Qu.:264.987

Max. :585.0 Max. :585.000
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Figure 6.11: Histogram

If we look at the output of the summary above but also at the histograms (�gure 6.11) we
can conclude that kriging gives a smooth prediction with less dispersion of the rainfall values.

# histogram of observations and predictions

g1 <- ggplot(data=as.data.frame(sic_nobs),aes(x=rainfall))+

geom_histogram(binwidth = 20, color="black", fill="white")+

labs(title="Observed values")+

ylim(0,41)

g2 <- ggplot(data=NF.kriged.nobs@data,aes(x=var1.pred))+

geom_histogram(binwidth = 20, color="black", fill="white")+

labs(title="Predicted values")+

ylim(0,41)

gridExtra::grid.arrange(g1, g2, ncol=2)
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Correlation between observed and predicted values If the predicted values are identi-
cal to the observed values, then their values should be on a 1:1 line. We can check this point
by computing the correlation and by doing a linear regression of prediction over observation.

# Computation of the residuals

residuals=sic_nobs$rainfall-NF.kriged.nobs$var1.pred

# data handling

NF.kriged.nobs@data <- data.frame(NF.kriged.nobs@data,

rainfall=sic_nobs$rainfall)

NF.kriged.nobs@data <- data.frame(NF.kriged.nobs@data,residuals)

# correlation between observation and prediction

cor(NF.kriged.nobs@data$rainfall,NF.kriged.nobs@data$var1.pred)

[1] 0.8936177

# variance of the residuals

var(NF.kriged.nobs@data$residuals)

[1] 2858.929

#

coef <- coef(lm(var1.pred~rainfall,data=NF.kriged.nobs@data))

The scatterplot in �gure 6.12 with the regression line (in green) and the 1:1 line (in red)
indicates a slight bias of the prediction.

ggplot(NF.kriged.nobs@data,aes(x=rainfall,y=var1.pred)) +

geom_point() +

geom_abline(slope =1, intercept = 0, col="red",size=2) +

geom_abline(slope =coef[2], intercept = coef[1],

col="green",size=2)

Residuals of the rainfall prediction Finally, we can have a look at the residuals in �gure
6.13 of the prediction (we are in a special case where we know). Again, we observe a spatial
structure in the residuals.
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Figure 6.12: Scatterplot of the predictions versus observations with regression and 1:1 lines
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rainfall: residuals
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Figure 6.13: Residuals of the prediction with ordinary kriging

sp::bubble(NF.kriged.nobs, "residuals", main = "rainfall: residuals")

6.3 Sequential Gaussian Simulation

Goal: Estimate a characteristic or parameter of the RP Zs, for example a probability map.

Principle

kriging gives an estimate of both the mean value and standard deviation of the normal
(Gaussian) variable at each grid node.

Sequential Gaussian Simulation replaces the kriging mean value by a random draw from this
normal distribution.

More details can be found in the book from Goaverts [? ].

Normal Score Transformation for the Rainfall ExampleWhen data are not Normally
distributed, the data can be transformed into normal scores before doing the sequential
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Gaussian simulation on the normal scores. First, the rainfall dataset is normalized (centered
and divided by its standard deviation).

myrain <- data.frame(rainfall=(mydata$sic_full.rainfall -

mean(mydata$sic_full.rainfall))/

sd(mydata$sic_full.rainfall))

We can see from �gure 6.14 that a rainfall of 210 millimeters corresponds to a scaled value
of (210− 184)/112 = 0.23 and a probability of 0.62. The normal quantile (or Normal Scaled
Score) for this probability is 0.30. This empirical quantile (210) to normal quantile (0.30)
transformation preserves the rank of an observation and therefore the probability level.

g1 <- ggplot(data=myrain,aes(x=rainfall))+

geom_histogram(aes(y=..density..), binwidth = 1, color="white",

fill=rgb(0.2,0.7,0.1,0.4)) +

xlim(-3.5,3)+

stat_ecdf(geom = "step", pad = TRUE) +

geom_segment(aes(x=0.23, xend=0.23, y=0, yend=0.62),

size=1.5, col="red")+

geom_segment(aes(x=0.23,xend=3,y=0.62,yend=0.62),

size=1.5, col="red",

arrow = arrow(length = unit(0.3, "cm"),type="closed"))

normdata <- data.frame(Normal.Scores=rnorm(n=467,mean=0,sd=1))

g2 <- ggplot(data=normdata,aes(x=Normal.Scores))+

geom_histogram(aes(y=..density..),binwidth = 1, color="white",

fill=rgb(0.2,0.7,0.1,0.4))+

xlim(-3.5,3)+

stat_ecdf(geom = "step", pad = TRUE)+

geom_segment(aes(x=-3.5, xend=qnorm(0.62), y=0.62, yend=0.62),

size=1.5, col="red")+

geom_segment(aes(x=qnorm(0.62),xend=qnorm(0.62),y=0.62,yend=0),

size=1.5, col="red",

arrow = arrow(length = unit(0.3, "cm"),type="closed"))

gridExtra::grid.arrange(g1, g2, ncol=2)
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Figure 6.14: Illustration of the Normal Score Transformation for the Rainfall dataset
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Algorithm of the SGS

1. Transform data to normal scores.

2. Perform a variogram analysis on the normal scores

3. Create a grid and generate a random path through the grid nodes.

4. Use kriging to estimate a mean value and standard deviation at the �rst node.

5. Set the variable value at that node from the random draw.

Imagine that ordinary kriging gave a mean estimate of 0.23 with a standard deviation
of 0.5 for the �rst node of the grid. Then the random draw for normal score is:

normal.score.scaled <- rnorm(n=1,mean=0.23, sd =0.5)

normal.score <- 184 + 112*normal.score.scaled

print(normal.score)

[1] 231.7708

6. Repeat for the next nodes, including previously simulated nodes as data values in the
kriging process.

The previously simulated grid nodes are included as data in order to preserve the proper
covariance structure between the simulated values.

Examples of simulated maps are given in �gure 6.15. If we repeat this simulation not 4 but
a hundred times then we can compute a probability map. For each node of the grid, we
calculate the number of times the simulated rainfall values were above a certain limit (500
millimeters for example).

NF.kriged.sim = gstat::krige(rainfall ~ 1, sic_full,

mydata.grid, model = m.fit, nmax=20, nsim=4)

sp::spplot(NF.kriged.sim, main = "four conditional simulations")
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four conditional simulations
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Figure 6.15: Sequential Gaussian Simulation for the Rainfall dataset
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drawing 4 GLS realisations of beta...

[using conditional Gaussian simulation]

6.4 Co-Kriging

When non exhaustive secondary information is available, it can be incorporated into the
estimator using the cokriging approach. This approach takes into account the secondary
variables (from the RP Zj,sNj, j = 2, ..., p) and their spatial cross correlation with the
primary variable (from the RP Z1,s). It is possible for the secondary data to be at di�erent
sites.

Ẑ1(snew)− T1(snew) =
∑N1,new

i=1 λ1,i(snew) (Z1(s1,i)− T1(s1,i))

+

p∑
j=1

Nj,new∑
i=1

λj,i(snew) (Zj(sj,i)− Tj(sj,i))

All cokriging estimators are required to be unbiased E[Ẑ1(snew) − Z1(snew)] = 0 and to
minimize the error variance V ar[Ẑ1(snew)− Z1(snew)].

Each RP Zj,s is decomposed into a residual and a trend components:

Zj,s = Rj,s + Tj(s), j = 1, . . . , p

The residual component Rj,s is modeled as a stationary RP with zero mean value and:

1. Covariance function: Cov[Rj(s), Rj(s+ h)] = Cj(h)

2. Cross covariance function: Cov[Rj(s), Rk(s+ h)] = Cjk(h)

In this section we will use the notion of cross-variograms (see section 4 for more details).

6.4.1 Example of Co-Kriging for Rainfall Data (SIC97)

6.4.1.1 Georeferencing of the Rainfall dataset

Read data set from gstat.
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data(sic97)

suisse<-sic_full

class(suisse)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

We need to declare a reference point: Geneve (index 435).

lat.geneve<-46.2 #N

lon.geneve<-6.1667 #E

x.geneve<-sp::coordinates(suisse)[435,1] # m

y.geneve<-sp::coordinates(suisse)[435,2] # m

Create a new CRS: LAEA projection at the location of Geneve (it could be a di�erent
projection!).

mycrs<-"+proj=laea +lat_0=46.2 +lon_0=6.1667

+x_0=0 +y_0=0 +ellps=GRS80 +units=m +no_defs"

Create new SpatialPointsDataFrame with a CRS for suisse. The reference point (Geneve)
must have coordinates x=0, y=0

suisse2<-sp::SpatialPointsDataFrame(

coords=cbind(coordinates(suisse)[,1]- x.geneve,coordinates(suisse)[,2]-y.geneve),

proj4string=CRS(mycrs),data=suisse@data)

Check that it is the correct location with an interactive map (map not shown).

mapview::mapview(suisse2)

Locations in longitude/latitude to be able to download the correct elevation tiles (SRTM
data).
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suisse.lonlat<-sp::spTransform(suisse2,CRS("+init=epsg:4326"))

suisse.lonlat@bbox # extension in lon/lat

min max

coords.x1 6.166622 10.50516

coords.x2 45.797633 47.73390

Download elevation directly from internet with R commands from package utils. The R

commands download.file and then unzip are run only once. The �les will unzip and save
in your working directory. The next time, you won't need this R commands and that's why
they appear as comments (with # at the beginning) in the following script.

elev<-NULL

for (LONG in c("006","007","008","009","010"))

{

for (LAT in c("45","46","47"))

{

TILE<-paste0("N",LAT,"E",LONG)

#adress <- "http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Eurasia/"

#urlzip<-paste0(adress,TILE,".hgt.zip")

#download.file(url=urlzip,destfile=paste0(TILE,".hgt.zip"),mode="wb")

#unzip(zipfile=paste0(TILE,".hgt.zip"))

srtm<-raster::raster(paste0("datasets/",TILE,".hgt"))

if (is.null(elev)) elev<-srtm

if (!is.null(elev)) elev<-merge(elev,srtm)

}

}

# Check that elev is a raster layer

elev

class : RasterLayer

dimensions : 3601, 6001, 21609601 (nrow, ncol, ncell)

resolution : 0.0008333333, 0.0008333333 (x, y)

extent : 5.999583, 11.00042, 44.99958, 48.00042 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0

data source : in memory
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Figure 6.16: Elevation map from SRTM data with sample points of the SIC97 dataset

names : layer

values : -10, 4672 (min, max)

We can map the tiles and add our sample points on the map to check in �gure 6.16 that the
tiles cover all the sampled area.

# confirm that the DEM data covers all our precipitation dataset:

par(mfrow=c(1,1),mar=rep(0,4))

plot(elev)

xy<-coordinates(suisse.lonlat)

points(xy)

Extract elevation values from DEM at our locations
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e<-raster::extract(elev,suisse.lonlat)

suisse$elev <- e

NOTE: there are NA values in elevation: possibly because the SRTM has missing values at

some locations creating an undersampled problem for the co-kriging.

In the cokriging (multivariate case) the only known model is the "linear coregionalization
model". A cross variogram model must be related to a speci�c pair of variograms. Cross
variograms might be symmetric or not, but the linear corregionalization model forces the
cross variograms to be symmetric.

In our example, the set of observed data should be the �rst hundred values of suisse

SpatialPointsDataFrame. It may be that, the sample size is not enough to have cor-
rect experimental variograms. Therefore we use all the available data to model and �t the
variograms and cross variogram.

sum(is.na(suisse@data$elev)) # 9 NA values

[1] 9

# to remove those locations from the data set:

suisse_obs<-suisse[!is.na(suisse@data$elev), ]

# needs enough sample size... cannot use

#suisse_obs <- suisse_obs[1:100,]

6.4.2 Co-kriging

Building a dataset for experimental variogram

suisse.gs <- gstat(NULL,id="rainfall", formula = rainfall~1,

set = list(nocheck = 1), data=suisse_obs)

suisse.gs <- gstat(suisse.gs,id="elev", formula = elev~1,

set = list(nocheck = 1), data=suisse_obs)

The set option allows to go on with the prediction even if the coregionalisation model fails
(warning message non-positive de�nite coe�cient matrix). In our case, it seems that the
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failure comes from the bad accuracy of the projection and therefore we see some incorrect
elevation values (needs more reference points to improve the geolocalization).

Variograms

suisse.vg <- gstat::variogram(suisse.gs)

plot(suisse.vg, main='Rainfall - Elevation Variograms')

Rainfall − Elevation Variograms
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If we use a previous estimation for the rainfall variogram.

# Guess at a variogram model for each

# add the model to the gstat object

suisse.gs <- gstat(suisse.gs, model = vgm("Sph", nugget = 200,

range = 90000, psill=15000),

fill.all=TRUE, set = list(nocheck = 1))

If we use the automatic �t and next a personal modi�cation (from visual inspection of the
experimental variograms).
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# Cross-Variograms

suisse.fit <- gstat::fit.lmc(suisse.vg, suisse.gs, fit.lmc=TRUE)

plot(suisse.vg, model=suisse.fit,

main="Fitted Variogram Models - Raw Data")

Fitted Variogram Models − Raw Data
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print(suisse.fit)

data:

rainfall : formula = rainfall`~`1 ; data dim = 458 x 3

elev : formula = elev`~`1 ; data dim = 458 x 3

variograms:

model psill range

rainfall[1] Nug 2417.400 0

rainfall[2] Sph 14466.727 90000

elev[1] Nug 2244.901 0

elev[2] Sph 546966.257 90000

rainfall.elev[1] Nug 2329.554 0
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rainfall.elev[2] Sph -20748.585 90000

set nocheck = 1;

# to modify

# suisse.fit$model$elev$psill[2] <- 600000 # nugget for elevation

# suisse.fit$model$elev$range[2] <- 100000 # psill for elevation

#etc.

Prediction and Interpolation: cokriging usually improves the error of prediction. In this
example, be careful because we used all the data to model the variogram which induces
underestimation of the error of prediction.

suisse_nobs <- sic_full[-(1:100),]

# predict to the non observed points

cok <- predict(suisse.fit, newdata=suisse_nobs,

set = list(nocheck = 1))

non-positive definite coefficient matrix in structure 1Now checking for Cauchy-Schwartz inequalities:

variogram(var0,var1) passed Cauchy-Schwartz

[using ordinary cokriging]

# summarize predictions and their errors

summary(cok$rainfall.pred); summary(cok$rainfall.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 91.0 171.0 186.9 270.5 585.0

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 0.0 0.0 114.3 0.0 6593.1

The rainfall prediction of the non observed points is given in �gure 6.17. We can also do an
interpolation map with cokriging.

OpenSpat 2018 236



Chapter 6

# Interpolation map with mydata.grid

cok2 <- predict(suisse.fit,mydata.grid, set = list(nocheck = 1))

#Interpolation and Prediction

gridExtra::grid.arrange(spplot(cok2["rainfall.pred"]),

spplot(cok["rainfall.pred"]),

nrow=2)

non-positive definite coefficient matrix in structure 1Now checking for Cauchy-Schwartz inequalities:

variogram(var0,var1) passed Cauchy-Schwartz

[using ordinary cokriging]
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Figure 6.17: Interpolation Map and Prediction of the Rainfall Values with Rainfall and
Elevation Co-Kriging
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Pattern Recognition for Spatial Data

Some parts of this chapter are inspired from the book `Spatial Data Analysis In Ecology and

Agriculture using R'. R.E. Plant, CRC Press, 2012.

7.1 Introduction

7.1.1 De�nitions

Pattern recognition has numerous de�nitions, with variations amongst authors, �elds of
application, origins, ...

We will use here a very general one, and will de�ne it as any method aiming at the recognition

of patternds, regularities and hidden structures in data.

This de�nition encompasses di�erent goals, from the visualization, formalization and ex-
plaination of the pattern, to its extraction, prediction and application to new data. For
the latter, it's linked to machine learning, with the supervised and unsupervised learning
methods.

Unsupervised learning methods try to extract structures hidden in the data by �nding simi-
larities, relations, links between individuals, based on their observed features. They lead to
the construction of groups, or subpopulations, where individuals are more closely related to
the other individuals belonging to the same group than to the other groups.

Supervised learning methods aims at detecting pre existing structures and building predictors
that can apply those structures to new data. The pre exisiting structure is generally a set
of class or categories to which each individuals belong. Results of those methods can be for
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example diagnostic tools that can identify the a�ection of a patient based historical records
of diagnosis and patients medical data, or land use maps from existing records and satellite
imagery.

"Machine learning" expression can be somewhat misguiding as most of those methods needs
ans heavy human expertise input in their di�erents steps, from the selection of the training
data sets to the choice of the methods and their parameters. So that, asn most of the data
modelling techniques, pattern recognition stands between art and science.

Those choices will be guided by the data and the objectives of the analysis. Useful data
in pattern recognition are often higly multidimensionnal, and available tools for pattern
recognition in spatial data mostly the same than for "classical data". In one hand, the
spatial information they include help supporting human decisions during the analysis and
add new insights for the interpretation of the results. On the other hand, spatial data raises
new questions about the nature of individuals which are the elementary data unit of most
pattern recognition methods.

7.1.2 Important spatial data features for pattern recognition

Classical pattern recognition tools search for structures among data units, often called in-

dividuals. But the de�nition of an individual is particular with spatial data, as spatial data
can be agregated to an arbitrary level (e.a. district, town, region, country, ...) or resolution.
And the information linked to those data changes with the chosen unit. This is called the
modi�able areal unit problem.

The modi�able areal unit problem can be illustrated by two e�ects : zonation and resolution.

7.1.2.1 Zonation e�ect

Let's take an example to illustrate the zonation e�ect. In forest science it's very common
to evaluate the size of trees by measuring their circonference at breast height. Let's assume
that this as be done for a portion of forest, and that the histogram in Figure 7.1 illustrate
the frequency distribution of the circonference of the trees in that part of the forest.

As we can see, this distribution shows a nice exponential decrease, with a lot of small
(and young) trees, and fewer and fewer trees as their size increase. Without any spatial
information, foresters will often interpret this as a stand managed following selection cuttings,
in equilibrium.
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Figure 7.1: Left panel : Frequency distribution of the circonferences of trees in a hypothetical
forest plot. Right panel : Spatial location of those trees in the plot (circle size is proportional
to circonference)

But if we add the information about the location of each tree in the stand (Figure7.1, right
panel), this illusion disappear, and we can see that this stand is in fact an edge between an
old and a young even-aged forest stands.

This error of interpretation derive from the association of the trees' circonferences distribu-
tion to the whole forest stand, assuming the related information was homogeneous through-
out this spatial unit. If it's not the case, the related information will highly depend on the
level of aggregation of our data, as we can see in Figure 7.2, illustrating the average circon-
ference of trees on pixels of various resolution, or Figure 7.3, showing the same histogram
as before, but for two smaller spatial unit of the forest stand, which now clearly point the
even-aged structure of those smaller units.

As we can see, the zonation e�ect arise each time we link information to a spatial unit of
arbitrary size, assuming it is valid homogenously for its whole extent.

7.1.2.2 Resolution e�ect

The resolution e�ect is more directly related to raster data. When working with this type
of data, resolution has two consequences. First, on the computation time, as the number
of pixels is proportional to the squared resolution. This can lead to a rapid growth in
computing time, as pattern recognition algorithms mostly have a complexity higher than
linear. Second, on the information itself, as the decrease in resolution leads to a smoothing
e�ect by averaging the information on a greater extent. The choice of a particular resolution,
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Figure 7.2: Rasters of average circonference of trees, with increasing resolution from top left
to bottom right, revealing the edge structure of the forest plot

and the strength of the smoothing e�ect it generates, will strongly a�ect the results.

In classi�cation problems this smooting e�ect can be valuable, as shown in the example of
Figure 7.4. In this arti�cial example, four square regions have been generated from two
populations with distinct means and a constant random noise. On the �rst panel, both
populations are hard to separate because of the high overlap of their distribution. From left
to right, resolution is halved at each step, and the resulting smoothing e�ect gets stronger.
As a result, the distinction between the two populations gets clearer, the average di�erence
staying constant, while the background noise decrease due to the smoothing e�ect.

As a consequence, an higher resolution is not always the best choice when starting a pattern
recognition on raster data, and the smoothing e�ect is another argument to introduce in the
�nal product resolution when crossing di�erent data sources. Ideally, this resolution should
be adjusted on the size of the object to classify, being high enough to describe the objects
without blurring them with their background, and not to high to keep the computing time
at an a�ordable level and bene�tting from the smoothing e�ect.
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Figure 7.3: Frequency distribution of the circonferences of trees in subplots. Up : old forest
subplot. Botton : young forest subplot)

Figure 7.4: Arti�cial populations represented by rasters of decreasing resolution (each step
halves the resolution). Lower panels, distribution of the values of the pixels of the two
populations.

7.1.2.3 Data selection

Those considerations show that the choice of the data type is all but trivial in pattern
recognition, and will strongly a�ect available data sources and the corresponding results.
Will we manipulate vector objects, or raster pixels ? At which level of agregation/resolution
?
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Once this choices have been made, linked data can be extracted to fuel the pattern recognition
methods themselves.

In the following sections, we will discuss methods gathered around three global objectives :

1. Visualise and explore data

� Principal Component Analysis

2. Find unrevealed structures

� Numerical classi�cation methods

3. Predict structures

� Discriminant analysis
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Simulation code for the AR(1) model

The R code used to simulate the AR(1) time autocorrelation model 2.8 is given below. It
should be noted that the more compact matrix/vector versions of the model are not used,
to save memory and CPU time.

> simulAR1 <- function(n, lambda, times, transient=0, mu=0, sigma=1){

tot=transient + n

simul <- matrix(nrow=times, ncol=n+2)

colnames(simul) <- c(paste("Y_", 1:n, sep=""), "Ybar", "S2")

if (transient > 0) lambvec <- lambda^((transient-1):0)

for (j in (1:times)){

eps <- rnorm(tot, sd=sigma)

eta <- eps[1]

if (transient > 0) eta <- sum(lambvec*eps[1:transient])

for (i in 1:n){

simul[j,i] <- mu + eta

eta <- eta*lambda + eps[transient+i]

}

simul[j, n+1] <- mean(simul[j,1:n])

simul[j, n+2] <- var(simul[j,1:n])

}

simul

}

The simulations discussed in Subsections 2.2.4 and 2.2.5 were obtained with the following
function calls:
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> simul.n10k <- simulAR1(n=10000,lambda=0.7,times=10000, transient=1000)

> simul.n1k <- simulAR1(n=1000,lambda=0.7,times=10000, transient=1000, mu=10, sigma=3)

Due to the random nature of the errors, results for new calls will, of course, di�er.
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Further elements on coordinate reference

systems

A map projection is a method to produce all or part of a spheroid (ellipsoid of revolution)
on a �at surface. More speci�cally, it transforms latitudes and longitudes of locations from
the surface of a sphere or an ellipsoid into locations on a plane. Even if map projections are
not in general perfect geometric projections, it is convenient to classify them according to
the most similar geometric projection, which can be azimuthal, conic or cylindrical as
illustrated in Figure B.1. Of course, any of those planar surfaces is placed relatively to the
spheroid, which determines the points or lines over the surface that will remain undistorted
under the projection.

A given shape over the spheroid has properties like distance between points, perimeter, area
and so on. Therefore, it is crucial to know which properties, if any, are preserved under a
given map projection. The main properties that are of interest for real applications are local
shape (conformal projection), area (equal-area projection) and distance (equidistant
projection). Since the spheroid is not a planar surface, it is known that no map projection
can be both conformal and area preserving.

R, as many other open source applications, uses the PROJ syntax, developed under the
PROJ.4 project, to describe coordinate reference systems. For instance, consider the PROJ
description:

+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000

+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
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Figure B.1: Three basic geometric projections (Knippers, R. (2009, August). Geometric
Aspects of Mapping. Retrieved from kartoweb.itc.nl/geometrics/).

The parameters of the CRS above have the following meaning:

1. +proj=laea indicates that it is a Lambert azimuthal equal-area map projection;

2. +lat_0=52 +lon_0=10 are geographic coordinates of the origin of the projection, where
the distortions vanish;

3. +x_0=4321000 +y_0=3210000 are called false easting and false northing and they are
the distances (m) from the origin (x = 0, y = 0) of the cartographic coordinates to the
origin of the projection;

4. +ellps=GRS80 is the ellipsoid name;

5. +towgs84=0,0,0,0,0,0,0 is the datum transformation parameters to WGS84 (see
Figure ??);

6. +units=m are the units in which are expressed the cartographic coordinates that are
de�ned by the projection.

Most of the CRS in use have an EPSG name, which facilitates the identi�cation of the CRS.
For instance, the CRS in the example above can be identi�ed by its EPSG code epsg:3035
and the PROJ description reduces to just +init=epsg:3035.
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Datum Projection Shift x,y Cartographic 
coord.  [epsg]

WGS84
epsg: 4326

+lat_0=39.66 +lon_0=-8.133

ETRS89
TM PT06
[3763]

ETRS89
LCC [3034]

+proj=tmerc                         +x_0=0 +y_0=0

+proj=lcc

+lat_0=52+lon_0=10

+x_0=4000000 
+y_0=2800000

ETRS89
LAEA [3035]

+proj=laea

+lat_0=52+lon_0=10

+x_0=4321000 
+y_0=3210000

+proj=tmerc
+lat_0=0+lon_0=-9

+x_0=500000 
+y_0=0

UTM zone
29N [32629]

Figure B.2: A few CRS that are used in modern cartography for the EU and for Portugal
in particular. ETRS89-TM-PT06 is the Portuguese zone of the ETRS89-TM family of CRS
used in the EU, where TM indicates that it uses the transverse Mercator projection. LCC
stands for the Lambert conformal conic projections and LAEA stands for Lambert azimuthal
equal-area projection. Since this later one preserves areas, it is used for representing statis-
tical data for the EU. The last CRS is zone 29 of the Universal Transverse Mercator (UTM)
family of coordinate reference systems.

For the same regions of the world, di�erent CRS can be used. For instance, three cartographic
CRS were adopted in 2006 as o�cial coordinate reference systems for Portugal following the
recommendations of the EU. Figure B.2 describes those CRS and also describes the Universal
Transverse Mercator (UTM) zone which includes Portugal. UTM is a family of CRS that
is widely used for global data since distance distortions in each zone are always lower than
0.5%.
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Maps and colors

Maps, like the ones produced by plot or mapview have default colors. Tipically, and among
other fetures, one wishes to select a given palette of colors and intervals of values that
correspond to each color.

R provides di�erent ways of de�ning vectors of colors: those are just strings that represent
colors using an hexadecimal notation color-hex. For instance, color red corresponds to code
#FF0000, and yellow has code #FFFF00.

There are many ways of de�ning vectors of colors, as exempli�ed below. Parameter alpha
in [0,1] indicates transparency, with opaque corresponding to alpha=1. One can visualize
the resulting palette in Figure C.1.

library(randomcoloR) # color palettes

library(viridisLite) # colors (used in mapview)

mycolors<-c("red","yellow","green","blue")

mycolors<-colorRampPalette(c(rgb(0,0,1,alpha=1), rgb(0,0,1,alpha=0)), alpha = TRUE)(8)

mycolors<-viridisLite::inferno(n=10,alpha=1,begin=0.2,end=1,direction= -1)

mycolors

[1] "#FCFFA4FF" "#F5DC4DFF" "#FCAF13FF" "#F8850FFF" "#E8602CFF"

[6] "#CF4446FF" "#AE305CFF" "#8B226AFF" "#66166EFF" "#420A68FF"

Note that if the alpha parameters is used, tranparency is encoded in the 7 and 8-th hex-
adecimal digits, with maximum value FF for opaque and minimum value 00 for transparent.
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1
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Figure C.1: Visualizing a set of colors with pie.

To associate k colors to the data, we need to de�ne k+ 1 break values, with each color being
assigned to the respective interval. In mapview::mapview this is done with argument at for
the breaks and col.regions for the colors.

For instance, if we want to display the ndvi map in Section 3.6 with 4 classes between 0.1
and 1 then we need to choose at least 4 colors and the respective intervals as in the following
example. A description of options for mapview can be found in mapview reference. If the
number of colors is lower than the number of intervals, colors are recycled.

mycolors<-colorRampPalette(c(rgb(1,1,0,0.5), rgb(0,1,0,0.5)), alpha = TRUE)(4)

ndvic<-crop(ndvi,ndvi@extent/20)

For vector data, an in particular sf objects, some of the most commonly used options are
zcol to indicate the attribute to be rendered, col.regions for the color palette (as above),
at for the breakpoints (as above), alpha.regions for the opacity of the �lls (0 is transparent
and 1 is opaque), and lwd for the line width around the �lls (0 for no line). One can add
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+
− ndvic

	0.1	–	0.3
	0.3	–	0.5
	0.5	–	0.7
	0.7	–	1.0
	NA

1	km
3000	ft

Leaflet	|	Tiles	©	Esri	—	Source:	Esri,	i-cubed,	USDA,	USGS,	AEX,
GeoEye,	Getmapping,	Aerogrid,	IGN,	IGP,	UPR-EGP,	and	the	GIS
User	Community

Figure C.2: NDVI image classi�ed in 4 classes, using 4 selected colors.

features to mapview maps with mapview::addFeatures, and a variety of functions available
in package leaflet, like leaflet::addMarkers exempli�ed below.
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+
−

AragonezGrid	-	yield
	0	–	3
	3	–	5
	5	–	8

30	m
100	ft

Leaflet	|	Tiles	©	Esri	—	Source:	Esri,	i-cubed,	USDA,	USGS,	AEX,
GeoEye,	Getmapping,	Aerogrid,	IGN,	IGP,	UPR-EGP,	and	the	GIS
User	Community

Figure C.3: Map of polygon vector data set with selected colors and additional features.
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Effects of two-dimensional spatial

autocorrelation

The e�ects of two-dimensional spatial autocorrelation on standard statistical methods are
similar to those for one-dimensional autocorrelation discussed in Chapter 2. The presence
of autocorrelation decreases the e�ective sample size, as there are no longer n independent

sources of information. Thus, the standard statistical techniques which are derived under
the assumption of independence will provide mistaken signi�cance levels and p-values, as
well as mistaken con�dence levels for con�dence intervals.

This can be seen by again considering the autocorrelated error model introduced in (4.4)
or in (5.11), which extends the AR(1) autocorrelated error model discussed in Chapter 2.
We �rst re-write the AR(1) model, as given in equations (2.12), using the random vector
Y of n observations of a temporal process. Note that assuming independent Normal errors,
with εi ∼ N (0, σ2) for all i, is equivalent to assuming that the random error vector εεε has
a Multinormal distribution, with mean vector E[εεε] = 0 and variance-covariance matrix
V [εεε] = σ2 In, where In is the n × n identity matrix. Hence, model (2.12) can be re-written
as:

{
Y = µ1n + L εεε

εεε ∼ Nn(0, σ2 In) .
(D.1)

where 1n denotes a vector of n ones, εεε denotes the vector of n random errors εi, and L is a
(lower triangular) n× n matrix, whose i-th row is the vector λλλi, that is, L is the matrix:
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L =



1 0 0 0 . . . 0 0

λ 1 0 0 . . . 0 0

λ2 λ 1 0 . . . 0 0

λ3 λ2 λ 1 . . . 0 0
...

...
...

...
. . .

...
...

λn−1 λn−2 λn−3 λn−4 . . . λ 1


(D.2)

Vector Y is therefore a linear transformation of a Multinormal random vector εεε. Such linear
transformations preserve Multinormality, although the expected vector and (co-)variance
matrix of Y are di�erent from those of εεε. These new distribution parameters can be calcu-
lated from the standard properties for the expected vectors and variance-covariance matrix
of a linear transformation of a random vector. In fact, for any given random vector X,
constant vector a and constant matrix B, we have:

E[a + BX] = a + BE[X] (D.3)

V [a + BX] = BV [X]Bt (D.4)

In our context, X = εεε, B = L and a = µ1n, and so, taking into account (D.1):

E[Y] = E[µ1n + Lεεε] = µ1n + LE[εεε] = µ1n.

V [Y] = V [µ1n + Lεεε] = LV [εεε]Lt = σ2LLt .

Thus, the AR(1) time autocorrelation model (2.12) can be re-written in a single line:

Y ∼ Nn(µ1n, σ
2 LLt) . (D.5)

With a transient period of length t, the size of all vectors would be t + n and matrix L

would be (t + n) × (t + n), but only the last n elements of the vectors, and the lower-right
n× n submatrix of σ2LLt, would be of interest. Calling this n× n submatrix ΣΣΣ, and using
the approximate post-transient expressions (2.17) for the variances and covariances between
sample elements Yt+i and Yt+j, we have:

Y ∼ Nn(µ1n , ΣΣΣ) , (D.6)
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where

ΣΣΣ =
σ2

1− λ2



1 λ λ2 λ3 . . . λn−2 λn−1

λ 1 λ λ2 . . . λn−3 λn−2

λ2 λ 1 λ . . . λn−4 λn−3

λ3 λ2 λ 1 . . . λn−5 λn−4

...
...

...
...

. . .
...

...
λn−1 λn−2 λn−3 λn−4 . . . λ 1


(D.7)

Now we consider again the 2-dimensional spatial process introduced in equations (4.4) or
in (5.11). This model can also be re-written using a vector/matrix notation. Denoting
the random vector with the observed process Zi as Z, the vector of the autocorrelated
process {ηi}ni=1 as ηηη and the vector of the random errors as εεε, we have an alternative model
formulation:


Z = µ1n + ηηη

ηηη = λWηηη + εεε

εεε ∼ Nn(0, σ2In) ,

(D.8)

With a transient period of length t, W is a (t+n)×(t+n) matrix and only the post-transient
part of the process Z is of interest. With no transience, matrix W is n×n. In any case, the
second equation in model (D.8) can be re-written (assuming the matrix inverse exists) as:

(In − λW)ηηη = εεε ⇔ ηηη = (In − λW)−1εεε . (D.9)

So the model under consideration, with spatially autocorrelated errors, becomes:{
Z = µ1n + (In − λW)−1εεε

εεε ∼ Nn(0, σ2In) .
(D.10)

This model for spatially autocorrelated errors is an extension of the (one-dimensional) AR(1)
model (2.8), where matrix (In − λW)−1 replaces matrix L. In the AR(1) model each ob-
servation only depends on the observation that immediately preceded it, and so the spatial
weights matrix W in the AR(1) model has all elements equal to zero, except for the sub-
diagonal immediately beneath the main diagonal, where all elements would be 1. The inverse
of the resulting matrix In − λW then has the form for L given in equation (D.2).

This 2-D error autocorrelation model can again be written in a single line, since it states that
the observed vector Z has a Multinormal distribution, with parameters given by expressions
(D.3) and (D.4). Speci�cally, the expected vector is E[Z] = µ1n, and the (co-)variance
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matrix is given by:

V [Z] = (In − λW)−1 · σ2In ·
[
(In − λW)−1

]t
= σ2(In − λW)−1

[
(In − λW)t

]−1
(D.11)

= σ2
[
(In − λW)t(In − λW)

]−1
= σ2

[
In − λ

(
W + Wt

)
+ λ2WtW

]−1
.(D.12)

Thus:
Z ∼ Nn

(
µ1n , σ

2
[
In − λ

(
W + Wt

)
+ λ2WtW

]−1)
(D.13)

Using this vector/matrix notation, the sample mean can be written as Z = 1
n
1n

tZ, since
for any vector Z, the inner product 1n

tZ gives the sum of elements of Z. Like any linear
combination of the elements of a Multinormal vector, it will have a Normal distribution.
Using the properties for expected values and variances, we have :

E[Z] =
1

n
1n

t · µ1n = µ
1

n
1n

t1n = µ (D.14)

V [Z] =
1

n2
1n

t V [Z]1n . (D.15)

Since for any matrix B, the quadratic form 1n
tB1n gives the sum of all elements in B, under

the model D.13, the sample mean Z has the following distribution:

Z ∼ N
(
µ ,

sum(V [Z])

n2

)
, (D.16)

where sum(V [Z]) indicates the sum of all elements in the variance-covariance matrix given
in equation (D.12). For λ = 0 (no spatial autocorrelation) this expression for V [Z] reverts
back to σ2

n
, the result for independent samples. The above expression for the spatial autocor-

relation model will depend on both λ and the weights matrix W, but is in general di�erent
from the variance for independent samples. Equation (D.16) can be used to build con�dence
intervals for Z, when λ and σ2 are known.

This and other spatial correlation models will be further explored in Chapter 5.
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Exercises

E.1 Exercices on geographical data sets with R

E.1.1 Create a simple polygon sf object from scratch

This simple exercise illustrates how to create a sf object from scratch. This helps to un-
derstand what is its data structure. We de�ne some simple polygons and build a couple of
sf objects using those polygons. Polygons are just 2-column matrices of coordinates where
each row represents a vertex. One can also de�ne a list of polygons: the �rst polygon in
the list will be the exterior ring of the spatial region, and the following polygons in the list
de�ne holes. We suppose that the holes are in the interior of the region enclosed in the
external ring and, therefore, each list represents a spatially connected region on the plane as
illustrated in Figure E.1.

First, 5 polygons are de�ned and included in list, where each list is going to describe the
geometry of one feature of the sf object.

p1 <- rbind(c(0,0),c(4,0),c(4,4),c(0,4),c(0,0)) # polygon

hole1 <- rbind(c(1,1),c(3,1),c(3,3),c(1,3),c(1,1)) # polygon

P1<-list(p1,hole1) # list of polygons

p2 <- rbind(c(5+0,0),c(5+4,0),c(5+4,4),c(5+0,4),c(5+0,0))

hole2 <- rbind(c(5+1,1),c(5+3,1),c(5+3,3),c(5+1,3),c(5+1,1))

P2<-list(p2,hole2)

p3 <- rbind(c(5+1,4+1),c(5+3,4+1),c(5+3,4+3),c(5+1,4+3),c(5+1,4+1))

P3<-list(p3)
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Figure E.1: sf object of geometry type POLYGON or MULTIPOLYGON to be created from
scratch. The numbers indicate the indices of the vertices needed to de�ne the geometries.
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Let's now de�ne a �rst sf object with three features. Features 1 and 2 have one hole, while
feature 3 has just an exterior ring. Moreover, each feature can have attributes with values.
Here we consider just one attribute named code.

L<-list(st_polygon(P1),st_polygon(P2), st_polygon(P3))

mysf <- st_sf(code = c(1:3), geometry = st_sfc(L)) # sf object

mysf

Simple feature collection with 3 features and 1 field

geometry type: POLYGON

dimension: XY

bbox: xmin: 0 ymin: 0 xmax: 9 ymax: 7

epsg (SRID): NA

proj4string: NA

code geometry

1 1 POLYGON ((0 0, 4 0, 4 4, 0 ...

2 2 POLYGON ((5 0, 9 0, 9 4, 5 ...

3 3 POLYGON ((6 5, 8 5, 8 7, 6 ...

The geometry can be displayed in �well known text� format with st_as_text.

st_as_text(st_geometry(mysf))

[1] "POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0), (1 1, 3 1, 3 3, 1 3, 1 1))"

[2] "POLYGON ((5 0, 9 0, 9 4, 5 4, 5 0), (6 1, 8 1, 8 3, 6 3, 6 1))"

[3] "POLYGON ((6 5, 8 5, 8 7, 6 7, 6 5))"

One main feature of sf objects is that they are organized as tables (it is called a tidy format)
where each row corresponds to one single feature and with a special column called geometry

that determines the geometry of each feature.

The column geometry of mysf holds the spatial geometry of the features. This is a sfc

(sf column) object, which is a list of sfg (sfg stands for sf geometry) objects with a given
geometry. In short, three classes are used to represent simple features: sf for the table (a
data.frame), sfc for the list-column set of geometries, and sfg for the geometry of each
individual feature.
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In the example above, all features have the same geometric type with is POLYGON, which im-
plies, in particular, that every feature is spatially connected. Function sf::st_coordinates

not only returns the coordinates of all vertices, but also indicates the index of the feature
(L2) and the index of the ring (L1) for each one of them.

st_coordinates(mysf)[c(5,6,10,11),]

X Y L1 L2

[1,] 0 0 1 1

[2,] 1 1 2 1

[3,] 1 1 2 1

[4,] 5 0 1 2

Now, let's consider a di�rent way of representing the same region, but now with only two
features, where the second feature represents both objects P2 and P3. This new feature is
not spatially connected anymore, since P2 and P3 do not intersect: it is of geometric type
MULTIPOLYGON, which is a collection of objects of type POLYGON.

L<-list(st_polygon(P1),st_multipolygon(list(P2,P3)))

mymsf <- st_sf(value = c(1:2),geometry = st_sfc(L))

st_geometry_type(mymsf)

[1] POLYGON MULTIPOLYGON

18 Levels: GEOMETRY POINT LINESTRING POLYGON ... TRIANGLE

st_as_text(st_geometry(mymsf))

[1] "POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0), (1 1, 3 1, 3 3, 1 3, 1 1))"

[2] "MULTIPOLYGON (((5 0, 9 0, 9 4, 5 4, 5 0), (6 1, 8 1, 8 3, 6 3, 6 1)), ((6 5, 8 5, 8 7, 6 7, 6 5)))"

Since mymsf is of mixed type (we say that it is a COLLECTION), we cannot extract all its
coordinates at once. However, sf contains an extremely useful function called st_cast that
casts the objects from one geometric type to another one. This can be used to convert mymsf
into a new object of single type MULTIPOLYGON.
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newsf<-st_cast(mymsf,to="MULTIPOLYGON")

st_geometry_type(newsf)

[1] MULTIPOLYGON MULTIPOLYGON

18 Levels: GEOMETRY POINT LINESTRING POLYGON ... TRIANGLE

st_coordinates(newsf)[c(5,6,20,21),]

X Y L1 L2 L3

[1,] 0 0 1 1 1

[2,] 1 1 2 1 1

[3,] 6 1 2 1 2

[4,] 6 5 1 2 2

Note that there are now three levels for each vertex: the ring to which it belongs (L1), the
part (L2) and the feature (L3).

To complete the de�nition of the sf objects and to be able to combine them with other
geographical data sets, we need to associate a coordinate reference system (CRS) to the
data. Since this toy data set does not represent a real entity on the Earth surface, this is
not going to match with an existing feature. Nevertheless, one can georeference it at an
arbitray location. Here we choose a longitude and a latitude, and apply a straithforward
azimuthal projection at that point. The �nal dimensions (in meters) correspond to the
vertices' coordinates in newsf.

More speci�cally, the custom CRS below is an azimuthal projection (laea stands for Lambert
Azimuthal Equal Area) at the point with coordinates lon_0=-9.13464 and lat_0=38.70769.

st_crs(newsf)<-"+proj=laea +lon_0=-9.13464 +lat_0=38.70769 +x_0=0 +y_0=0 +ellps=WGS84 +units=m"

Since the data set now has a CRS, then it can be displayed with mapview.

mapviewOptions(basemaps="Esri.WorldImagery")

mapview(newsf)
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Figure E.2: Voronoi polygons with largest area for the Aragonez data set.

Finally, newsf can be exported as shape�le, geopackage, kml or other vector format with
st_write. Available drivers can be listed with st_drivers().

st_write(newsf, "newsf.shp") # the format is guessed from the file extension

E.1.2 Explore polygons that represent the Aragonez dataset

Consider the Voronoi polygons for the Aragonez data set determined in Section 3.1. Create
a sf object with the polygons with the largest areas (due to missing neighbors). The result
should be similar to Figure E.2.
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E.1.3 Download, mosaic and analyze raster images

Elevation data for most locations on the Earth is readily available to download as seen in
Section 3.7. For instance, SRTM3 elevations for Eurasia can be downloaded from site .

Those data sets are typically distributed in tiles of 1o×1o . Suppose that you want to create
a digital elevation model (DEM) for Continental Portugal, using the relevant tiles depicted
in the �gure bellow:

1. Write a R script to download all necessary tiles and merge them together to obtain an
elevation model for Portugal;

2. Determine the location where the slope is steepest according to the DEM, and observe
a high resolution image of that location.

Suggestions:

� To generate automatically a vector of tile names, one may want to consider the func-
tion formatC. For instance, formatC(7,width = 3, flag = "0") returns the string
"007";

� To merge two RasterLayer objects into one single one, one can use function raster::merge;

� To compute the slope, one can use function raster::terrain, as in Section 3.7.

E.1.4 Create a custom Bu�er function

Function sf::st_buffer applied to an sf object returns a new sf with a modi�ed geometry,
where geometric features are expanded by a given distance (which can be a positive or
negative, and can be constant or a vector of values). For instance, if it is applied to an
approximately circular feature with radius 100 m (and area equals to 31415.93 m2) and
distance 10 m, the output will be a circular feature with radius 110 m and area equals to
38013.27 m2.

De�ne a new function myBuffer which returns for each feature of the spatial object a new
feature which area is twice the area of the original feature.
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Figure E.3: STRM tiles for Continental Portugal
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E.1.5 Create a neighbor data structure for a polygon spatial data

set

Consider the regularly gridded Aragonez data set AragonezGrid created in Section 3.5.
De�ne neighborhood relations for that grid according to some geometric/distance criteria,
and create an object of class knn as described in Section 3.2 that represents the neighbors
for AragonezGrid.

E.2 Further exercises on tools for spatial autocorrelation

E.2.1 The Arinto dataset

Arinto is a very popular Portuguese variety of grapes for white wines. The Arinto data
frame, which can be downloaded from the course website, is a dataset that is similar to the
Aragonez dataset. A �eld trial was set up in the Azeitão area of the Setúbal Peninsula,
to the South of Lisbon. A vineyard trellis was set up, again with wires running in an ap-
proximately N-S direction. The 19 wires, numbered 52 to 70 and henceforth called columns,
were separated by 2.75m. Each wire was subdivided into �rows�, that is, rectangles of height
3.2m. The irregular contour of the �eld trial means that there are di�erent numbers of rows
in di�erent parts of the trial �elds, but the row numbers range from 1 to 61, with equal-
numbered rows being adjacent in two adjacent columns. As with the Aragonez dataset, the
main variable of interest is the yield of each rectangular cell, in what is approximately a
rectangular lattice. For each lattice cell, the variables in the data frame are:

Name Description
genotype Genotype of the vines in the grid cell
block The experimental design block to which the grid cell belongs
col The column number (52 to 70)
row The row number (1 to 61)
colm The distance (in m) of the column to the reference point
rowm The distance (in m) of the row to the reference point
yield the yield (in kg/cell) of the grid cell.

As with the Aragonez dataset, genotypes and blocks will be ignored.

The overall purpose is to repeat the steps taken to analyse the yields in the Aragonez dataset,
comparing the results in both cases. In particular:

OpenSpat 2018 267



Chapter E

1. Load the Arinto.RData �le into an R session. You should have a data frame called
Arinto available.

2. Create three new columns in the data frame, with the detrended yields that result
from:

� a constant trend;

� a linear trend on the col (x) and row (y) coordinates;

� a quadratic trend (second-degree polynomial) on the col (x) and row (y) coordi-
nates.

3. Create an sf object using colm and rowm as x and y coordinates, respectively. Do not
specify a proj4string argument (it will be de�ned as NA, but will not prevent the use
of most R functions).

4. Create a SpatialPointsDataFrame object with data variables given by the original,
and the three types of detrended yields.

5. Create bubble plots of the three types of detrended yields. Comment your results.
Does there seem to be spatial autocorrelation, in each of the plots?

6. Use the plot or spplot command to simultaneously plot the three types of detrended
yields. Compare the spatial patterns of the deviations from the three kinds of trends
de�ned above. Comment your results.

7. Create an object of class SpatialPolygonsDataFrame with the yields and the de-
trended yields as data. Use the spplot function to view:

(a) The three detrended yield variables;

(b) The four (detrended or not) yields.

Why is the second option not a good idea?

8. Using an appropriate R command, create a list of neighbours for each observed point,
where neighbours are de�ned as all points at a distance no greater than 10 meters
from each observed point. Taking into consideration the row-wise and column-wise
separations between observed points, how many neighbours should there be for a typical
point (where 'typical' means that it is not on the edges of the trial �eld)? Is this
coherent with the number of non-zero links that is displayed by the R command that
created your neighbour list?
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9. Use Moran's I and Geary's c to decide whether spatial autocorrelation exists, using
the neighbours de�ned above, and:

(a) a binary weight matrix;

(b) a row-normalized weight matrix.

10. Create a list of neighbours, using the k=8 nearest neighbours criterion. Based on the
resulting nb list, plot Moran's correlograms of order 10, for the three types of detrended
yields. Comment your results.

11. Consider again question 10, but now using a Geary's correlogram. Are the results
coherent?

12. Compute and plot the empirical semi-variograms for the detrended yields, using the
functions in the gstat package. Comment on the values obtained for the sill, nugget,
partial sill and range, in each case. How do these results relate to those obtained
above?

13. Choose a variogram model that you consider appropriate for the linearly detrended
yields and �t it on the appropriate empirical semi-variogram. How good is the �t?

14. Repeat the previous question, but using the quadratically detrended yields.

15. Study the possible existence of anisotropy, using the alpha argument in the variogram
function. Use the values 0 and 90 for the angles that de�ne each direction. Why
does the variogram associated with 90◦ drop o� at a distance of about 50, while the
variogram for 0◦ remain steady at a sill of approximately 0.27? Does anisotropy appear
to exist?

E.2.2 The meteorological dataset

Consider the meteorological dataset described in Subsection 4.8.2 and which is made available
on the course website, in a �le called meteo.RData, which has a data frame called meteo.

1. Create a new data frame with units that are better suited for human interpretation of
the variables: degrees Celsius for the three temperatures, hours for sunshine duration,
and millimetres for total precipitation. Call the new data frame meteo2. Does this
change a�ect any of the tools for spatial analysis that have been discussed so far? If
so, in what ways?
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2. It is natural to expect both a North-South gradient for variables such as temperatures,
and an East-West gradient which to some extent coincides with a transition from
Maritime to Continental weather. Create new columns in the meteo2 data frame, in
which each of the meteorological variables is detrended. Consider a linear trend on the
geographical coordinates.

3. Create bubble plots of the linearly detrended variables. What conclusions are suggested
by these bubble plots?

4. Create the empirical semi-variograms for each of the �ve detrended variables. Plot
them, and comment your results.

5. Create the cross-variograms for all pairs of variables. Comment your results.

E.2.3 Working with NetCDF data

NetCDF stands for Network Common Data Format. It is a set of machine-independent
data formats commonly used with scienti�c data. It is used by many websites that provide
large datasets in areas such as climatology and oceanography, among them the ECMWF
(European Centre for Medium-range Weather Forecasts) and NOAA (National Oceanic and
Atmospheric Adminstration, in the US). There is an R package called ncdf4 which provides
an interface between NetCDF �les and R.

1. Install the ncdf4 package on your machine.

2. The NOAA website provides meteorological datasets that result from the process-
ing of satellite data, often called reanalysis data. Go to NCEP-DOE Reanalysis 2:
Gaussian Grid webpage. Read the general information on that page. Download the
air.2m.mon.mean.nc NetCDF �le, with information on monthly mean air tempera-
tures (at 2m) for 473 months, on a world-wide grid of 192 longitude locations and 94
latitude locations.

3. Use the commands in the R package ncdf4 to convert the NetCDF �le, �rst into
a 3-dimensional array in R, and then into a SpatialPointsDataFrame object, with
longitude and latitude as coordinates and a data frame whose columns correspond to
di�erent months. In particular, explore the following commands:

(a) ncdf4::nc_open, to open (attach to the R session) the NetCDF �le that you down-
loaded. Save the result of your command in an R object called air2m.nc. Explore
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its class and structure and familiarize yourself with the names that NetCDF �le
has for each of its variables.

(b) ncdf4::ncvar_get, to select and save variables from the NetCDF �le as R objects.
Explore the start and count arguments in the ncvar_get command, in order to
select only a manageable subset of the full dataset, with a selected longitudes, b
selected latitudes and all a×b air temperatures for each of c months (choose small
values for a, b and c). In particular: (i) save the variable air (air temperatures)
as an object called air2m.air, exploring its class and structure (it should be a
three-dimensional array); (ii) save variable lon (the longitudes) as a vector called
air2m.lon; (iii) save variable lat (the latitudes) as a vector called air2m.lat.

(c) expand.grid, a command from the base distribution of R, to create a two-column
(ab rows) matrix with all the combinations of your selected longitudes and lati-
tudes.

(d) apply, to create a matrix with ab rows and c columns, storing the ab values of air
temperature for each given month in one of the columns. Use the apply command
to convert each of the c elements in dimension 3 to a vector (using the as.vector
command), that will be stored in each of the columns of the new matrix.

4. create a SpatialPointsDataFrame object with all the elements that you have created.
Use the CRS("+init=epsg:4326") shorthand to specify @proj4string slot (with the
longitudes and latitudes as coordinates in the WGS84 coordinate reference system).

5. view your SpatialPointsDataFrame object using mapview::mapview.

E.3 Mini-Project on Linear Model and Model Selection

The dataset has been provided by Bruno Tisseyre from Montpellier SupAgro. The data
consist of physical and biochemical measurements taken on vines in a vineyard. For each
measured vine the latitude and the longitude are known.

We are interested by the quality of the grapes for winemaking. An indicator of this quality
can be the sugar contained in the grapes, and it is measured using degrees Brix (1 degree
Brix is 1 gram of sucrose in 100 grams of solution).

The question of interest is whether or not this quality can be explained and/or estimated
using yield, water status or other physical or biochemical variables.

You can load the data in R, using the �le exo_viticulture.csv. Check the importation
and the classes of the di�erent variables. You can then specify that the variables x and y are
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spatial coordinates. Your dataset will then be considered as a SpatialPointsDataFrame.

mydata <- read.table(file = "datasets/exo_viticulture.csv", header = TRUE,

sep = ";",dec=',')

str(mydata)

library(maptools)

coordinates(mydata) <- c("x", "y")

E.3.1 Graphical Representation and Summary of the Data

A �rst step in the analysis is to represent and summarize our data.

1. We can �rst summarize the dataset.

2. One of the simplest spatial representations is a bubble plot. The vines are represented
by colors and bubbles whose size is proportional to measured degree Brix.

library(RColorBrewer)

spplot(mydata, "Brix", col.regions=brewer.pal(9,"Blues"),cex=0.3*(1:5),

aspect=1, key.space="bottom", main="Brix")

3. Another spatial representation is a perspective plot. The vines are distributed on 15
place and 5 row (we can note that 2 place are empty), and the Brix values observed
for these vines are represented from a perspective view. To do that, the Brix values
observed are entered into a matrix. Then we decide to multiply by 3 the values of the
place and row to have a better display.

Brix <- matrix(nrow = 15, ncol = 5)

for (i in 1:49){

Brix[mydata$place[i],mydata$row[i]] <- mydata$Brix[i]

}

place <- 3 * 1:15

row <- 3 * 1:5

persp(place, row, Brix, theta = 40, phi = 20,

zlim = c(16,25), scale = FALSE,cex.lab=1,ticktype="detailed",main="Brix")
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4. Finally we can represent the possible scatterplots between the di�erent variables, to
examine possible correlations between these variables.

pairs(mydata@data[,1:13])

E.3.2 A First Linear Model

We want to explain and to estimate the quality of grapes (the Brix variable), using the 12
other physical and biochemical variables.

Fit the full model, that is the model with all the 12 explanatory variables included in the
model. What do you think of this model?

mod1 <- lm(Brix ~ Pot_hydr + Berry_weight + pH + Acidity + IPT

+ Nb_berry_vinestock + Yield + Antho_grape + Antho_berry

+ SFEp + Circum + Vigour, data=mydata)

summary(mod1)

E.3.3 Model Selection to Explain the Quality of the Grapes

You can select a model using a model selection procedure. For instance, using the backward
procedure and Fisher's tests (function drop1).

drop1(mod1, .~.,test="F")

E.3.4 Model Checking

We will now keep the model selected using backward procedure and Fisher's tests. To be
able to test the di�erent components of this model, some assumptions should be checked.

1. Write the equation of the model kept, and the associated assumptions on the residuals.

2. The �rst step to check the assumptions is to plot some �gures dedicated to model
diagnosis. Interpret these �gures.
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3. To check the homoscedasticity of the residuals, we can plot the residuals against the
�tted values and against every possible explanatory variable.

4. We also need to check the independance of the residuals. What do you propose to
check that?

E.3.5 Interpretation of the Model

If the assumptions of the model have been veri�ed, you can examine the estimated coe�cients
of the kept model, and interpret them.

E.4 Practical work on regression models for spatially autocorrelated

data

The data are explained and are available in the book `Spatial Data Analysis In Ecology and

Agriculture using R'. R.E. Plant, CRC Press, 2012.
Data was collected as part of a four year study initiated in Winters, California, which is
located in the Central Valley. The objective here is to determine if we can establish which
of the measured explanatory variables in�uenced the observed yield variability in two �elds.
Here we will focus on the �rst year of experimentation, and on the �rst �eld. During this
year, the �rst �eld was planted with wheat in December 1995 and harvested in May 1996.
It was harvested with a harvester equipped with a yield monitor so a yield map of the �eld
is available. Soil and plant data were collected by sampling on a square grid 61m in size, or
about two sample points per hectare (hence 86 points).
The climate of California's Central Valley is Mediterranean, with hot, essentially rain-free
summers and cool, wet winters. However, spring wheat was planted in an irrigated cropping
system. Furthermore, the �eld was managed by a highly skilled farmer who used the best
practices as recommended by the University of California.
The original analysis of this data set was carried out by Plant et al. (1999), and can be
found in the book `Spatial Data Analysis in Ecology and Agriculture using R'. R.E. Plant,
CRC Press, 2012.

The variables in this dataset are given in Table E.1.

To perform a statistical analysis on this data set, we have to take into account the fact that
not all the variables are on the same resolution scale, and to take into account the spatial
information:
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Variable Quantity represented Type Spatial resolution
Sand Soil sand content (%) Exogenous Low
Silt Soil silt content (%) Exogenous Low
Clay Soil clay content (%) Exogenous Low

SoilpH Soil pH Exogenous Low
SoilTOC Soil total organic C (%) Exogenous Low
SoilTN Soil total nitrogen (%) Exogenous Low
SoilP Soil phosphorous content Exogenous Low
SoilK Soil potassium content Exogenous Low
Weeds Weeds level (1-5) Exogenous Low

Disease Disease level (1-5) Exogenous Low
CropDens Crop density (1-5) Endogenous Low

leafN Leaf nitrogen content Endogenous Low
FLN Flag leaf N content Endogenous Low
SPAD Minolta SPAD reading Gauge Low

GrainProt Grain protein (%) Response Low
Yield Yield (kg ha−1) Response High

Easting Easting coordinate Coordinate High
Northing Northing coordinate Coordinate High

Table E.1: Variables in data set.

1. The variables Yield and the other variables are not on the same resolution scale.
Concerning the Yield we have measurements on a map with 33183 points. Concerning
the other variables they were collected by sampling on a square grid 61m in size, hence
on 86 points. To be able to explain the yield with the other variables, the yield hase
been interpolated on these 86 sample points. The method used is the interpolation
with inverse weighted distance. The interpolated yield has been added to our dataset
containing the low resolution variables. It has been scaled.

2. Easting and Northing variables are considered as spatial coordinate variables, the
data set is a SpatialPointsDataFrame object.

You can load the dataset into R.

library(maptools)

load("datasets/Plant/Plant_dataset.Rdata")

OpenSpat 2018 275



Chapter E

E.4.1 Graphical Representation and Summary of the Data

A �rst step in the analysis is to represent and summarize our data.

1. We can �rst summarize the dataset.

2. We can give a rapid description of the dataset, for instance concerning the variables
Clay, SoilP, Weeds and Yield, using boxplots or histograms.

3. We can take into account the spatial information. Figure E.4 shows a map of the
soil types in the �eld. This map was constructed by R.E. Plant by downloading a
shape�le of Soil Survey Geographic (SSURGO) soil classi�cation data from the natural
Ressource Conservation Service (NRCS) Soil Data Mart http://soildatamart.nrcs.usda.gov
and clipping this shape�le in ArcGIS with that of the �eld boundary.
The northernmost soil type is Capay silty clay (Ca). This soil is characterized by a low
permeability. The soil type in the center is Brentwood silty clay loam (BrA), which is
characterized by a moderate permeability. The soil in the south is Yolo silt loam (Ya),
which is characterized as moderately permeable and well drained.
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Figure E.4: Soil types in the �eld

We can take into account the spatial information for the low resolution variables (point
sample data), see for instance Figure E.5 representing the variables Sand, Clay, SoilP
and Weeds.

Figure E.6 represents the yield map (high resolution). The southern part of the �eld
has a higher yield overall, with the southwest corner having the highest yield. The
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Figure E.5: Sand, Clay, SoilP and Weeds in the �eld

yield then generally appears fairly smooth except for two anomalously low areas: a
triangular shaped region on the western edge, and the entire eastern edge.

Using dataset, you can represent the yield map in low resolution, using a bubble plot
(Figure E.7).

library(RColorBrewer)

spplot(dataset, "Yield", col.regions=brewer.pal(9,"Oranges")[4:9],

cex=0.5*(1:5),scales = list(draw = TRUE),xlab = "Easting",

ylab = "Northing", main = "1996 Yield (low resolution)")

4. The preceding Figure suggests a spatial correlation of the yield. A way to visualize
this correlation is to use a semi-variogram. In order to use a semi-variogram, the
random spatial process studied (here the yield) must be second-order stationary. This
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Figure E.6: Map of the yield

is obviously not the case here, hence detrended data must be used. We then need to
detrend the yiel, that is to remove the spatial deterministic trend. What to you think
of this trend and of the detrended data ?

TrendYield <- lm(Yield ~ I(Easting^2) + I(Northing^2) + I(Easting * Northing)

+ Easting + Northing, dataset)

dataset$trend <- predict(TrendYield, dataset)

dataset$detrended <- residuals(TrendYield)

spplot(dataset, "trend", col.regions=brewer.pal(9,"Oranges")[4:9]

,cex=.5*(1:5), main="Trend of yield",key.space="right")

spplot(dataset, "detrended", col.regions=brewer.pal(9,"Oranges")[4:9]

,cex=.5*(1:5), main="Detrended yield",key.space="right")
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Figure E.7: Map of the yield (low resolution).

5. Then, we can compute semi-variograms for the detrended yields, and interpret it. Here
we compute the semi-variograms in four di�erent directions, to check for isotropy.
What is your conclusion?

summary(dataset@coords)

library(gstat)

plot(variogram(detrended ~ 1, dataset, alpha = c(0, 45, 90, 135)),

main="Variograms for detrended yield")

E.4.2 Model selection to explain the yield

We do not consider SoilTOC for inclusion in the model, as it is quite correlated to SoilTN.
Moreover, the soil texture components sum to 100 and Sand has a stong negative association
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with Clay. Hence we do not consider Sand for inclusion in the model. Scatterplots show that
the endogenous variables (CropDens, LeafN and FLN) all share some degree of association
with each exogenous variable. Therefore we do not consider them for inclusion in the model.
Finally, We consider the following explanatory variables for inclusion in the model: Silt,
Clay, SoilpH, SoilTN, SoilP, SoilK, Weeds and Disease.

1. We can represent the possible scatterplots or boxplots between the Yield and the
explanatory variables, to get an idea of the relationships. Give an interpretation for
all the following plots.

par(mfrow=c(2,2))

plot(Yield ~ Silt, dataset)

plot(Yield ~ Clay, dataset)

plot(Yield ~ SoilpH, dataset)

plot(Yield ~ SoilTN, dataset)

par(mfrow=c(2,2))

plot(Yield ~ SoilP, dataset)

plot(Yield ~ SoilK, dataset)

plot(Yield ~ Weeds, dataset)

plot(Yield ~ Disease, dataset)

2. Several arguments are in favor of the inclusion of interactions in the model. First,
the counterintuitive observed associations with yield as discussed before. The preced-
ing scatterplot show relationships that indicate an interaction between some of the
explanatory variables associated with yield. Indeed, some yield values trend in one
direction with an explanatory variable, and some are either not associated or trend in
another direction. This may indicate that yield has a di�erent relationship with these
variables in di�erent parts of the �eld. (In fact we can make other plots and see that
there are di�erent linear relationships between yield and the explanatory variables in
the north and in the south of the �eld. If we do not want to include interactions, we
should do two analysis: one for the north of the �eld, and one for the south.)
A lot of interactions can be considered, but we restrict the analysis to those which
have a biophysical or an empirical sense. We think that mineral nutrients and pH
can interact with soil texture, hence we consider the interaction terms of Clay with
SoilpH, SoilTN, SoilP and SoilK. We also consider another interaction justi�able on
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a biochemical basis, the interaction between SoilP and SoilpH.
The full model is coded as follows:

mod.full <- lm(Yield ~ Silt + Clay + SoilpH + SoilTN + SoilP + SoilK

+ Weeds + Disease + Clay*SoilpH + Clay*SoilTN + Clay*SoilP

+ Clay* SoilK + SoilpH*SoilP, data=dataset)

Using a selection procedure, select a model to explain the yield.

E.4.3 Model Checking

Using the preceding selected model, the error terms are assumed to be independent, to follow
the Gaussian distribution and to be homoscedastic. In particular, no spatial correlation of
the error term is assumed. To validate these assumptions, we have to perform several tests
and �gures.

1. Write the equation of the model kept, and the associated assumptions on the residuals.

2. The �rst step to check the assumptions is to plot some �gures dedicated to model
diagnosis. Interpret these �gures.

3. To check the homoscedasticity of the residuals, we can plot the residuals against the
�tted values and against every possible explanatory variable.

4. We now want to check the spatial independence of the residuals. The �rst step is to
represent the residuals on a map. Based on this map, what do you think of the spatial
distribution of the residuals?

5. We can represent the variogram of the residuals. Interpret its shape.

6. We can also represent the Moran correlogram of the residuals. You �rst need to de�ne
a list of neighbors for each location. For instance, you can de�ne that the neighbors of
a location are its 4-nearest neighbors. Interpret the shape of the Moran correlogram.

7. Finally after all these plots, we can perform a statistical test to test if the residuals are
spatially correlated or not. Give the name of this test, the associated hypotheses, and
perform it. What is your conclusion?

OpenSpat 2018 281



Chapter E

E.4.4 Regression models for spatially autocorrelated data

After �tting a linear model to explain the yield, we �nd that the assumptions on the residuals
were not veri�ed. In particular, the residuals were found to be spatially correlated (we
checked that we were not in presence of heteroscedasticity). Therefore, we cannot rely on
classical tests on the coe�cients of this model, hence we cannot interpret this model. Indeed,
the type I error rate could be increased, or the coe�cient' estimates could be biased.

We need to adapt our methodology and to use models taking into account spatial e�ects by
using speci�c autocorrelation structures. We will use regression models speci�cally designed
for spatial data (spatial lag and spatial error models).

E.4.4.1 Fitting spatial lag and spatial error models

1. For these models, we need to de�ne a spatial weights matrix: we de�ne a list of
neighbors for each location (for instance the 4-nearest neighbors), then we de�ne a
spatial weights matrix (for instance a row-standardised spatial weights matrix).

library(spdep)

nlist <- knn2nb(knearneigh(dataset,k=4))

W <- nb2listw(nlist,style="W")

2. Give the equation of the spatial lag model, the associated assumptions, and interpret
it.

3. Fit the spatial lag model. We �rst need to specify the formula of the model. Concerning
the explanatory variables, we keep those which were selected in the classical linear case.

library(spatialreg)

myformula <- as.formula("Yield ~ Clay + SoilP + Weeds + Clay*SoilP")

mod.lag <- lagsarlm(myformula, data=dataset, listw=W)

summary(mod.lag)

4. Give the equation of the spatial error model, the associated assumptions, and interpret
it.
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5. Fit the spatial error model, in the same way you �tted the spatial lag model.

mod.err <- errorsarlm(myformula, data=dataset, listw=W)

summary(mod.err)

E.4.4.2 Comparison between spatial lag and spatial error models and model

selection

1. Using likelihood ratio tests, choose between the spatial lag model and the spatial error
model. For each test performed, specify the hypotheses.

LR.sarlm(model.lm,mod.lag)

LR.sarlm(model.lm,mod.err)

2. Using AIC criteria and pvalues, choose between the spatial lag model and the spatial
error model.

AIC(mod.lag,mod.err)

The p-values indicate that we prefer the spatial lag model (this model is not rejected).
The same conclusion is obtained if we use the AIC criteria.
We can �t a SAC model and compare it to the spatial lag model.

mod.sac <- sacsarlm(myformula, data=dataset, listw=W)

LR.sarlm(mod.sac,mod.lag)

AIC(mod.lag,mod.sac)

We prefer to keep the spatial lag model instead of the spatial SAC model. This means
that the yield values are directly associated with each other, as opposed to being as-
sociated with unmeasured, spatially autocorrelated processes that are loaded into the
error. It seems counterintuitive, since it is unlikely that wheat plants would in�uence
each other at a distance of 61 meters. Each of the explanatory variables is likely to be
autocorrelated. The values of SoilP and Clay are highly in�uenced by soil forming
processes, and Weed is likely to be in�uenced by the weed seed bank, which likely dis-
play interactive autocorrelation. Yield response to these autocorrelated explanatory
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variables, as well as to autocorrelated variables not included in the model, may cause
it to display a level of positive autocorrelation su�cient for the lag model to provide
the best �t to the data. This is especially true if the uncorrelated errors ε tend to be
larger in magnitude than the correlated errors η.

3. Try to remove explanatory variables and interactions between them to improve the
�tting of your model, and to include other variables that were not already included.

4. Have a look at the residuals of the �nal model chosen.

5. Predictions using this spatial lag model can be done. Make predictions for the data on
which the model was �tted.

pred <- as.data.frame(predict.sarlm(mod.lag))

head(pred)

dataset$pred <- pred[,1]

spplot(dataset, "pred", col.regions=brewer.pal(9,"Oranges")[4:9],

cex=.5*(1:5), main="Fitted values of mod.lag")

6. But It is also possible to make predictions for new data. For instance, we can make
predictions for yield if the soil phosphorous content is increased by one unit (using
fertilizer).

dataset2 <- dataset

dataset2@data$SoilP <- dataset@data$SoilP + 1

newpred <- as.data.frame(predict.sarlm(mod.lag, newdata=dataset2@data,

listw = W, pred.type="TS"))

head(newpred)

dataset@data$prev <- newpred$fit

spplot(dataset, "prev", col.regions=brewer.pal(9,"Oranges")[4:9],

cex=.5*(1:5), main="Prevision of yield when SoliP is increased by 1")

E.4.4.3 Extended linear model

We now want to use an extended linear model, which is a generalization of the spatial lag
and spatial error models.
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Choosing the form of the variance-covariance matrix of the error term is equivalent to choose
a model for the semi-variogram.

1. You can have a look to the form of the empirical semi-variogram for the residuals.

2. As we do not feel con�dent to choose a model from the form of the semi-variogram,
we prefer to choose the model of the semi-variogram using the AIC criteria.

Error in glsEstimate(object, control = control): computed "gls" fit is singular,

rank 1

Error in `coef<-.corSpatial`(`*tmp*`, value = value[parMap[, i]]): NA/NaN/Inf

in foreign function call (arg 1)

3. Once you have chosen a model, you can compare it to the classical linear model, using
the anova fonction.

4. You then need to check that the chosen model solve the problem of spatial dependency,
by looking at the semi-variogram of the studentized residuals, and by looking at these
Studentized residuals on a map.

5. Make predictions of yield.

pred <- predict(modSpher, newdata=dataset)

head(pred)

6. If this is relevant, make some predictions in case the values of some explanatory vari-
ables are increased or decreased (imagine relevant scenarios).

dataset2 <- dataset

dataset2@data$SoilP <- dataset@data$SoilP + 1

newpred <- predict(modSpher, newdata=dataset2)

head(newpred)

dataset@data$prev2 <- as.numeric(newpred)

spplot(dataset, "prev2", col.regions=brewer.pal(9,"Oranges")[4:9],

cex=.5*(1:5), main="Predicted yield when soilP is increased by 1")
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