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Random Process
A random process, RP Zs,is defined as a set of usually dependent random variables Z(s), one for each site s
in the study area Γ.

RP Zs = {Z(s),∀s ∈ Γ}
To any set of N sites correspond a vector of N random variates, whose probability (or multivariate cdf) is:

F (Z(s(1)), . . . , Z(s(N))) = Prob(Z(s(1)) ≤ z1, . . . , Z(s(N)) ≤ zN )

The set of all such N-multivariate cdf for any positive integer N constitutes the spatial law of RP Zs.

In practice, the analysis will be limited to no more than two sites at a time:

Covariance: C(si, sj) = E[Z(si)Z(sj)]− E[Z(si)]E[Z(sj)]

Variogram: 2γ(si, sj) = V ar[Z(si)− Z(sj)]

IDW or Inverse Distance Weight
Local Estimation

The variable of interest Z(s) was measured on six different sites {sA, sB , sC , sD, sE , sF }.
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What is the value at a new site?
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Principle
The IDW or Inverse Distance Weighted interpolation gives an estimation of Z(snew) build as a weighted
linear combination of the neighborhood values. The weight is:

• high for sites nearby snew

• low for neighbours far away from snew

Neighborhoods Definition
Several definitions exist, among them:

• Neighborhood(snew) = k nearest neighbours/sites (localisation)
• Neighborhood(snew) = neighbours/sites inside a circle centered on snew and with a given radius R.

Nnew will denote the number of sites in the Neighborhood(Snew) in the following.

Equation of the IDW
Each site si of the neighborhood has a weight inversely proportional to the distance between (si) and the site
to predict/estimate (snew):

Ẑ(snew) =
∑Nnew

i=1
Z(si)

dist(si,snew)∑Nnew

i=1
1

dist(si,snew)

A broader definition uses a power function of the distance between si and snew:

Ẑ(snew) =
∑Nnew

i=1
Z(si)

dist(si,snew)P∑Nnew

i=1
1

dist(si,snew)P

Algorithm
1. Define the neighborhood
2. Create a grid of interpolation
3. Calculate the IDW interpolation at each node of the grid.
4. Plot the interpolation surface on a graph
5. Analyse the sensitivity of the interpolation to the definition/size of the neighborhood

Properties, Limits of the IDW Approach
-The IDW interpolation is an exact estimation. It gives the observed values as estimated for the sam-
pled/observed sites.

• The interpolation surface is continuous/smooth

• The interpolation does not depend on the site configuration but on the distances between sites.

Example: SIC1997
• Data description

Dataset from the Spatial Interpolation Comparison exercise 1997 (SIC97) Reference: Journal of Geographic
Information and Decision Analysis, vol.2, no.2, pp. 1-11 (1997)

• 467 daily rainfall measurements made in Switzerland on the 8th of May 1986 were used in SIC97
(sic_full).
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• From them, 100 observed data (sic_obs) were used to estimate the rainfall at the remaining 367
locations.

data(sic97)

mydata<-st_as_sf(sic_full)
mydataobs<-st_as_sf(sic_obs)
mydata$obs<- mydata$ID %in% mydataobs$ID

crs.suisse<-"+proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333 +k_0=1 +ellps=bessel +towgs84=674.4,15.1,405.3,0,0,0,0 +units=m +no_defs +x_0=-55000 +y_0=14000"
st_crs(mydata)<-crs.suisse
myobs<-mydata[mydata$obs,]

mapview(mydata,zcol="rainfall")+mapview(myobs, col.regions="red", alpha.regions=0.5)
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IDW Map
• Grid

chull<-mydata %>% st_union() %>% st_convex_hull()
mydata.points<-mydata %>% st_make_grid(n=100) %>% st_intersection(chull) %>% st_centroid()
mydata.grid<-mydata %>% st_make_grid(n=100) %>% st_intersection(chull)

mapview(mydata,zcol="rainfall")+mapview(mydata.grid, col.regions="red")
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• Map
# IDW interpolation (needs package stars)
obs_idw <- idw(rainfall~1,locations=myobs,newdata=st_sf(mydata.points))

## [inverse distance weighted interpolation]
st_geometry(obs_idw)<-st_geometry(mydata.grid) # to assign polygons
#obs_idw <- idw(rainfall~1,locations=myobs,mydata)
summary(obs_idw)

## var1.pred var1.var geometry
## Min. : 13.97 Min. : NA POLYGON :7169
## 1st Qu.:136.90 1st Qu.: NA epsg:NA : 0
## Median :173.92 Median : NA +proj=some...: 0
## Mean :186.25 Mean :NaN
## 3rd Qu.:227.96 3rd Qu.: NA
## Max. :566.62 Max. : NA
## NA's :7169
full_idw <- idw(rainfall~1,locations=mydata,newdata=st_sf(mydata.points))

## [inverse distance weighted interpolation]
#obs_idw["var1.pred"] %>% as_Spatial() %>% spplot()
mapview(obs_idw["var1.pred"], zcol="var1.pred",lwd=0,legend=FALSE)+mapview(myobs,zcol="rainfall")
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spplot(as_Spatial(obs_idw["var1.pred"]))
spplot(as_Spatial(full_idw["var1.pred"]))

Kriging
Principle:

• Characterize the spatial structure of the variable studied by a variogram

• Construct a linear combination that best predicts/estimates the value at a point by taking into account
the correlations between points in the neighborhood

• Quantify uncertainty related to prediction (variance of the prediction/estimation)

Characterizing the Spatial Structure: Variogram
The variogram is a method which measures the average ‘pattern dissimilarity’ between two samples according
to their distance.

The experimental variogram is computed from the data and adjusted with a mathematical model defined by
three parameters.

• The nugget: the variance between two points at distances smaller than the shortest sampling interval.
This variance is due to the measurement error or to the spatial discontinuity.

• The range: distance above which sites are non correlated.

• The sill: The variance between 2 non correlated sites.

The variogram shape is also determined by i) the slope or speed at which destructuring occurs according to
distance, and ii) the direction in which the variogram was computed/constructed (depends on the spatial
anisotropy).
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Figure 1: Variogram model parameters
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Experimental Variogram
Each point of the experimental semivariogram represents half the variance between two sites separated by a
specified distance. As the distance increases the variability between sites is assumed to increase.

• Computation

2γ̂(h) = 1
Nh

∑
i,j∈Neigh(h)

(Zsi
− Zsj

)2

where Neigh(h) = {(i, j), | si− sj |=| h |} is the set of pairs of points separated by a distance h and Nh is
the number of elements in Neigh(h).

Practical aspect: Cut the interval of observed distances ([h_{min},h_{max}]) into bins of the same length.

1. For all pairs (si, sj) compute Vi,j = (Z(si)− Z(sj))2

2. Plot Vi,j according to the distance | si − sj |
3. Compute the mean value of all the points in each bin to get the experimental variogram point

The experimental variogram is sensitive to the choice of breaks and to hmax. Often hmax is not the maximum
distance but half its value to prevent border effects in the experimental variogram.

Eventually, the experimental variogram can be computed along one or several direction(s), when the processus
Zs is spatially anisotropic.

• Automatic computation with package gstat
# package gstat
v <- variogram(rainfall ~ 1, data= myobs)
v

## np dist gamma dir.hor dir.ver id
## 1 15 5078.697 554.700 0 0 var1
## 2 68 11926.084 3190.882 0 0 var1
## 3 111 19714.898 3683.126 0 0 var1
## 4 132 27743.181 8626.913 0 0 var1
## 5 142 35528.553 8879.391 0 0 var1
## 6 191 42984.622 11295.016 0 0 var1
## 7 172 50941.385 13502.174 0 0 var1
## 8 211 58613.468 15434.417 0 0 var1
## 9 229 66349.844 14101.290 0 0 var1
## 10 229 74535.224 16060.395 0 0 var1
## 11 225 82127.807 16137.349 0 0 var1
## 12 249 90317.707 14494.484 0 0 var1
## 13 240 97924.235 17336.248 0 0 var1
## 14 281 105896.406 13148.614 0 0 var1
## 15 256 113440.560 10941.543 0 0 var1
plot(v)

Calibration of the Model Variogram
To choose the best model between the list of possible models, a visual inspection is often enough but some
statistical criteria like AIC or the weighted Sum of Squares (WSS) are also used.

to go further, WSS mathematical definition:

WSS =
K∑

k=1
w(hk) [γ̂(hk)− γ(hk)]2
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Figure 2: Semivariogram obtained with myobs dataset

where 2γ̂(hk) and 2γ(hk) are respectively the experimental and the model variogram values for sites separated
by a lag/distance hk. The weight, w(hk), is usually proportional to the number of site pairs at lag hk.
m.fit <- fit.variogram(v, vgm("Sph"))
m.fit

## model psill range
## 1 Nug 0.00 0.00
## 2 Sph 15292.38 82946.36
plot(v,m.fit)
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Comments on the variogram: For adjacent sites, the half variance (or semivariance) is around 0 and not null.
This value is called the nugget effect. For a distance above 8.294636× 104 the semivariance is stabilized and
has attained a sill of 1.529238× 104.

Stationarity Assumptions
The RP Zs is assumed stationary to use variogram or kriging statistical tools.

A sufficient condition for the existence of the variogram is the intrinsic stationarity. Often, the RP is assumed
to be stationary of order 2 (which implies the intrinsic stationarity).

• Stationarity of order 2:
– Expected value exists and is constant (E[Z(si)] = m, ∀si ∈ Γ).
– The covariance function C(h) exists and depends only on the distance h.

• Intrinsic stationarity : Increments Z(si)− Z(sj) are stationary of order 2.

To go further, mathematical model: The RP Zs is usually decomposed into a residual component (random
process Rs) and a trend component (deterministic function m(s)):

Z(si) = R(si) +m(si)

The RP Rs is assumed stationary of order 2 with zero mean value.

Three kriging variants can be distinguished according to the function m(s) used for the trend.

1. Simple Kriging (constant known mean value): m(si) = m, ∀si ∈ Γ
2. Ordinary Kriging (locally constant unknown mean): ∀sj ∈ Neighborhood(snew), m(sj) = m(snew)
3. Universal kriging (non constant unknown mean)

Ordinary Kriging
Estimator (definition and properties)
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The value at a new site Ẑ(snew) is estimated from the samples in its neighborhood Z(s1), Z(s2), . . . , Z(sNnew )
by a linear combination:

Ẑ(snew) = λ1(snew)Z(s1) + λ2(snew)Z(s2) + . . .+ λNnew (snew)Z(sNnew )

where λi(snew), 1 ≤ i ≤ Nnew, are determined by solving the system of equations corresponding to these two
assumptions:

1) The expected value of the estimator is not biased.
2) The variance of the estimator is minimal.

The first assumption implies the following constraint:
∑Nnew

i=1 λi(snew) = 1

Each predictor Ẑ(snew) is a random variable with a variance, often called the kriging variance.This variance
depends only on the model variogram and on the spatial pattern of the sites (those observed and those to
predict). Therefore this variance does not depend on the observed values Z(s1), Z(s2), . . . , Z(sNnew ). The
kriging variance is optimal for a Gaussian RP Zs.

To go further the ordinary kriging system:

1. Remember that ∀sj ∈ Neighborhood(snew), m(sj) = m(snew), so:

Ẑ(snew) =
Nnew∑
i=1

λi(snew) (Z(si)−m(snew)) +m(snew)

=
Nnew∑
i=1

λi(snew)Z(si) + [1−
Nnew∑
i=1

λi(snew)]m(snew)

The unknown local mean value is filtered from the linear estimator when the kriging weights sum to 1.

2. The variance of the estimator is:

var[Ẑ(snew)− Z(snew)] =
Nnew∑
i=1

Nnew∑
j=1

λi(snew)λj(snew)C(si, sj) + C(0)

− 2
Nnew∑
i=1

λi(snew)C(si, snew)

The minimization of this error variance under the non bias condition leads to the following system of
linear equations:

∑Nnew

i=1 λi(snew) γ(si, sj)−m(snew) = γ(si, snew), i = 1, . . . , Nnew∑Nnew

i=1 λi(snew) = 1

Kriging Map

NF.kriged = krige(rainfall ~ 1, locations=myobs, newdata=mydata.points, model = m.fit)

## [using ordinary kriging]
plot(NF.kriged)
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var1.pred

var1.var

Cross Validation
krige.cv

Cross validation functions for simple, ordinary or universal point (co)kriging, kriging in a local neighbourhood.

Leave-one-out cross validation (LOOCV) visits a data point, and predicts the value at that location by leaving
out the observed value, and proceeds with the next data point. (The observed value is left out because kriging
would otherwise predict the value itself.) N-fold cross validation makes a partitions the data set in N parts.
For all observation in a part, predictions are made based on the remaining N-1 parts; this is repeated for each
of the N parts. N-fold cross validation may be faster than LOOCV.
NF.kriged.cv = krige.cv(rainfall ~ 1, locations=myobs, model = m.fit, nmax=20, nfold=5)
bubble(as_Spatial(NF.kriged.cv), "residual", main = "rainfall: 5-fold CV residuals")
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rainfall: 5−fold CV residuals

−188.652
−51.142
−5.279
27.316
299.308

Prediction for Rainfall Data (SIC97)
• Residuals

#sic_nobs <- sic_full[-(1:100),]
NF.kriged.nobs = krige(rainfall ~ 1, myobs, model = m.fit, newdata=mydata[!mydata$obs, ],nmax=20)

## [using ordinary kriging]
NF.kriged.nobs$residuals <- mydata[!mydata$obs,]$rainfall-NF.kriged.nobs$var1.pred
bubble(as_Spatial(NF.kriged.nobs), "residuals", main = "rainfall: residuals")
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rainfall: residuals

−260.605
−27.607
−2.672
28.2
265.524

• Histogram of true and predicted values
summary(data.frame(obs=mydata[!mydata$obs,]$rainfall,pred=NF.kriged.nobs$var1.pred))

## obs pred
## Min. : 0.0 Min. : -1.695
## 1st Qu.:100.0 1st Qu.:111.374
## Median :162.0 Median :165.489
## Mean :185.4 Mean :182.518
## 3rd Qu.:263.5 3rd Qu.:251.753
## Max. :517.0 Max. :487.654
par(mfrow=c(1,2))
hist(mydata[!mydata$obs,]$rainfall)
hist(NF.kriged.nobs$var1.pred)
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Histogram of mydata[!mydata$obs, ]$rainfall
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Kriging gives a smooth prediction with less dispersion of the rainfall values.

• Correlation between true and predicted values
#st_data<-function(SF){st_geometry(SF)<-NULL; return(SF)}
NF.kriged.nobs$rainfall<-mydata[!mydata$obs,]$rainfall

cor(NF.kriged.nobs$rainfall,NF.kriged.nobs$var1.pred)

## [1] 0.8657555
var(NF.kriged.nobs$residuals)

## [1] 3095.841
coef <- coef(lm(var1.pred~rainfall,data=NF.kriged.nobs))

ggplot(NF.kriged.nobs,aes(x=rainfall,y=var1.pred)) +
geom_point() +
geom_abline(slope =1, intercept = 0, col="red",size=2) +
geom_abline(slope =coef[2], intercept = coef[1], col="green",size=2)
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Comparison with IDW Approach
The neighborhood can be defined in the same way for kriging and IDW. But:

• IDW: each site has a weight inversely proportional to the distance to the site to predict (snew).

• Kriging: The weighting is built through the variogram model and the spatial pattern of the sites.

For both interpolators, the value on a new site is estimated by a weighted linear combination of the neighbors
sites.

Universal Kriging or Kriging with a Trend
Universal Kriging assumes a linear or quadratic trend (where spatial coordinates could be used as explanatory
variables).

Z(si) = m(si) +R(si)

with

1. Linear trend m(si) = β0 + β1xi + β2yi

2. Quadratic trend m(si) = β0 + β1xi + β2yi + β3x
2
i + β4y

2
i + β5xi yi

In the rainfall example, the universal kriging brings no improvement.
st_add_xy<-function(SF){xy<-SF %>% st_centroid() %>% st_coordinates(); SF$x<-xy[,1]; SF$y<-xy[,2]; return(SF)}
NF.kriged.UK <- krige(rainfall ~ x+y, locations=st_add_xy(myobs), model = m.fit, newdata=st_add_xy(mydata[!mydata$obs,]),nmax=20)

## [using universal kriging]
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residuals <- mydata[!mydata$obs,]$rainfall-NF.kriged.UK$var1.pred
NF.kriged.UK$residuals<-residuals
bubble(as_Spatial(NF.kriged.UK), "residuals", main = "rainfall: residuals from Universal Kriging")

rainfall: residuals from Universal Kriging

−262.663
−25.435
−1.131
30.301
266.653

Practical recommendation:

Do a Universal kriging or Estimating the trend and computing simple kriging predictions of the residuals is
equivalent to Universal Kriging when a linear trend is assumed (Cressie, 1993, section 3.4.5).So:

1. Estimate the trend with a regression.
2. Compute the residuals
3. Carry out the variogram estimation and kriging on the residuals but use the Simple Kriging!
4. Add the trend to the kriging estimates

Sequential Gaussian Simulation
Goal: Estimate a characteristic or parameter of the RP Zs, for example a probability map.

Principle

kriging gives an estimate of both the mean value and standard deviation of the normal (Gaussian) variable at
each grid node.

Sequential Gaussian Simulation replaces the kriging mean value by a random draw from this normal
distribution.

More details can be found in the book from Goaverts
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Figure 3: Illustration of the Normal Score Transformation for the Rainfall dataset

Normal Score Transformation for the Rainfall Example

When data are not Normally distributed, the data can be transformed into normal scores before doing the
sequential Gaussian simulation on the normal scores. First, the rainfall dataset is normalized (centered and
divided by its standard deviation).

We can see from figure 3 that a rainfall of 210 millimeters corresponds to a scaled value of (210−184)/112 = 0.23
and a probability of 0.62. The normal quantile (or Normal Scaled Score) for this probability is 0.30. This
empirical quantile (210) to normal quantile (0.30) transformation preserves the rank of an observation and
therefore the probability level.

Algorithm of the SGS

1. Transform data to normal scores

2. Perform a variogram analysis on the normal scores

3. Create a grid and generate a random path through the grid nodes

4. Use kriging to estimate a mean value and standard deviation at the first node

5. Set the variable value at that node from the random draw

6. Repeat for next nodes, including previously simulated nodes as data values in the kriging process

The previously simulated grid nodes are included as data in order to preserve the proper covariance structure
between the simulated values.
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NF.kriged.sim = krige(rainfall ~ 1, locations=mydata, newdata= mydata.points, model = m.fit, nmax=20, nsim=4)

## drawing 4 GLS realisations of beta...
## [using conditional Gaussian simulation]
spplot(as_Spatial(NF.kriged.sim), main = "four conditional simulations")

four conditional simulations

sim1 sim2

sim3 sim4

[−170.1,−20.77]
(−20.77,128.6]
(128.6,277.9]
(277.9,427.3]
(427.3,576.7]

To Go Further: Co-Kriging
When non exhaustive secondary information is available, it can be incorporated into the estimator using
cokriging approach. This approach takes into account the secondary variables (from the RP Zj,s Nj , j = 2, ..., p)
and their spatial cross correlation with the primary variable (from the RP Z1,s). The secondary data can be
possibly at different sites.

Ẑ1(snew)−m1(snew) =
∑N1,new

i=1 λ1,i(snew) (Z1(s1,i)−m1(s1,i))

+
p∑

j=1

Nj,new∑
i=1

λj,i(snew) (Zj(sj,i)−mj(sj,i))

All cokriging estimators required to be unbiased E[Ẑ1(snew) − Z1(snew)] = 0 and to minimize the error
variance V ar[Ẑ1(snew)− Z1(snew)].

Each RP Zj,s is decomposed into a residual and a trend components:

Zj,s = Rj,s +mj(s), j = 1, . . . , p

18



The residual component Rj,s is modeled as a stationary RP with zero mean value and:

1. Covariance function: Cov[Rj(s), Rj(s+ h)] = Cj(h)

2. Cross covariance function: Cov[Rj(s), Rk(s+ h)] = Cjk(h)

Aknowledgment
Spatial data management was done with package sf with great help from Manuel Campagnolo (see its lecture
notes for more details).
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Practical Work: Co-Kriging with Rainfall Data
Georeferencing of the Rainfall Data

1. Download the elevation tiles (SRTM data) with locations in longitude/latitude
2. Map the tiles
3. Extract elevation values at rainfall locations

Co-Kriging

1. Building a dataset for experimental variogram(s)
2. Plot and fit variogram(s)
3. Predict values
4. Do an interpolation map

Exercise - Example Applied to Environmental Data
The data used in this tutorial comes from the article Kriging in estuaries: as the crow flies, or as the fish
swims?, Laurie S. Little, Don Edwards, Dwayne E. Porter, Journal of Experimental Marine Biology and
Ecology,213 (1997) 1-11.

Their study evaluated the relative accuracy of eight kriging methods for predicting contaminant and water
quality variables measured in an urbanized estuary in South Carolina. The variable of interest was Fluoranthene
concentration in oyster tissue was normalized by dividing by the proportion of lipid in tissue, as determined
by the proportion of methylene chloride extracted solids.

Launch R

Load package gstat Load package sp

Data Importation

Download the file data.txt from Ticea

VARIABLE OF INTEREST : don$NormFluo or don[,11]

1. Spatialize your data with function coordinates()
2. Draw the data with function bubble()
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Grid

1. Create a grid and plot it
2. Add points of observation on the plot

IDW Mapping

1. Apply function idw()
2. Draw the interpolation map with function ssplot()

Experimental Variogram

1. Compute the experimental variogram with function variogram()

ISOTROPY:

2. Draw the experimental variogram and comment

ANISOTROPY:

3. Specify the angles in which the experimental variogram will be computed (parameter alpha). Save this
(these) variogram(s) under the name obs.vgma in R

4. Draw the experimental variogram(s) and comment

Model Variogram

Remark: to get the list of all possible models, write: vgm()

1. Try this command: anis.vgm = vgm(psill=10000,model=“Sph”, range=6000,nugget=10, anis = c(60,
0.2))

2. Draw the experimental and this spherical variograms on the same graph, comment

3. Apply the automatic fitting: mod.vgma <- fit.variogram(obs.vgma,model=anis.vgm)

4. Draw experimental and estimated spherical variograms on the same graph, comment

Kriging Map

1. Estimate the map by kriging on the grid (oridnary kriging) with function krige()
2. Map the prediction
3. Map the variance of the error of prediction
4. Comment differences between idw and kriging/ed maps (with and without nugget effects)
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