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Abstract

The study of plant disease epidemics at a landscape scale can be extended
to allow for predictions about disease occurrence at this scale. Examined
within the context of the disease triangle, systems developed to incorporate
information primarily about the pathogen and conditions conducive to the
infection process. Parametric methods can be used to relate environmental
conditions to disease, and specifically relate environment to the inoculum
production, the resulting infection process, or both. Aspects relating to the
presence or absence of the host plant within the landscape, or patterns of
the host within the landscape, are much rarer in disease prediction, although
analyses incorporating these factors have been conducted. Predictive systems
at the landscape scale may concentrate only on the conditions for infection
or possible migratory paths of pathogen propagules. Incorporation of all
components of the disease triangle may be one way to improve these systems.
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INTRODUCTION

Plant disease epidemiology, which in this review refers to the study of plant diseases in populations,
has traditionally been focused on fields as the units of interest. More recently, in part driven by
studies of plant disease in natural systems but also by a realization that it is often insufficient to
define the systems of study as individual fields, plant diseases are examined in a landscape context.
In this review, we have considered a field to be cultivated and planted with a limited number
of crop species, often only one. A landscape would not only include fields (often with different
crops) but also the surrounding areas that are not cultivated but rather populated with diverse
vegetation or used for human activities. Fields are thus a component in the landscape (Table 1).
The relevant scales are different, in that the landscape encompasses more than a field (63). A
logical extension of the studies of plant disease epidemics in a landscape context would be to try to
make inferences about these diseases in a predictive manner. In this review, we first briefly review
plant disease epidemiology in a landscape context and then cover the possibilities for making
disease risk quantifications and predictions on a landscape scale. In both cases, we use the disease
triangle (the necessity of having a susceptible host, a pathogen, and a suitable environment for
the disease to develop) as a theme to assist in structuring the information needed to quantify the
risk or predict a plant disease at the landscape scale.

One way of describing landscape ecology is to refer to it as the art and science of analyzing
patterns of and processes in ecosystems. We can qualify this description and use it to define
landscape epidemiology as the art and science of analyzing patterns and processes of disease
development in ecosystems. These patterns and processes describe disease development per se but
also include other processes that are indirectly related to development of disease. Static snapshots
show the patterns, and dynamic modeling is probably the best way to describe the processes.
Observation-based empirical models are the most common (39), and most of these are static

Table 1 Differences between predictions on landscape and field scales

Componenta Landscape scale Field scale
Present (or incorporated) components of
disease triangle

Often not all Can have all three

Data available to quantify relationships
among components

Limited Extensive

Investigation and description of underlying
processes involved

Not easy Possible

Parameter estimation of factors used to
describe components of disease triangle

Complicated,
interactive

Can be described with simple
functions, although in reality
complicated and interactive

Degree of knowledge of interactions among
components of disease triangle

Limited Extensive

Quantitative nature of interactions among
components of disease triangle

Nonlinear Frequently nonlinear but can be
sufficiently described with
linearity

Spatial dimensions associated with
distribution of host, pathogen, and
environmental factors that are the
components of the disease triangle

Latitude, longitude,
and elevation

Latitude and longitude

aWe use the disease triangle and its three components—the susceptible host, the pathogen, and the suitable environmental
conditions for the disease to develop—as a core theme to discuss epidemiology in the landscape and field scales.
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in nature. Geographic information systems (GISs) persist as one of the most extensively used
methods of describing and displaying these static snapshots. Most GIS software allows the creation
of data surfaces through interpolation of point data, using statistical methods such as variograms
and kriging (7, 48, 50, 68). Spatially linked data surfaces then can be analyzed using statistical
approaches, such as multiple regression, that account for spatial dependency and autocorrelation
(31, 48, 68).

Parametric methods, particularly logistic regression (9, 42, 69), have been extensively used
because they are well known for balancing model parsimony and prediction robustness while
providing interpretation of straightforward ecological relationships. Implementation methods and
input variables differ based on whether the purpose is inference or prediction. Most published
studies are inferential rather than predictive (39). One key difference is that an inferential analysis
seeks to explain the given data, whereas a predictive model attempts to make predictions about
what might happen in a different time or different setting (39). Another important aspect to keep
in mind when evaluating or conducting analyses of this type is the selection criteria for the units
of interest. Ideally, the units that are sampled should be selected in a random nature, but this
may not always be possible (35). If analyses are performed on material selected on the basis of
the presence or absence of disease, in a manner similar to a case/control study, rigorous criteria
are needed to maintain valid results (24). The definition of the studied population in turn affects
the scope of possible inferences. A brief summary follows as to how each of the components of
the disease triangle has been addressed in landscape-scale analyses of plant disease epidemics.

Pathogen

Largely, time and resources dictate the amount of available data. Thus, the sources, distance, and
routes of dispersal of infective propagules are poorly known for most crop diseases, as it takes a
lot of resources to track inoculum in a large geographic area. For most analyses, the pathogen
of interest is assumed to be present or just ignored. In some other cases, researchers prefer to
conduct investigations at the smaller scale, which enables them to capture more details of the
pathosystem being studied, and then extrapolate the findings to a larger scale. This has been
successfully implemented for long-distance airborne pathogens such as those that cause downy
mildews (33). In this case, report of the disease (or the pathogen) by a network of collaborators is
indispensable and is the basis of any long-distance dispersal and thus of landscape epidemiology of
downy mildews. The report is evaluated to weigh the source of potential inoculum. A model that
calculates trajectories from temporal data about wind directions and speeds, called HYSPLIT (10),
can then calculate and estimate ground deposition of inoculum in a new location and potential risk
for a new outbreak (33). The basis of estimating this risk comes from experiments on the biology
of the pathogen conducted under controlled environments. Developing new tools to track the
movement of pathogens at the landscape scale would be beneficial and especially informative for
air- or waterborne pathogens. Even the use of existing tools, such as those used (or developed)
at the molecular level, would allow a great improvement of our knowledge in this aspect of the
disease triangle at the landscape scale.

Environment

Most landscape epidemiological studies utilize GISs and other geospatial technologies (e.g., re-
mote sensing) to assimilate the large, spatial data sets that enable analysis of relationships between
the distribution of disease and landscape heterogeneity. For example, Smith et al. (57) examined
patterns of white pine blister rust infection in the Rocky Mountains by correlating geographically
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referenced field observations of disease prevalence with GIS-derived environmental variables in
a Poisson regression model. In almost all cases, these environmental variables are indirect or sur-
rogate variables. In other words, they presumably have an effect because they are close relatives
of well-studied environmental variables that affect disease development in the modeled system at
the field level. The relationship between these variables and disease development could also result
from studies of the pathogen under controlled conditions. For instance, Mila et al. (42) quanti-
fied the prevalence of Sclerotinia stem rot of soybeans in four states of the north-central United
States using monthly average summer temperatures and precipitation. Although those were highly
generic variables to describe multiple aspects of the disease cycle of this pathogen, the variables
were very efficient in their ability to describe the prevalence of the disease across a large area. A
similar approach was used in the initial work that led to the Fusarium head blight (FHB) forecast-
ing system (9). In this research, combinations of temperature, relative humidity, and rainfall or
durations of specified weather conditions for seven days prior to anthesis and ten days beginning
at crop anthesis were identified as potential predictor variables. One potential pitfall with these
approaches is that indirect variables may influence multiple processes in a nondescriptive way.
This methodology provides only static snapshots and cannot describe dynamic processes. Within
the context of the disease triangle, it is difficult to disentangle whether these variables influence
the infection process, the production of inoculum, or both.

Host

The host portion in the disease triangle is not frequently considered in the analysis of epidemics
at the landscape scale. There may be different explanations for this, such as the difficulty to collect
data on large scales, the complexity of the system, or simply that plant pathologists are inherently
trained to study diseases at the field level. An additional complication is that the patterns of
agricultural crops vary as a result of the ephemeral nature of many plantings (crop rotation). There
are, however, some stellar examples in the literature that demonstrate how the landscape (host) may
play a unique role at this level. Haas et al. (18) demonstrated links between forest species diversity
and disease risk. In this study, sites with greater biodiversity had lower infection risk from the
emerging plant pathogen Phytophthora ramorum after accounting for landscape heterogeneity and
spatial dependence in infection. Another aspect that has not generally been addressed is topology,
e.g., the existence or absence of lakes, rivers, and other sources that could spread pathogens
that are primarily disseminated in water. Another important aspect may be the distribution of
the host. In contrast to the field level, where host may be a binomial variable (i.e., presence
implies potential disease and absence no disease), this component may have a more sophisticated
function in landscape epidemiology. Host patches, corridors, or density (what is called landscape
connectivity) in general might facilitate or impede high disease severity or spread (22, 62). There
are few examples of landscape epidemiology of plant diseases in which the host distribution is
included even in the simplistic form of a GIS map that depicts the host structure (see, for example,
2, 11). Examples that incorporate the functionality of the host (62), such as the effect of host
density on disease severity (16, 56) or the effect of rivers and roads (29, 30) on the occurrence of
a plant disease at the landscape scale, are even scarcer.

CAN THE RISK OF PLANT DISEASE BE ESTIMATED
AT THE LANDSCAPE SCALE?

The prediction of plant disease has become an important part of modern disease management.
In most cases, the objective is to optimize different management strategies, notably the use of
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MEASURING UNCERTAINTY

Uncertainty in knowledge or understanding exists in every biological process and structure. More uncertainty
is inherent in disease development and spread in the landscape compared with those in controlled laboratory
experiments because in the latter a few aspects can be isolated and investigated in extensive detail. The development
and implementation of Bayesian methods have assisted significantly in quantifying uncertainty. Uncertainty in
parameter estimates in empirical models such as the examples given above can be quantified with Bayesian approaches
(40, 42). Bayesian methods offer further advantages to landscape epidemiology because (a) they allow for explicit
modeling of complex systems using a hierarchical structure in which hypotheses can be investigated in each level
of hierarchy separately and (b) potential structured and unstructured spatial effects can be incorporated (41, 47).

Behind spatial effects there are usually a number of factors, some of which may have a spatial structure and others
may be present only locally (unstructured) in a given spatial unit. If standard statistical methods are used to analyze
spatially correlated data, the standard error of the covariate parameters is underestimated and thus the statistical
significance is overestimated (12). This pitfall may have a profound effect on the significance of differently sized
geographic areas, particularly small areas. Bayesian methods easily allow us to distinguish between the two kinds of
effects by splitting them up and investigating the significance of each one separately (12, 41, 47).

fungicides. Initial systems aimed at predicting when fungicides should be applied generally and
when in specific fields were composed of rules that were derived from critical parts of the disease
cycle (8). Examples of early rule-based decision aids include those for potato late blight, caused
by Phytophthora infestans (3), and apple scab, caused by Venturia inaequalis (43). Although these
early predictive systems were generally based on knowledge about the biology of the pathogen,
the relative importance of each of the factors was generally derived through a trial-and-error
basis. More recently, statistical techniques were proposed not only to calibrate the rules (69)
but also to place the results of the rules into a Bayesian framework, incorporating information
about uncertainty in the predictions (72) (see sidebar, Measuring Uncertainty). The quality of
the decisions arising from the rules could then be compared with respect to both sensitivity and
specificity (34, 52, 64, 69, 72).

These predictive systems were developed to be used at the field scale. Given that most of
these systems utilized information culled from knowledge of the pathogen life cycle, current
crop information, and relevant past field history, they also needed field-specific information. One
question that arises is whether predictions can be made at a higher spatial integration level. Here,
we examine whether the predictive systems can be applied at a landscape scale, preserving our
theme of the disease triangle concept.

One major difference in scaling up to the landscape scale is that landscapes are not individual
units that can become diseased. If we are to employ the disease triangle framework on a landscape
scale, the susceptible plant portion could be modified to state that susceptible plants are present
in the landscape. The presence of the pathogen and the mapping of suitable conditions for disease
development are most often the factors considered when trying to predict disease at a landscape
scale. Given that the techniques that are used have varying levels of uncertainty and are possibly
used to look into the future, one ends up predicting the risk of disease development.

Systems that attempt to predict the risk of disease development generally focus on two com-
ponents of the disease triangle: (a) the presence of the pathogen and (b) the occurrence of suitable
conditions for disease development. In general, these predictive systems are designed as tools for
assisting in decision making in pest management, so there is little concern with whether a disease
will develop if the corresponding host crop is not present. In practice, predictive systems are rarely
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developed for diseases if the corresponding crop is not present, and either experience or simple
models show whether plants can be grown in specific areas. This important aspect is not currently
a major component of landscape-scale plant disease predictions.

Predicting Suitable Conditions for Disease Development

Current climate models provide varying levels of resolution (both spatial and temporal) and can
be used to predict the occurrence of suitable conditions for disease development (22). Obviously,
enhanced resolution in the form of a finer grid leads to more accurate and precise predictions,
although a robust understanding of the relationship between the climate data and disease devel-
opment is needed. The estimation of the relationship between disease risk and various climatic or
meteorological factors is a critical part of predicting disease risk at a landscape scale.

Predicting Pathogen Presence

The other component of the disease triangle that has received considerable attention in predicting
disease risk at a landscape scale is the presence of the pathogen. The spatial spread of pathogens can
be monitored with spore traps, for example, or pathogen collections, possibly followed by pheno-
typic or genotypic characterization, and can contribute to the disease triangle component relevant
to the presence of the pathogen. The predicted movement of pathogens can also be calculated
using suitable models, such as the HYSPLIT model (10), if suitable climatic data are available.
This approach, however, needs information regarding the possible sources of the pathogen.

Predicting Host Presence

There are mechanistic models, such as the EcoCrop portion of DIVA-GIS (23), that can predict
where crops can be grown based on temperature and rainfall data. In practice, there are other factors
that determine whether or not a specific crop is grown on a particular field. The Spatial Analysis
Research Section (SARS) of the National Agricultural Statistics Service (NASS) of the United
States Department of Agriculture (USDA) provides crop and land-use data for the continental
United States on a suitable spatial scale (30 or 56 m resolution) (20), but the database, called
CropScape, has not been used in predicting plant disease on a landscape scale.

Ideally, predicting disease risk would have all three components of the disease triangle (or at
least two if it is assumed that the end user would supply information as to the presence of a suitable
crop). In practice, one of these two components is emphasized. This often depends on the nature
of the disease in question. If the assumption is made that the conditions will always be favorable for
disease development, the predictive system focuses on whether the pathogen is present. Likewise,
if the pathogen is generally thought to be present, then the prediction of conditions suitable for
disease development is more important. Certain types of information presented on a landscape
scale, such as mapping of disease occurrence, contain elements of both pathogen presence and
suitable conditions.

EXAMPLES OF LANDSCAPE-SCALE PREDICTIONS OF DISEASE
AND DISEASE RISK

The origin and development of landscape-scale predictors are variable. This is illustrated below
using the examples of potato late blight, FHB, and more. None of these explicitly incorporate
information about the presence and the distribution of host plants (i.e., the plant side of the
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disease triangle). They each include varying amounts of information representing other parts of
the disease triangle (whether conditions are suitable and whether the pathogen inoculum is present
or produced) in their predictions.

Potato Late Blight

A range of models and algorithms to predict the occurrence of potato late blight, caused by
P. infestans, have been utilized. The early tables, such as those produced by Hyre (25) and Wallin
(66), generally referred to the risks within a particular field (and relied on specific data from
that field). Adjustments have been made, and the new models and algorithms can be used at the
landscape scale. Given that the original calculations made by Wallin (66) relied on information
regarding periods of high humidity in the crop canopy (the temperature during the period and
the period length), the adjustments entail using relative humidity estimated without surrounding
foliage and at a standard height, along with changes as surrogate variables (1). One common aspect
in these systems is the general assumption of inoculum presence, which is not an unreasonable
assumption for potato late blight. Most of these systems date to a period when infected tubers
were the primary inoculum because they pre-date the discovery of the A2 mating type outside
of the Toluca Valley in Mexico (15). Thus, unless high-quality certified seed was used in a large
area, the logical assumption is that inoculum was present. If, however, oospores are a major
source of inoculum, such as in Scandinavia (71), then these assumptions and models are not
representative of the disease cycle, because of earlier primary infections (70). After the prediction
of the first infections to initiate fungicide applications, these predictive systems use different rules
that typically indicate when fungicide applications should continue and then how often these
sprays should take place. Comparisons of different predictive systems have been made (61).

The derivation of these early predictive systems was based in part on the temperature and
humidity requirements of the pathogen but also on field observations of potato late blight (3).
Exactly how these data were then translated into the rules that predicted late blight is not always
clear, although the general impression is that this took place through empirical, often trial-and-
error, methodology and was also dependent on the available weather data. The rules proposed by
Hyre (25) and Wallin (66) were then merged into a computer-based system called Blitecast (32).
One predictive system, SimCast (14, 17), was based on the original Blitecast model (32), but was
calibrated and tested using output from a process-based dynamic simulation model of potato late
blight development (4, 5, 6, 14). Thus, the logical bases for many of these predictive systems are
related.

If the purpose of these landscape-scale predictions is to provide near-real-time information
for potato producers, the systems generally have an Internet-based interface. For example, a sys-
tem used in Michigan employs a prediction algorithm derived from that proposed by Wallin
(66), with periods of relative humidity over 80% as a surrogate for the high humidity thresh-
old in the crop canopy (http://www.lateblight.org). This also permits late blight risk fore-
casting to be made on the basis of weather predictions. In a similar manner, a system active
in New York State can provide predictions based on standard Blitecast, with predicted values, and
SimCast (http://newa.cornell.edu/index.php?page=potato-late-blight-dss). A system active
in Norway (http://www.vips-landbruk.no) provides predictions based on Försund’s rules (13),
Negativprognose (65), and a new late blight model still under development and testing (Naer-
stadmodellen) (21). Other systems, with varying degrees of involvement from commercial firms,
are also available (19).

These models provide information as to the suitability of the environment for production of
inoculum as well as the suitability of the environment for infection. One system that is active in
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Scandinavia utilizes geo-referenced early reports of the pathogen (http://euroblight.net/late-
blight-survey-mapper). The occurrence of early infections indicates that all three components
of the disease triangle were present and allowed for the development of disease. A decision maker
would then learn that inoculum is present if he used this system and could focus attention on the
conditions relevant for the infection process. One advantage here is that the differences between
initial infections from tubers, or from oospores, are not significant to the prediction of fungicide
application because this system documents the presence of inoculum in a particular region, and
thus protective measures would be required in any case. Conversely, it may be too late to initi-
ate fungicide applications, since inoculum is already present. In most cases, though, the role of
weather and its effect on the production of sporangia, and the subsequent infection process, are the
overriding factors in prediction of potato late blight on a landscape scale. The influence of spatial
heterogeneity of the potato fields has been studied via simulation models (56). However, the inclu-
sion of this information is not generally available in landscape-scale disease forecasts. For instance,
in the potato late blight case this simulation analysis could describe the effects of reducing potato
production in a region, clustering potato production, or mixing resistant and susceptible potatoes
(56), but the detailed data required by this process-based simulation is not generally available.

A divergent approach was used to estimate how climate change will affect the future risks of late
blight on a global scale (59). Given that future climatic data consist of monthly averages and that the
processes that are modeled in late blight require data at a much finer temporal scale (such as daily
or even hourly measurements), the first step was to develop a metamodel that could be used with
these monthly data (58). The metamodel was generated via generalized additive models and an
existing model driven by hourly data. This metamodel, based on a portion of SimCast and referred
to as SimCastMeta, was then used with monthly data from different future climate scenarios to
calculate the cumulative blight units for each grid cell. The optimal time for potato cultivation
for each cell, as well as the suitability of the cell for potato production, was estimated with the
EcoCrop model (23). This information was then used to calculate the number of blight units
within each cell on the globe that had potato production. SimCastMeta evaluates how favorable
the climate is for late blight development, and the EcoCrop model supplied information about the
presence of a host. Here, it is still assumed that the pathogen is present, as is the case with other
late blight prediction systems. The purpose of this global prediction of late blight was different
from the systems designed to provide near-real-time advice regarding the initiation and intensity
of fungicide applications. In this case, the authors were able to draw conclusions regarding the
predicted severity of the disease and identify areas where late blight may become more severe in
the future (59).

Fusarium Head Blight

FHB, caused by Fusarium graminearum (teleomorph: Gibberella zeae), has become problematic
in wheat production, causing reduced yields but also quality problems due to reductions in seed
quality and the presence of the mycotoxin deoxynivalenol (37, 38). This disease is exacerbated by
the presence of extended periods of wet weather and/or high humidity during flowering and the
early grain-filling period (38). Whereas the review presented in 1997 (38) described the disease
as re-emerging due to wet weather as well as changes in cultural practices, the review in 2012
presents data suggesting that the problem has persisted (37). Although a number of predictive
models have been proposed in Asia, South America, and North America, a systematic analysis of
the risk of FHB was initiated by a consortium of researchers in the United States, and the first
phase of this analysis (9) used data from a collection of 50 fields. In this study, outcomes from
logistic regression models were used to relate the probability of a major epidemic of FHB to a
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number of predictor variables. The binary outcome, a major FHB epidemic, corresponded to a
threshold of more than 10% disease incidence in the field, and the independent variables were
different weather factors, generally temperature, relative humidity, and precipitation, and differ-
ent interaction terms. This initial model was then adjusted for factors related to crop residues
and host reaction, using additional data from 2004 and 2005 (44). Several iterations of the pre-
dictive model have been implemented, first at the state level, and subsequently on a regional basis
(L. Madden, personal communication; http://www.wheatscab.psu.edu/).

Whereas the initial model had a resolution of 20 km2, the resolution has been improved
to 2 km2 based on improved geospatial interpolation surface information. Additional analyses
exploring different alternatives to logistic regression have been completed (51, 52) but are not yet
part of the predictive system. In this system, the presence or absence of the crop is not an explicit
part of the prediction system, and the different independent variables used in the regression models
are related to the conditions that favor infection as well as the production of inoculum.

Rust on Small Grains

For rusts of cereals, most landscape-scale mapping has been confined to the occurrence of the
pathogen and pathotype (race) information. The success of resistant cultivars with race-specific
resistance in controlling disease depends on the pathogen population lacking virulence to the
cultivar grown (36). Hence, the geographical distribution of the different pathotypes is crit-
ical information and has played a major role in controlling rust diseases. Another factor is
that the environment is usually not a limiting factor in the development of rust. Geographic
movement of rust spores has been described by the Puccinia pathway in North America (60)
and within continents or regions, including Europe (73), India (46), and the Rift Valley (45).
Currently, spore rust mapping is coordinated by the FAO (49) at the Rust Spore web portal
(http://www.fao.org/agriculture/crops/rust/stem/en/). At this site, a large emphasis has been
placed on stem rust and the Ug99 variant (54, 55). The NOAA HYSPLIT model (10) is used to
calculate future trajectories of rust spores from known sources within 24, 48, or 72 hours (55). In
this case, there are no explicit predictions made about whether conditions are suitable for infec-
tion. The presence or absence of the host plant (and its resistance or susceptibility) is also not part
of this predictive system.

Current information and maps of stripe rust can be found at the Global Rust Reference
Center Web site (http://www.wheatrust.org) (28). The geo-referenced data on the occur-
rence of Puccinia striiformis pathotypes in different countries have been registered over time,
and one way of examining these data is to visualize them as a map in a manner similar to
the presentation of the different genotypes of P. infestans at the Late Blight Survey Mapper
(http://euroblight.net/late-blight-survey-mapper). These maps only inform the user as to what
is already present, perhaps subdivided by genotype, and although they provide a basis for making
decisions in the future, e.g., to change the host cultivar, such a map does not provide any additional
information with regard to risk. The migration of pathotypes of P. striiformis in China has also
been studied with the HYSPLIT model to make inferences on potential inoculum sources (67).

Other Systems

Following the incursion of soybean rust (caused by Phakopsora pachyrhizi ) into the continental
United States, a pest information system was launched that combined elements of information
technology together with information from the USDA Soybean Rust Information System (53).
Building on this concept, a system that combined weather data and a variety of predictive and

www.annualreviews.org • Landscape-Scale Disease Risk Quantification 479

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

01
5.

53
:4

71
-4

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

b-
on

: U
ni

ve
rs

id
ad

e 
T

ec
ni

ca
 d

e 
L

is
bo

a 
(U

T
L

) 
- 

R
ei

to
ri

a 
on

 0
8/

06
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.wheatscab.psu.edu/
http://www.fao.org/agriculture/crops/rust/stem/en/
http://www.wheatrust.org
http://euroblight.net/late-blight-survey-mapper


PY53CH22-Yuen ARI 29 June 2015 15:33

reporting systems called IPM PIPE (Integrated Pest Management Pest Information Platform for
Extension and Education; http://www.ipmpipe.org) was started in the United States (27). The
website has several components, some of which map only the occurrence of the disease, whereas
others also present information regarding risks for infection. A series of processes were modeled
in a soybean rust aerobiology predictive system (SRAPS) that covered spore production, canopy
escape, turbulent transport and dilution in the atmosphere, survival, deposition, and colonization
(26). The resulting model was used to calculate areas in which there could be potential depositions
of urediniospores of P. pachyrhizi in the continental United States and guided the search that led
to the discovery of the pathogen in Louisiana (26).

The field-oriented decision support systems for applying fungicides against potato late blight
represent one type of system that uses the same weather-based algorithms to make predictions on
a landscape scale. This is done by substituting other measurements for the leaf-wetness informa-
tion. The weather information is related to factors affecting inoculum production and infection,
although the landscape scale system has, in principle, all the characteristics of the field-based sys-
tem. For the FHB systems, the algorithms were developed to be used on a landscape basis, and
the statistical connection between the different predictor variables and the outcome of interest is
well documented (9, 44). In this case, both inoculum production and conditions suitable for the
infection process are considered by the predictive system. The rust prediction systems include
only the inoculum presence component of the disease triangle.

ESTIMATING THE RELATIONSHIP BETWEEN THE COMPONENTS
OF THE DISEASE TRIANGLE AND DISEASE RISK

To utilize the disease triangle conceptual model to evaluate estimates of disease risk at a landscape
scale different kinds of data would be required. Detailed weather information at finer spatial
scales is becoming more widely available, but data regarding the distribution of the pathogen
and the host at a similar scale are much harder to obtain, if they are available at all. Although
dynamically updated weather data are a built-in component of modern weather forecasting, no
such motivation exists in collecting temporally and spatially detailed information about crop plants
and their pathogens. Thus, the prediction systems that have evolved use these data to make
inferences about the conditions for inoculum production and subsequent infection of the plants
(e.g., late blight and FHB) or to make inferences about pathogen movement (e.g., rust and IPM
PIPE systems). No systems have evolved to date that rely on all three components of the disease
triangle. Incorporation of information from all three components on a landscape scale would
provide a substantial improvement in predictions of disease risk and provide transformational
change in disease management approaches.

CONCLUSION

Landscape epidemiology is a new field of research within plant pathology and human and vet-
erinary epidemiology. Thus, it is a field that is still trying to find its underlying principles and
methods. Its development has been slow because most researchers, even those trained in quan-
titative epidemiology, are more familiar with the field than with spatially large-scale modeling.
Some progress has been made in the prediction of plant diseases at the landscape scale with dis-
eases such as FHB and potato late blight. This could, in part, be due to economic interests, but
the availability of suitable data, the need for disease predictions, and a well-connected IT system
(computers, mobile devices, and the supporting infrastructure) make the implementation and use
of such systems easier.
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The availability of detailed, regularly updated weather data with a finely gridded spatial frame-
work provides a wealth of possible input data for a predictive system. Other, nonmeteorological
factors may also be available that will assist in the prediction. Just how this input data can be trans-
formed into a prediction of disease on a landscape scale becomes a statistical problem. Clearly,
we need more information on how spatial discontinuities of both pathogen and host plants affect
disease development to connect the remaining parts of the disease triangle.

Determining the relationship between this input data and the resulting disease also requires
verification of known biological relationships, as well as a determination of the relevant quantitative
relationships. For some systems, the weather affects the production of inoculum, but for many
diseases it also has large effects on infection and subsequent disease development. The distinctions
between inoculum production and subsequent disease development are not always clear in the
estimation process. The availability of relevant outcomes, such as disease or inoculum, along
with the corresponding input data are necessary to perform this statistical analysis. If regression
techniques are to be used to estimate parameters on a landscape scale, the statistical units in
question are often fields. Given that these fields define the population of interest, it is important to
know just how these fields are selected and whether there is any bias in the selection. A selection bias
would reduce the scope in which a predictive system could be used, and if this bias is undocumented,
then the application domain for the resulting system is not defined. In practice, though, possible
bias in the selection of fields is seldom mentioned or discussed.

Currently, there are limited data available that can be used to answer several practical but also
fundamental questions related to landscape epidemiology and the prediction of plant diseases at
the landscape scale. Yet, even when data are available or could be collected, one must still confront
the challenge of balancing epidemiological and landscape parameters needed to capture disease
dynamics without (a) exceeding computational and data collection costs or (b) overfitting models
that contain large numbers of free parameters that are difficult to interpret. Developments in data
science may create significant opportunities in the near future. New methods are being developed
that combine different sources of numerical and even text types of data, and new algorithms allow
sophisticated models to be implemented. All this means new opportunities (but also challenges)
in how we look at epidemics, analyze data, and make inferences. If the prediction of plant diseases
at the landscape scale is to be improved, a combination of analytical techniques, together with
different forms of data, should lead to better predictions. The disease triangle framework may be
useful in categorizing the different types of data.
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13. Försund E, Flaatten HK. 1958. Experiments of forecasting late blight epiphytotics in Norway. Eur. Potato
J. 1:5–13

14. Fry WE, Apple AE, Bruhn JA. 1983. Evaluation of potato late blight forecasts modified to incorporate
host resistance and fungicide weathering. Phytopathology 73:1054–59

15. Fry WE, Goodwin SB, Dyer AT, Matuszak JM, Drenth A, et al. 1993. Historical and recent migrations
of Phytophthora infestans: chronology, pathways, and implications. Plant Dis. 77:653–61

16. Garrett KA, Mundt CC. 2000. Effects of planting density and the composition of wheat cultivar mixtures
on stripe rust: an analysis taking into account limits to the replication of controls. Phytopathology 90:1313–
21

17. Grünwald NJ, Romero Montes G, Lozoya Saldaña H, Rubio Covarrubias OA, Fry WE. 2002. Potato late
blight management in the Toluca Valley: field validation of SIMCAST modified for cultivars with high
field resistance. Plant Dis. 86:1163–68

18. Haas SE, Hooten MB, Rizzo DM, Meentemeyer RK. 2011. Forest species diversity reduces disease risk
in a generalist plant pathogen invasion. Ecol. Lett. 14(11):1108–16

19. Hadders J. 2008. An example of integrated forecasting system for Phytophthora infestans on potato. In
Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria, ed. A Ciancio, KG Mukerji,
pp. 179–89. Dordrecht, Neth.: Springer

20. Han W, Yang Z, Di L, Mueller R. 2012. CropScape: a web service based application for exploring and
disseminating US conterminous geospatial cropland data products for decision support. Comput. Electron.
Agric. 84:111–23

21. Hermansen A, Nærstad R, Glorvigen B, Alm H, Sørensen K. 2009. Forecasting potato late blight in
Norway. PPO-Spec. Rep. No. 13, p. 301, Appl. Plant Res., AGV Res. Unit, Leylstad, Neth.

22. Hess GR. 1994. Conservation corridors and contagious disease: a cautionary note. Conserv. Biol. 8(1):256–
62

23. Hijmans RJ, Guarino L, Cruz M, Rojas E. 2001. Computer tools for spatial analysis of plant genetic
resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 127:15–19

24. Hosmer DW Jr, Lemeshow S, Sturdivant RX. 2013. Applied Logistic Regression, Vol. 398. Hoboken, NJ:
Wiley & Sons

25. Hyre RA. 1955. Three methods of forecasting late blight of potato and tomato in northeastern United
States. Am. Potato J. 32(10):362–71

482 Yuen · Mila

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

01
5.

53
:4

71
-4

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

b-
on

: U
ni

ve
rs

id
ad

e 
T

ec
ni

ca
 d

e 
L

is
bo

a 
(U

T
L

) 
- 

R
ei

to
ri

a 
on

 0
8/

06
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



PY53CH22-Yuen ARI 29 June 2015 15:33

26. Isard SA, Gage SH, Comtois P, Russo JM. 2005. Principles of the atmospheric pathway for invasive species
applied to soybean rust. Bioscience 55(10):851–61

27. Isard SA, Russo JM, DeWolf ED. 2006. The establishment of a national pest information platform for
extension and education. Plant Health Prog. 2006:1–4

28. Jørgensen LN, Hovmøller MS, Hansen JG, Lassen P, Clark B, et al. 2010. Eurowheat.org: a support to
integrated disease management in wheat. Outlooks Pest Manag. 21(4):173–76

29. Jules ES, Kauffman MJ, Ritts WD, Carroll AL. 2002. Spread of an invasive pathogen over a variable
landscape: a nonnative root rot on Port Orford cedar. Ecology 83(11):3167–81

30. Laine A-L, Hanski I. 2006. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented
landscape. J. Ecol. 94(1):217–26

31. Lu X, Robertson AE, Byamukama E, Nutter FW Jr. 2010. Prevalence, incidence, and spatial dependence
of Soybean mosaic virus in Iowa. Phytopathology 100(9):931–40

32. MacKenzie DR. 1981. Scheduling fungicide applications for potato late blight with blitecast. Plant Dis.
65:394–99

33. Main CE, Keever T, Holmes GJ, Davis JM. 2001. Forecasting long-range transport of downy mildew
spores and plant disease epidemics. APSnet Featur. doi: 10.1094/APSnetFeature-2001-0501

34. Madden LV. 2006. Botanical epidemiology: some key advances and its continuing role in disease man-
agement. Eur. J. Plant Pathol. 115:3–23

35. Madden LV, Hughes G, Van den Bosch F. 2007. The Study of Plant Disease Epidemics. St Paul, MN: Am.
Phytopathol. Soc.

36. Marasas CN, Smale M, Singh RP. 2003. The economic impact of productivity maintenance research:
breeding for leaf rust resistance in modern wheat. Agric. Econ. 29:253–63

37. McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, et al. 2012. A unified effort to fight
an enemy of wheat and barley: Fusarium head blight. Plant Dis. 96:1712–28

38. McMullen M, Jones R, Gallenberg D. 1997. Scab of wheat and barley: a re-emerging disease of devastating
impact. Plant Dis. 81:1340–48
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