MATEMÁTICA I

Textos de Apoio

Isabel Faria e Pedro C. Silva

Instituto Superior de Agronomia 2019/20

Contents

1	Fun	ções reais de variável real	2
	1.1	Conceitos básicos sobre funções	2
	1.2	Limites e continuidade	20
	1.3	Derivadas	25
	1.4	Regra de Cauchy	36
	1.5	Estudo de funções	39
	1.6	Primitivas	47
	1.7	Cálculo integral	56
2	Cálo	culo vectorial e matricial	7 5
	2.1	Vectores	75
	2.2	Matrizes e sistemas de equações lineares	83

Chapter 1

Funções reais de variável real

1.1 Conceitos básicos sobre funções

Uma função f é uma correspondência que associa a cada elemento x de um dado conjunto D um <u>único</u> valor y.

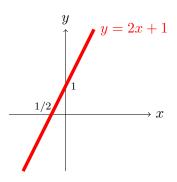
- O elemento x designa-se por argumento (ou variável independente) e o elemento y por imagem de x (ou variável dependente de x). Escreve-se usualmente y = f(x).
- D (ou D_f) designa-se por domínio de f.
- \bullet O conjunto das imagens designa-se por contra-domínio ou conjunto $imagem \ {\rm de} \ f \ {\rm e} \ {\rm denota-se} \ {\rm por} \ {\rm CD}_f \ {\rm ou} \ {\rm Im} \ f.$
- Chama-se gráfico de f a $G_f = \{(x,y) : x \in D_f \in y = f(x)\}.$
- Se D_f e CD_f são subconjuntos de \mathbb{R} , f diz-se uma função real de variável real e o gráfico de f é, em geral, uma curva em \mathbb{R}^2 .

São exemplos de funções reais de variável real:

1. A correspondência f(x) = 2x + 1, com $x \in \mathbb{R}$. O gráfico de f é

$$G_f = \{(x,y) : y = 2x + 1\}$$

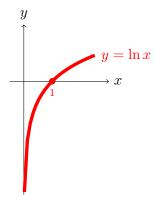
que corresponde à recta de \mathbb{R}^2 representada abaixo.



2. A correspondência $x\mapsto ln(x),$ com $x\in\mathbb{R},$ x>0. O domínio de f é \mathbb{R}^+ e gráfico de f é

$$G_f = \{(x, y) : x > 0 \in y = \ln x\},\$$

que corresponde à curva de \mathbb{R}^2 representada abaixo.



3. A correspondência g definida pela seguinte tabela, onde $D_g = \{-2, -1, 0, 1, 2\}$:

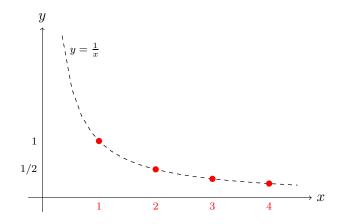
x	g(x)
-2	4
-1	1
0	0
1	1
2	4

que pode também ser definida como o conjunto de pares ordenados,

$$\{(-2,4),(-1,1),(0,0),(1,1),(2,4)\}.$$

4. A sucessão de números reais,

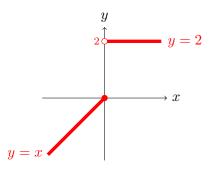
$$n \in \mathbb{N} \mapsto x_n = \frac{1}{n}.$$



5. A correspondência definida por ramos,

$$f(x) = \begin{cases} 2, & x > 0 \\ x, & x \le 0. \end{cases}$$

cujo o gráfico se encontra representado na figura abaixo.

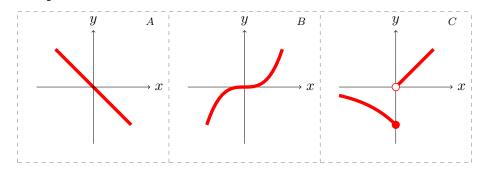


Para uma função real de variável real temos os seguintes conceitos:

- f diz-se injectiva se para todos os pontos do domínio $x_1 \neq x_2$ se tem $f(x_1) \neq f(x_2)$.
- f diz-se crescente se para todos os pontos do domínio $x_1 < x_2$ se tem $f(x_1) \le f(x_2)$.
- f diz-se estritamente crescente se para todos os pontos do domínio $x_1 < x_2$ se tem $f(x_1) < f(x_2)$.
- f diz-se decrescente se para todos os pontos do domínio $x_1 < x_2$ se tem $f(x_1) \ge f(x_2)$.
- f diz-se estritamente decrescente se para todos os pontos do domínio $x_1 < x_2$ se tem $f(x_1) > f(x_2)$.
- $\bullet \ f$ diz-se $mon \acute{o}tona$ se é crescente ou decrescente no seu domínio.
- f diz-se estritamente monótona se é estritamente crescente ou estritamente decrescente no seu domínio

Uma função estritamente monótona é injectiva mas uma função injectiva não é necessariamente monótona.

Exemplos:



A: f é estritamente decrescente em \mathbb{R} logo é injectiva em \mathbb{R} ;

B: f é estritamente crescente \mathbb{R} logo é injectiva em \mathbb{R} ;

C: f é injectiva em \mathbb{R} mas não é monótona em \mathbb{R} .

Algumas classes importantes de funções reais de variável real

Funções polinomiais

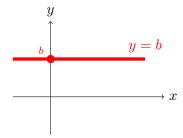
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

de domínio \mathbb{R} .

• Função constante (polinómio de grau 0):

$$f(x) = b \qquad (b \in \mathbb{R})$$

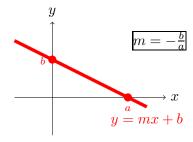
O gráfico de f(x) = b é a recta horizontal y = b.



• Função linear (polinómio de grau 1):

$$f(x) = mx + b$$
 $(m, b \in \mathbb{R}, m \neq 0)$

O gráfico de y=f(x) é a recta de declive m que intersecta o eixo das ordenadas no ponto (0,b). Se (x_1,y_1) e (x_0,y_0) são dois pontos da recta tem-se $m=\frac{y_1-y_0}{x_1-x_0}$.



• Funções quadráticas (polinómio de grau 2):

$$f(x) = ax^2 + bx + c$$
 $(a, b, c \in \mathbb{R}, a \neq 0)$

As raízes (eventualmente complexas) são dadas pela fórmula resolvente

$$x = \frac{-b \pm \sqrt{\Delta}}{2a},$$

onde $\Delta = b^2 - 4ac$ é o bin'omio discriminante.

1. Se $\Delta > 0$ o polinómio admite as duas raízes reais simples,

$$\alpha = \frac{-b + \sqrt{\Delta}}{2a}, \qquad \beta = \frac{-b - \sqrt{\Delta}}{2a},$$

e tem-se

$$f(x) = a(x - \alpha)(x - \beta).$$

2. Se $\Delta=0$ o polinómio admite a raíz real dupla,

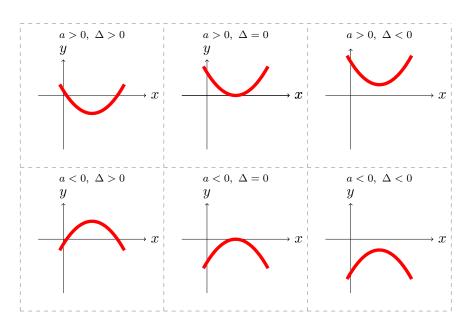
$$\alpha = \frac{-b}{2a},$$

e tem-se

$$f(x) = a(x - \alpha)^2.$$

3. Se $\Delta < 0$ o polinómio não admite raízes reais (polinómio irredutível).

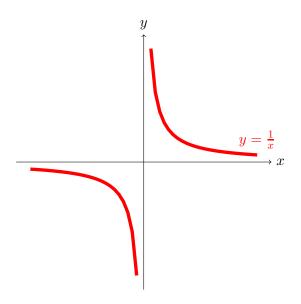
Os gráficos de f(x) são parábolas cuja concavidade está virada para cima (baixo) consoante a>0 (a<0).



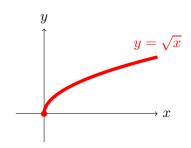
Função potência $f(x) = x^{\alpha}$ $(\alpha \in \mathbb{R})$

Alguns exemplos importantes:

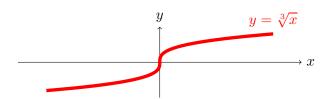
• $f(x) = \frac{1}{x}$, cujo domínio é $\mathbb{R} \setminus \{0\}$.



• $f(x) = \sqrt{x}$, cujo domínio é \mathbb{R}_0^+ .

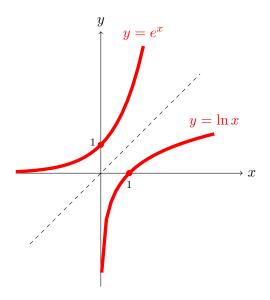


• $f(x) = \sqrt[3]{x}$, cujo domínio é \mathbb{R} .



Função exponencial e função logarítmo

Estritamente crescentes no respectivos domínios (\mathbb{R} e \mathbb{R}^+).



Operações com funções

Soma, produto e quociente de funções

Sejam

$$f: D_f \subset \mathbb{R} \to \mathbb{R}, \qquad g: D_g \subset \mathbb{R} \to \mathbb{R},$$

e $D = D_f \cap D_g$. Define-se:

• Soma de f com g,

$$f+g:D\to\mathbb{R}, \qquad (f+g)(x)=f(x)+g(x), \quad \text{para todo o } x\in D.$$

• Produto de f e g,

$$f \cdot g : D \to \mathbb{R}$$
, $(f \cdot g)(x) = f(x) g(x)$, para todo o $x \in D$.

• Se $g(x) \neq 0$ para todo o $x \in D$, define-se ainda o **quociente** de f por g,

$$f/g: D \to \mathbb{R}$$
, $(f/g)(x) = f(x)/g(x)$, para todo o $x \in D$.

Exemplo

Consideremos as funções $f(x) = \ln x$ e $g(x) = x^2 + 1$. Tem-se:

1.
$$(f+g)(x) = \ln x + x^2 + 1$$
, para todo o $x \in \mathbb{R}^+$.

2.
$$(f \cdot g)(x) = (x^2 + 1) \ln x$$
, para todo o $x \in \mathbb{R}^+$.

3.
$$(f/g)(x) = \frac{\ln x}{x^2 + 1}$$
, para todo o $x \in \mathbb{R}^+$.

Composição de funções

Consideremos as funções

$$f: D_f \subset \mathbb{R} \to \mathbb{R}$$
 e $g: D_g \subset \mathbb{R} \to \mathbb{R}$,

Se $\mathrm{CD}_f \subset D_g$, define-se a composição de g com f, por

$$(g \circ f)(x) = g(f(x)),$$
 para todo o $x \in D_f$.

Esquematicamente,

$$x \in D_f \xrightarrow{f} f(x) \in D_g \xrightarrow{g} g(f(x)) = (g \circ f)(x) \in \mathbb{R}$$

$$g \circ f$$

Exemplo

Se $f(x) = e^x$ e $g(x) = \sqrt{x}$, tem-se:

- $(g \circ f)(x) = g(f(x)) = \sqrt{e^x}$, para todo o $x \in \mathbb{R}$.
- $(f \circ g)(x) = f(g(x)) = e^{\sqrt{x}}$, para todo o $x \in \mathbb{R}_0^+$.

Função inversa

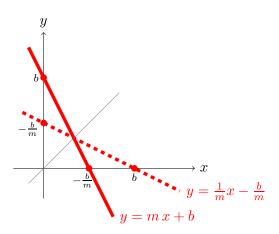
Se f é uma função <u>injectiva</u> num intervalo $I=D_f$ e $J=CD_f$ o respectivo contradomínio, existe uma função $g:J\to I$ tal que g(f(x))=x para todo o $x\in I$. A função g é única e chama-se *inversa* de f (em I) que se denota por f^{-1} .

Observações:

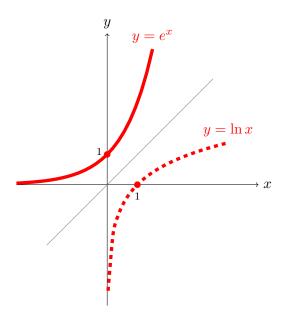
- 1. $(f^{-1} \circ f)(x) = x$ para todo o $x \in D_f$.
 - $(f \circ f^{-1})(x) = x$ para todo o $x \in D_{f^{-1}}$.
- 2. Se $f: D_f \to \mathrm{CD}_f$ então $f^{-1}: D_{f^{-1}} = \mathrm{CD}_f \to \mathrm{CD}_{f^{-1}} = D_f$.
- 3. Os gráficos de f e f^{-1} são simétricos em relação à recta y=x.

Exemplos

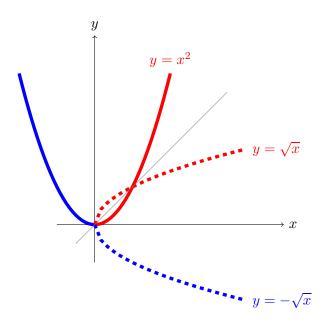
1. A inversa da função linear f(x)=mx+b, com $m\neq 0$, é a função linear $f^{-1}(x)=\frac{1}{m}x-\frac{b}{m}$.



2. Se $f(x)=e^x$ então $f^{-1}(x)=\ln x$, tendo-se $e^{\ln x}=x$ para todo o $x\in\mathbb{R}^+$ e $\ln(e^x)=x$ para todo $x\in\mathbb{R}$.



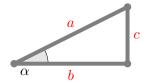
- 3. A função $f(x)=x^2$ definida em $\mathbb R$ e com contradomínio $\mathbb R_0^+$, é injectiva (estritamente monótona) nos intervalos $[0,+\infty[$ e $]-\infty,0]$, tendo-se:
 - $f: [0,+\infty[\to [0,+\infty[$ tem inversa $f^{-1}: [0,+\infty[\to [0,+\infty[,$ definida por $f^{-1}(x)=\sqrt{x}.$
 - $f:]-\infty,0]\to [0,+\infty[$ tem inversa $f^{-1}:[0,+\infty[\to]-\infty,0],$ definida por $f^{-1}(x)=-\sqrt{x}.$



Funções trignométricas e respectivas inversas

Relações trignométricas

Considere o triângulo rectângulo



Relações trignométricas envolvendo os comprimentos dos lados do triângulo:

$$\sin \alpha = \frac{c}{a}, \qquad \cos \alpha = \frac{b}{a}, \qquad \operatorname{tg} \alpha = \frac{c}{b}.$$

Valores "notáveis" no 1º quadrante.

α	$\sin \alpha$	$\cos \alpha$	$\operatorname{tg} \alpha$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	∞

Definem-se ainda

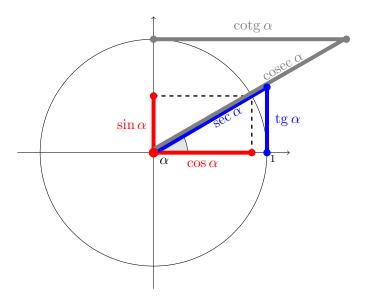
$$\sec \alpha = \frac{1}{\cos \alpha} = \frac{a}{b}, \qquad \csc \alpha = \frac{1}{\sin \alpha} = \frac{a}{c}, \qquad \cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{b}{c}.$$

Têm-se as seguintes relações trignométricas fundamentais:

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
, $tg^2 \alpha + 1 = \sec^2 \alpha$, $\cot g^2 \alpha + 1 = \csc^2 \alpha$.

15

Representação das relações trignométricas no círculo trignométrico:



Funções seno e arco seno

A função seno é uma função periódica em \mathbb{R} (de período 2π) e toma valores em [-1,1], sendo injectiva nos intervalos da forma $\left[-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi\right]$ com $k\in\mathbb{Z}$. O intervalo standard de invertibilidade é $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Neste intervalo,

$$\sin: \ \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1],$$

é estritamente crescente e tem inversa estritamente crescente,

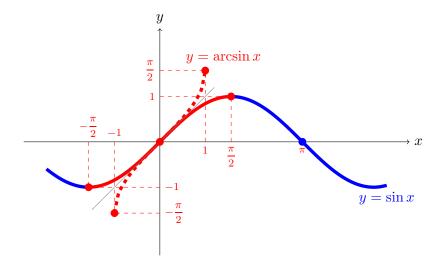
$$\arcsin \; : \; [-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],$$

que se designa por arco seno, tendo-se,

$$\sin(\arcsin x) = x, \quad \text{ para todo o } x \in [-1,1],$$

$$\arcsin(\sin x) = x$$
, para todo o $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Representação dos gráficos das funções seno e arco seno.



Funções cosseno e arco cosseno

A função cosseno é uma função periódica em \mathbb{R} (de período 2π) e toma valores em [-1,1], sendo injectiva nos intervalos da forma $[k\pi,(k+1)\pi]$ com $k\in\mathbb{Z}$. O intervalo standard de invertibilidade é $[0,\pi]$. Neste intervalo,

$$\cos: [0,\pi] \to [-1,1],$$

é estritamente decrescente e tem inversa estritamente decrescente,

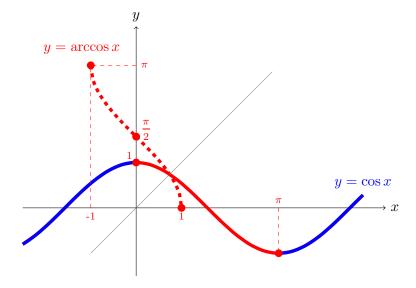
$$\arccos : [-1,1] \to [0,\pi],$$

que se designa por arco cosseno, tendo-se,

$$\cos(\arccos x) = x, \quad \text{ para todo o } x \in [-1, 1],$$

$$\arccos(\cos x) = x$$
, para todo o $x \in [0, \pi]$.

Representação dos gráficos das funções cosseno e arco cosseno.



Funções tangente e arco tangente

A função tangente encontra-se definida em $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$ e toma valores em \mathbb{R} . Tem período π , sendo injectiva (estritamente crescente) nos intervalos da forma $\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[\text{com } k \in \mathbb{Z}$. O intervalo standard de invertibilidade é $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, Neste intervalo,

$$\operatorname{tg}: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R},$$

é estritamente crescente e tem inversa estritamente crescente,

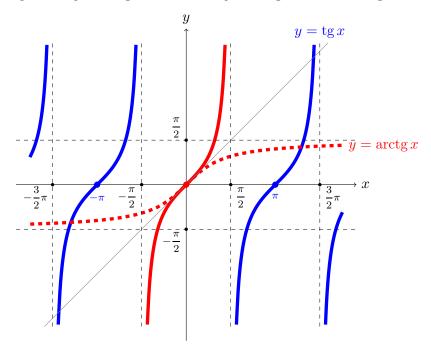
$$\operatorname{arctg}: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[,$$

que se designa por função arco tangente, tendo-se,

$$tg(arctg x) = x$$
, para todo o $x \in \mathbb{R}$,

$$\operatorname{arctg}(\operatorname{tg} x) = x, \qquad \operatorname{para} \, \operatorname{todo} \, \operatorname{o} \, x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[,$$

Representação dos gráficos das funções tangente e arco tangente.



1.2 Limites e continuidade

Sejam $f: D_f \subset \mathbb{R} \to \mathbb{R}$ e $a \in \mathbb{R}$ tal que f está definida à esquerda e/ou à direita de a (a não tem que ser necessariamente um ponto de D_f).

Diz-se que f converge para $b \in \mathbb{R}$ quando x tende para a e escreve-se,

$$\lim_{x \to a} f(x) = b,$$

se os valores de f estão arbitrariamente próximos de b para os pontos de D_f que estão suficientemente próximos (e são distintos) de a.

Notas:

- Também se define a noção de limite quando a (ou b) é infinito.
- ullet Se f apenas está definida à direita [esquerda] de a, escrevemos

$$\lim_{x \to a} f(x) = \lim_{x \to a^+} f(x) = b \qquad \left[\lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = b \right].$$

Os limites anteriores designam-se por limites laterais. Quando f está definida à esquerda e à direita do ponto x=a, tem-se

$$\lim_{x \to a} f(x) = b \quad \Leftrightarrow \quad \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = b.$$

Exemplo

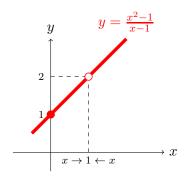
Consideremos a função $f(x)=\frac{x^2-1}{x-1}$ definida em $]-\infty,1[\cup]1,+\infty[$ e a=1. Observando a tabela podemos constatar que os valores de f(x) se aproximam de 2 à medida que x se aproxima 1,

X	 .97	.98	.99	1	1.01	1.02	1.03	
f(x)	 1.97	1.98	1.99	ND	2.01	2.02	2.03	

De facto,

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

O gráfico de f(x) corresponde ao gráfico da função linear y=x+1, com o ponto (1,2) removido, pois f não está definida no ponto a=1.



Uma função f diz-se contínua em $a \in D_f$ se existe o limite de f(x) quando x tende para a e o seu valor é igual a f(a), isto é,

$$f$$
 contínua em $a \in D_f$ \Leftrightarrow $\lim_{x \to a} f(x) = f(a)$.

Notas:

- As funções polinomiais, potência, exponencial, logarítmo e funções trignométricas e respectivas inversas, são contínuas nos seus domínios.
- As funções que se podem obter como somas, produtos, quocientes e composições de funções contínuas (ou das suas inversas), ainda são contínuas nos seus domínios. Para estas funções o cálculo do limite

num ponto do domínio faz-se substituindo o valor da função nesse ponto.

Por exemplo, considerando $f(x) = \frac{\ln(x+1)}{x^2+1}$ e $a=0 \in D_f$, tem-se

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln(x+1)}{x^2 + 1} = \frac{\ln(1)}{2} = 0.$$

 \bullet Se f apenas está definida à direita [esquerda] de a, incluindo o ponto $a,\,f$ diz-se contínua em a se

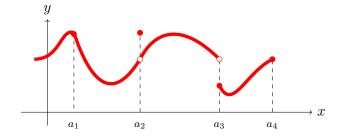
$$\lim_{x \to a^+} f(x) = f(a) \qquad \left[\lim_{x \to a^-} f(x) = f(a) \right].$$

Quando f está definida à esquerda e à direita do ponto x = a, tem-se

$$f$$
 contínua em $a \in D_f$ \Leftrightarrow $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$.

Exemplo

Consideremos a função y = f(x) representada no gráfico abaixo.



- Existe $\lim_{x\to a_1} f(x) = f(a_1)$ pelo que f é contínua em a_1 .
- Existe $\lim_{x \to a_2} f(x)$ pois existem e são iguais $\lim_{x \to a_2^-} f(x) = \lim_{x \to a_2^+} f(x)$, mas f não é contínua em a_2 pois $\lim_{x \to a_2} f(x) \neq f(a_2)$.
- Não existe $\lim_{x\to a_3} f(x)$ pois $\lim_{x\to a_3^-} f(x) \neq \lim_{x\to a_3^+} f(x)$, pelo que f também não é contínua em a_3 .

• Existe $\lim_{x\to a_4} f(x) = \lim_{x\to a_4^-} f(x) = f(a_4)$, pelo que f é contínua em a_4 .

Propriedades operatórias dos limites

Consideremos funções $f:D\to\mathbb{R}$ e $g:D\to\mathbb{R}$ tais que

$$\lim_{x \to a} f(x) = b \quad e \quad \lim_{x \to a} g(x) = c,$$

onde $a, b \in c$ podem ser reais ou $\pm \infty$. Tem-se:

•
$$\lim_{x \to a} (f(x) + g(x)) = b + c,$$

•
$$\lim_{x \to a} (f(x) g(x)) = b c$$
,

•
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$$
,

admitindo a extensão das operações aritméticas indicada simbolicamente na seguinte tabela, onde $k \in \mathbb{R}$:

$k \pm \infty = \pm \infty$	$\infty + \infty = \infty$	$\infty - \infty$ indeterm.		
$k \times \infty = \infty (k \neq 0)$	$\infty \times \infty = \infty$	$0 \times \infty$ indeterm.		
$\frac{\infty}{k} = \infty \; ; \; \frac{k}{\infty} = 0$	$\frac{k}{0} = \infty \; ; \; \frac{0}{k} = 0 (k \neq 0)$	$\frac{0}{0}$; $\frac{\infty}{\infty}$ indeterm.		

Exemplos

1.
$$\lim_{x \to 0} \left(x^2 + \frac{1}{x^2} \right) \stackrel{0 + \infty}{==} + \infty.$$

$$2. \lim_{x \to -\infty} \frac{x+1}{e^x} \stackrel{\frac{\infty}{0}}{=\!\!\!=} \infty.$$

3.
$$\lim_{x\to 0^+} \left(e^{\frac{1}{x}}\sin x\right)$$
 é uma indeterminação do tipo $\infty\times 0$.

4.
$$\lim_{x\to 0} \frac{e^x - 1}{\sin x}$$
 é uma indeterminação do tipo $\frac{0}{0}$.

Indeterminações do tipo $\infty - \infty$ geradas por funções polinomiais

Seja

$$P(x) = a_m x^m + \dots + a_1 x + a_0.$$

Pondo em evidência o monómio de maior grau mostra-se que

$$\lim_{x \to \pm \infty} P(x) = \lim_{x \to \pm \infty} a_m x^m.$$

Exemplo

$$\lim_{x \to +\infty} x^3 - x \stackrel{\infty - \infty}{=\!\!\!=} \lim_{x \to +\infty} x^3 \left(1 - \frac{1}{x^2} \right) = +\infty.$$

Indeterminações do tipo $\frac{\infty}{\infty}$ geradas por funções racionais

Considere os polinómios

$$P(x) = a_m x^m + \dots + a_1 x + a_0.$$

$$Q(x) = b_n x^n + \dots + b_1 x + b_0,$$

de graus m e n, respectivamente. Atendendo ao que foi dito atrás, tem-se

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{a_m x^m}{b_n x^n} = \begin{cases} \frac{a_m}{b_m}, & m = n, \\ 0, & m < n, \\ \pm \infty, & m > n, \end{cases}$$

onde o sinal do limite quando m>n depende do sinal de $\frac{a_m}{b_n}$. Temos um resultado do mesmo tipo quando $x\to -\infty$.

Exemplos

1.
$$\lim_{x \to +\infty} \frac{2x^2 + 1}{3x^2 - 5x + 2} = \lim_{x \to +\infty} \frac{x^2 \left(2 + \frac{1}{x^2}\right)}{x^2 \left(3 - \frac{5}{x} + \frac{2}{x^2}\right)} = \frac{2}{3}.$$

2.
$$\lim_{x \to +\infty} \frac{5x^2 + 1}{-x^5 - 8x^3 + 3x} = \lim_{x \to +\infty} \frac{x^2 \left(5 + \frac{1}{x^2}\right)}{x^5 \left(-1 - \frac{8}{x^2} + \frac{3}{x^4}\right)} = 0.$$

3.
$$\lim_{x \to +\infty} \frac{-2x^4 + x^3 - x}{7x^3 - 5x^2 + 4} = \lim_{x \to +\infty} \frac{x^4 \left(-2 + \frac{1}{x} - \frac{1}{x^3}\right)}{x^3 \left(7 - \frac{5}{x} + \frac{4}{x^3}\right)} = -\infty.$$

4.
$$\lim_{x \to -\infty} \frac{-x^3 + x - 4}{5x^2 - 5x} = \lim_{x \to -\infty} \frac{x^3 \left(-1 + \frac{1}{x^2} - \frac{4}{x^3}\right)}{x^2 \left(5 - \frac{5}{x}\right)} = +\infty.$$

Nota

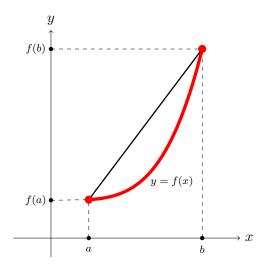
As indeterminações do tipo $\infty - \infty$ ou $\frac{\infty}{\infty}$ geradas por outros tipos de funções, serão consideradas posteriormente.

1.3 Derivadas

Consideremos uma função $f:[a,b]\to\mathbb{R}$. Chamamos taxa de variação média de f em [a,b] à razão,

$$\frac{f(b) - f(a)}{b - a}.$$

Geometricamente a taxa de variação média corresponde ao declive da secante que une os pontos do gráfico de f, (a, f(a)) e (b, f(b)).



Chamamos taxa de variação instantânea ou derivada de f no ponto de abcissa $a \in D_f$ ao limite (quando existe)

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Nesse caso a a função f diz-se derivável em a e denota-se a derivada de f nesse ponto por f'(a) ou $\frac{df}{dx}(a)$.

A taxa de variação média [instântanea] também se designa por velocidade média [instântanea] ou taxa de crescimento média [instântanea], consoante o contexto em que se aplica.

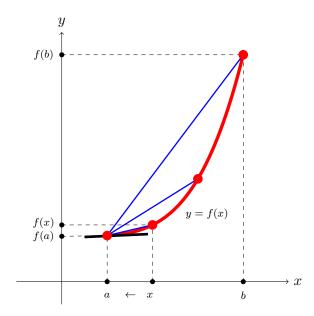
Dizemos que uma função é *derivável* (num intervalo) se for derivável em todos os pontos desse intervalo.

Tomando h = x - a concluímos imediatamente que a definição de f'(a) também pode ser apresentada como o limite, quando existe, de

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

o que pode ser útil nalguns cálculos.

Geometricamente, derivada de f em a corresponde ao declive da recta tangente ao gráfico de f no ponto (a, f(a)), recta essa cujo declive é o limite dos declives das secantes que unem os pontos do gráfico de f, (a, f(a)) e (x, f(x)), quando x tende para a.



Tem-se que f é derivável em a se e só se admitir recta tangente ao seu gráfico no ponto (a, f(a)).

Para determinarmos uma equação para esta recta tangente, comecemos por recordar que uma equação da recta com declive m que passa no ponto (x_0, y_0) é dada por,

$$y - y_0 = m(x - x_0).$$

No caso da recta tangente tem-se $x_0=a, y_0=f(a)$ e m=f'(a). Portanto uma equação da recta tangente ao gráfico de f em (a,f(a)) é dada por

$$y = f(a) + f'(a)(x - a).$$

Exemplos

1. A taxa de variação média de $f(x) = 5x^2 + 2x$ no intervalo [0,1] é

$$\frac{f(1) - f(0)}{1 - 0} = 7.$$

A taxa de variação instantânea de f em 0, é

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{5x^2 + 2x}{x} = \lim_{x \to 0} (5x + 2) = 2.$$

A taxa de variação instantânea de f em a, i.e., a derivada de f em a,

é

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{5(a+h)^2 + 2(a+h) - (5a^2 + 2a)}{h}$$

$$= \lim_{h \to 0} \frac{5(a^2 + h^2 + 2ah) + 2(a+h) - (5a^2 + 2a)}{h}$$

$$= \lim_{h \to 0} \frac{5h^2 + 10ah + 2h}{h}$$

$$= \lim_{h \to 0} (5h + 10a + 2) = 10a + 2.$$

2. A derivada de $f(x) = \frac{1}{x}$ no ponto $x \neq 0$ é

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x - (x+h)}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{-h}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}.$$

Para funções definidas por ramos a existência de derivada tem que ser estudada considerando os limites,

$$f'_e(a) = \lim_{h \to 0^-} \frac{f(a+h) - f(a)}{h}$$
 e $f'_d(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$.

que se designam, respectivamente por, derivada lateral esquerda e derivada lateral direita de f em x=a.

A existência de derivada em a é equivalente à existência e igualdade de derivadas laterais nesse ponto.

Exemplos

1. Consideremos a função

$$f(x) = |x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

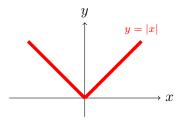
Tem-se

$$f'_d(0) = \lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h - 0}{h} = 1,$$

e

$$f'_e(0) = \lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^-} \frac{-h - 0}{h} = -1.$$

Como $f'_e(0) \neq f'_d(0)$ não existe derivada de f em 0.



2. Consideremos a função

$$f(x) = \begin{cases} 2x - 1, & x \ge 1, \\ x^2, & x < 1. \end{cases}$$

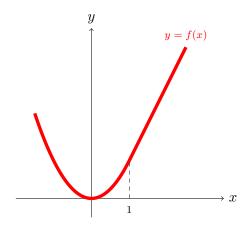
Tem-se

$$f'_d(1) = \lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^+} \frac{(2(h+1) - 1) - 1}{h} = 2,$$

 \mathbf{e}

$$f'_e(0) = \lim_{h \to 0^-} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^-} \frac{(1+h)^2 - 1}{h} = \lim_{h \to 0^-} (h+2) = 2.$$

Como $f'_e(1) = f'_d(1) = 2$, existe f'(1) = 2.



Teorema Se $f:D_f\to\mathbb{R}$ é uma função derivável num ponto $a\in D_f,\,f$ é contínua em a.

Notas:

- $\bullet\,$ Se fnão é contínua num ponto então não é derivável nesse ponto.
- ullet Se f é contínua num ponto, f pode ou não ser não derivável nesse ponto, como se viu nos exemplos anteriores.

Exemplo

Consideremos a função

$$f(x) = \begin{cases} e^x, & x \ge 0, \\ x^2, & x < 0. \end{cases}$$

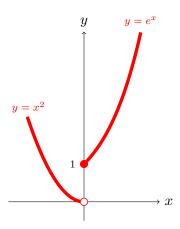
Tem-se

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^x = 1$$

e

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x^{2} = 0.$$

Como os limites laterais em 0 são distintos, f não é contínua em x=0, pelo que também não é derivável nesse ponto.



Derivadas de algumas funções elementares

Usando a definição de derivada e procedendo de modo análogo ao que fizémos para a função $f(x)=\frac{1}{x}$ podemos determinar expressões para as derivadas das funções elementares mais conhecidas, que se resumem na seguinte tabela.

f(x)	f'(x)	
k	0	
x^{α}	$\alpha x^{\alpha-1}$	$(\alpha \in \mathbb{R})$
e^x	e^x	
$\ln x$	$\frac{1}{x}$	
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\operatorname{tg} x$	$\sec^2 x$	
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$	
$\operatorname{arctg} x$	$\frac{1}{1+x^2}$	

Regras de derivação

Teorema

Sejam $f,g:D\to\mathbb{R}$ funções deriváveis, onde $D=D_f\cap D_g$. São válidas as seguintes propriedades.

• (Derivada da soma) $f+g:D\to\mathbb{R}$ é derivável, tendo-se

$$(f+g)'(x) = f'(x) + g'(x), \quad \forall x \in D.$$

• (Derivada do produto) $fg:D\to\mathbb{R}$ é derivável, tendo-se

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x), \quad \forall x \in D.$$

Em particular, se $k \in \mathbb{R}, \, k \, f$ é derivável tendo-se $(k \, f)' = k \, f'.$

• (Derivada do quociente) Se além disso $g(x) \neq 0$ para todo o $x \in D$, então $\frac{f}{g}: D \to \mathbb{R}$ é derivável, tendo-se

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}, \quad \forall x \in D.$$

Exemplos

1.
$$(\ln x + \sin x)' = (\ln x)' + (\sin x)' = \frac{1}{x} + \cos x$$
.

2.
$$(\ln x \sin x)' = (\ln x)' \sin x + \ln x (\sin x)' = \frac{\sin x}{x} + \ln x \cos x$$
.

3.
$$(4\sin x)' = 4(\sin x)' = 4\cos x$$
.

$$4. \left(\frac{\ln x}{\sin x}\right)' = \frac{(\ln x)' \sin x - \ln x (\sin x)'}{\sin^2 x} = \frac{\frac{\sin x}{x} - \ln x \cos x}{\sin^2 x}.$$

5.
$$\left(\frac{\ln x}{4}\right)' = \frac{1}{4}(\ln x)' = \frac{1}{4\ln x}$$
.

Teorema (Derivada da função composta)

Sejam $f: D_f \to \mathbb{R}$ e $g: D_g \to \mathbb{R}$ funções deriváveis tais que $\mathrm{CD}_f \subset D_g$.

Então $g \circ f : D_f \to \mathbb{R}$ é derivável, tendo-se

$$(g \circ f)'(x) = (g(f(x)))' = g'(f(x))f'(x), \qquad \forall x \in D_f.$$

Exemplos

1. Seja f(x)=2x e $g(x)=e^x$. Então $(g\circ f)(x)=e^{2x}$, tendo-se,

$$(e^{2x})' = e^{2x}(2x)' = 2e^{2x}.$$

2. Seja $f(x) = x^2$ e $g(x) = \sin x$. Então $(g \circ f)(x) = \sin(x^2)$, tendo-se,

$$(\sin(x^2))' = \sin'(x^2)(x^2)' = \cos(x^2)2x.$$

3. Seja
$$f(x)=\sin x$$
 e $g(x)=x^2$. Então $(g\circ f)(x)=(\sin x)^2$, tendo-se,
$$\left(\sin^2 x\right)'=2\sin x(\sin x)'=2\sin x\cos x.$$

Usando a regra de derivação da função composta e a tabela de derivadas de funções elementares dada anteriormente, obtemos a seguinte tabela, onde f denota uma função derivável que pode entrar na composição:

$$(f^{\alpha})' = \alpha f^{\alpha-1} f' \quad (\alpha \in \mathbb{R})$$

$$(e^{f})' = e^{f} f'$$

$$(\ln f)' = \frac{f'}{f}$$

$$(\sin f)' = \cos(f) f'$$

$$(\cos f)' = -\sin(f) f'$$

$$(\operatorname{tg} f)' = \sec^{2}(f) f'$$

$$(\operatorname{arcsin} f)' = \frac{f'}{\sqrt{1 - f^{2}}}$$

$$(\operatorname{arccos} f)' = -\frac{f'}{\sqrt{1 + f^{2}}}$$

$$(\operatorname{arctg} f)' = \frac{f'}{1 + f^{2}}$$

Aproximação linear a uma função

Seja $f:D\to\mathbb{R}$ uma função derivável em $a\in D$. Recordemos que uma equação da recta tangente ao gráfico de f no ponto (a,f(a)) é

$$y = f'(a)(x - a) + f(a).$$

À função linear

$$L(x) = f'(a)(x - a) + f(a),$$

chama-se a linearização de f em a e corresponde à melhor aproximação linear de f na vizinhança do ponto x=a, tendo-se

$$\lim_{x \to a} \frac{f(x) - L(x)}{x - a} = 0.$$

Exemplo

Consideremos a função $f(x)=x^2$ e $a\in\mathbb{R}$. Tem-se f'(x)=2x pelo que uma equação da recta tangente ao gráfico de f no ponto (a,f(a)) é

$$y = f(a) + f'(a)(x - a) \Leftrightarrow y = a^2 + 2a(x - a).$$

A aproximação linear de f na vizinhança de a é dada pela função

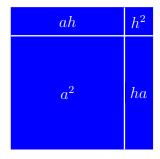
$$L(x) = a^2 + 2a(x - a).$$

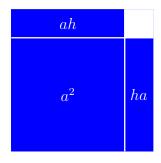
Para x = a + h perto de a, isto é, para valores pequenos de |h|, tem-se

$$f(a+h) = (a+h)^2 = a^2 + 2ah + h^2 \approx L(x) = a^2 + 2ah.$$

O erro da aproximação anterior é $|f(a+h) - L(a+h)| = h^2$.

Se a, h > 0, podemos interpretar geometricamente f(a + h) e L(a + h) como as áreas das regiões representadas (a azul) na figura abaixo.





O erro da aproximação corresponde à área do quadrado de lado h que falta na segunda região.

1.4 Regra de Cauchy

O seguinte resultado permite levantar indeterminações do tipo $\frac{0}{0}$ e $\frac{\infty}{\infty}$.

Teorema (Regra de Cauchy)

Sejam f e g duas funções deriváveis num intervalo I aberto, a extremidade de I ($a \in \mathbb{R}$, $a = +\infty$ ou $a = -\infty$). Suponhamos ainda que $g'(x) \neq 0$, para todo o $x \in I$ e que

(i)
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \text{ (ou } \infty),$$

(ii) existe
$$\lim_{x\to a} \frac{f'(x)}{g'(x)} = 0$$
 (finito ou infinito).

Então,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Exemplos

1.
$$\lim_{x \to 0} \frac{\cos x - 1}{x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{-\sin x}{1} = 0.$$

$$2. \lim_{x \to 0} \frac{\cos x - 1}{x^2} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{-\sin x}{2x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{-\cos x}{2} = -\frac{1}{2}.$$

$$3. \lim_{x \to 0} \frac{e^x}{x^3} \stackrel{\underline{\infty}}{=} \lim_{x \to +\infty} \frac{e^x}{3x^2} \stackrel{\underline{\infty}}{=} \lim_{x \to +\infty} \frac{e^x}{6x} \stackrel{\underline{\infty}}{=} \lim_{x \to +\infty} \frac{e^x}{6} = +\infty.$$

4.
$$\lim_{x \to +\infty} \frac{x^2}{\ln x} \stackrel{\underline{\infty}}{=} \lim_{x \to +\infty} \frac{2x}{\frac{1}{x}} = \lim_{x \to +\infty} 2x^2 = +\infty.$$

Para além das indeterminações do tipo $\frac{0}{0}$ e $\frac{\infty}{\infty}$, indeterminações de outros tipos podem também ser levantadas pela regra de Cauchy, transformando-as em indeterminações do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$.

Indeterminações do tipo $\infty \times 0$

As indeterminações do tipo $\infty \times 0$ são geradas pelo produto de duas funções f e g, em que uma converge para 0 e a outra para infinito. Estas indeterminações podem ser transformadas em indeterminações do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$ considerando, respectivamente,

$$f \cdot g = \frac{f}{\frac{1}{g}}$$
 ou $f \cdot g = \frac{g}{\frac{1}{f}}$.

Exemplos

1.
$$\lim_{x \to 0^+} x \ln x \stackrel{0 \times \infty}{=} \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \stackrel{\infty}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = -\lim_{x \to 0^+} x = 0.$$

2.
$$\lim_{x \to -\infty} x e^x \stackrel{\infty \times 0}{=} \lim_{x \to -\infty} \frac{x}{e^{-x}} \stackrel{\infty}{=} \lim_{x \to +\infty} \frac{1}{-e^x} = 0.$$

3.
$$\lim_{x \to 0^+} \operatorname{tg} x \ln x \stackrel{0 \times \infty}{=} \lim_{x \to 0^+} \frac{\ln x}{\frac{\cos x}{\sin x}} \stackrel{\infty}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-\sin^2 x - \cos^2 x}{\sin^2 x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{\sin^2 x}} \stackrel{\infty}{=} -\lim_{x \to 0^+} \frac{2\sin x \cos x}{1} = 0.$$

Observação:

No levantamento de indeterminações do tipo $0 \times \infty$, não é indiferente (em geral) a escolha da função que se passa para o denominador. Por exemplo, a escolha da função a passar para o denominador no limite

$$\lim_{x \to 0^+} x \ln x \stackrel{0 \times \infty}{=} \lim_{x \to 0^+} \frac{x}{\frac{1}{\ln x}} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0^+} \frac{1}{\frac{-1}{x \ln^2 x}} = -\lim_{x \to 0^+} x \ln^2 x,$$

não simplificou o cálculo desse limite, enquanto que transformando a indeterminação $0\times\infty$ em $\frac{\infty}{\infty}$, se tem

$$\lim x \ln x \stackrel{0 \times \infty}{=} \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \stackrel{\frac{\infty}{\infty}}{=} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0.$$

Indeterminações do tipo $\infty - \infty$

Estas indeterminações podem frequentemente serem transformadas em indeterminações do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$, efectuando uma das seguintes operações:

- 1. Reduzir a expressão ao mesmo denominador;
- 2. Pôr em evidência uma das parcelas da expressão;
- 3. Multiplicar e dividir pelo "conjugado" da expressão.

Exemplos

1.
$$\lim_{x \to \frac{\pi}{2}^+} (\sec x - \tan x) \stackrel{\infty - \infty}{=} \lim_{x \to \frac{\pi}{2}^+} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) = \lim_{x \to \frac{\pi}{2}^+} \frac{1 - \sin x}{\cos x} \stackrel{0}{=} \lim_{x \to \frac{\pi}{2}^+} \frac{\cos x}{-\sin x} = -0.$$

2.
$$\lim_{x \to +\infty} (x - \ln x) \stackrel{\infty \to \infty}{=\!\!\!=} \lim_{x \to +\infty} x \left(1 - \frac{\ln x}{x} \right) = +\infty.$$

$$(C.A.: \lim_{x \to +\infty} \frac{\ln x}{x} \stackrel{\frac{\infty}{\cong}}{=\!\!\!=} \lim_{x \to +\infty} \frac{\frac{1}{x}}{1} = 0.)$$

3.
$$\lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x} \right) \stackrel{\infty = \infty}{=} \lim_{x \to +\infty} \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0.$$

Outros tipos de indeterminações: 0^0 , 1^{∞} e ∞^0

Estas indeterminações são geradas por limites do tipo

$$\lim_{r \to a} f^g$$

com f>0. Estas indeterminações podem ser transformadas em indeterminações do tipo $0\times\infty$ atendendo a que

$$\lim_{x \to a} f^g = e^{\lim_{x \to a} \ln(f^g)} = e^{\lim_{x \to a} g \ln f},$$

se este último limite existir.

Exemplos

1.
$$\lim_{x \to 0^+} x^x \stackrel{0^0}{=} \lim_{x \to 0^+} e^{\ln(x^x)} = \lim_{x \to 0^0} e^{x \ln x}$$
.

Como vimos anteriormente, $\lim_{x\to 0^+} x \ln x = 0$, pelo que

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{\ln(x^x)} = e^0 = 1.$$

.

2.
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x \stackrel{1^{\infty}}{=} \lim_{x \to +\infty} e^{\ln\left(\left(1 + \frac{1}{x}\right)^x\right)} = \lim_{x \to +\infty} e^{x\ln\left(1 + \frac{1}{x}\right)}.$$
Ora,
$$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right) \stackrel{\infty \times 0}{=} \lim_{x \to +\infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} \stackrel{0}{=} \lim_{x \to +\infty} \frac{\left(\frac{1}{x}\right)'}{\left(\frac{1}{x}\right)'} = 1, \text{ pelo}$$

$$\text{que } \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e^1 = e.$$

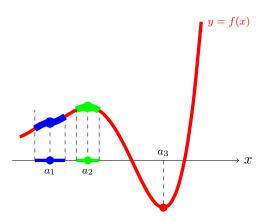
3.
$$\lim_{x \to +\infty} x^{\frac{1}{x}} \stackrel{\text{∞}^0}{===} \lim_{x \to +\infty} e^{\ln\left(x^{\frac{1}{x}}\right)} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}}.$$
Ora,
$$\lim_{x \to +\infty} \frac{\ln x}{x} \stackrel{\text{∞}}{===} \lim_{x \to +\infty} \frac{\frac{1}{x}}{1} = 0, \text{ pelo que } \lim_{x \to +\infty} x^{\frac{1}{x}} = e^0 = 1.$$

1.5 Estudo de funções

Definição Sejam $f:D_f\to\mathbb{R}$ uma função real de variável real e $a\in D_f$. Diz-se que:

- f atinge o $m\'{a}ximo$ absoluto em a se $f(x) \leq f(a)$ para todo o $x \in D_f$;
- f atinge o minimo absoluto em a se $f(x) \ge f(a)$ para todo o $x \in D_f$;
- f atinge um $m\'{a}ximo$ (relativo ou local) em a se $f(x) \leq f(a)$ para os pontos do domínio contidos nalgum intervalo $]a \varepsilon, a + \varepsilon[\ (\varepsilon > 0);$

• f atinge um minimo (relativo ou local) em a se $f(x) \ge f(a)$ para os pontos do domínio contidos nalgum intervalo $]a - \delta, a + \delta[\ (\delta > 0);$



No intervalo $]a_1 - \delta, a_1 + \delta[$ (a azul), $f(x) \ge f(a_1)$ pelo que f tem um mínimo (relativo) em a_1 de valor $f(a_1)$. Como $f(x) \ge f(a_3)$ para todo o $x \in D_f$, f tem um mínimo absoluto em a_3 de valor $f(a_3)$.

No intervalo $]a_2 - \varepsilon, a_2 + \varepsilon[$ (a verde), $f(x) \leq f(a_2)$ pelo que f tem um máximo (relativo) em a_2 de valor $f(a_2)$.

No estudo da monotonia e extremos (relativos) de uma função, isto é, respectivos máximos e mínimos (locais), a derivada vai desempenhar um papel fundamental, como veremos.

Teorema Seja $f:I\to\mathbb{R}$ uma função derivável num intervalo aberto I. Tem-se que:

- 1. Se f' > 0 [f' < 0] em I, f é estritamente crescente [decrescente] em I.
- 2. Se $f' \geq 0$ [$f' \leq 0$] em I, f é crescente [decrescente] em I.

Corolário Se $f: I \to \mathbb{R}$ é uma função derivável num intervalo aberto I tal

que f' > 0 ou f' < 0 em I, f é injectiva em I. Em particular f é invertível no intervalo I.

Exemplo

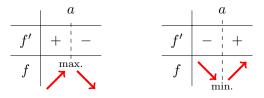
Consideremos $f(x) = x + \ln x$ cujo domínio é \mathbb{R}^+ . Tem-se

$$f'(x) = 1 + \frac{1}{x} > 0, \qquad \forall x \in \mathbb{R}^+,$$

pelo que f é estritamente crescente em \mathbb{R}^+ , e portanto é invertível em \mathbb{R}^+ .

Corolário Sejam $f:I\to\mathbb{R}$ é uma função derivável num intervalo aberto I e $a\in I$. Tem-se que:

- 1. Se f' > 0 à esquerda de x = a e f' < 0 à direita de x = a então f tem um máximo relativo em x = a;
- 2. Se f' < 0 à esquerda de x = a e f' > 0 à direita de x = a então f tem um mínimo relativo em x = a.



Teorema Sejam $f: I \to \mathbb{R}$ uma função derivável num intervalo aberto I e $a \in I$ um extremo relativo de f. Então tem-se f'(a) = 0.

Definição Um ponto $a \in D_f$ diz-se um ponto crítico (ou de estacionaridade) de f se f'(a) = 0.

Notas:

- O teorema anterior significa que os extremos relativos de uma função derivável num intervalo aberto se encontram entre os pontos críticos dessa função.
- A recíproca do teorema anterior é no entanto falsa, isto é, existem pontos críticos que não são extremos relativos.

Definição Seja $f:I\to\mathbb{R}$ uma função real de variável real derivável no intervalo I. Diz-se que:

- f tem concavidade $virada\ para\ cima\ em\ I$ se para todo o $a\in I$ a reta tangente ao gráfico de f no ponto (a,f(a)) está abaixo do gráfico de f (numa viz. desse ponto);
- f tem concavidade virada para baixo em I se para todo o $a \in I$ a reta tangente ao gráfico de f no ponto (a, f(a)) está acima do gráfico de f (numa viz. desse ponto).

O estudo da concavidade de uma função faz-se com recurso à $2^{\underline{a}}$ derivada. **Teorema** Seja f uma função com $2^{\underline{a}}$ derivada no intervalo I.

- 1. Se f'' > 0 em I, f tem concavidade virada para cima;
- 2. Se f'' < 0 em I, f tem concavidade $virada\ para\ baixo$.

Definição Um ponto $a \in D_f$ diz-se um ponto de inflexão se em a ocorrer uma mudança do sentido da concavidade de f.

Teorema Sejam $f: I \to \mathbb{R}$ duas vezes derivável num intervalo aberto I e $a \in I$. Se f tem um ponto de inflexão em a, então f''(a) = 0.

A recíproca do teorema anterior é falsa, isto é, existem pontos que anulam a segunda derivada que não são pontos de inflexão, como ocorre por exemplo com a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^4$ (verfique).

Vamos ilustrar os conceitos anteriores através do estudo de duas funções.

Estudo da função $f(x) = \frac{x}{1+x^2}$.

1. Domínio e assímptotas verticais.

Tem-se $D_f = \mathbb{R}$ (porquê?) pelo que f não admite assímptotas verticais.

2. Assímptotas não verticais.

Tem-se $\lim_{x\to\pm\infty}\frac{x}{1+x^2}=0$, pelo que f admite a assímptota horizontal y=0 à esquerda e à direita.

3. Intersecção com os eixos coordenados

Tem-se $f(x) = 0 \Leftrightarrow x = 0$, pelo que o único ponto de intersecção é a origem do referencial.

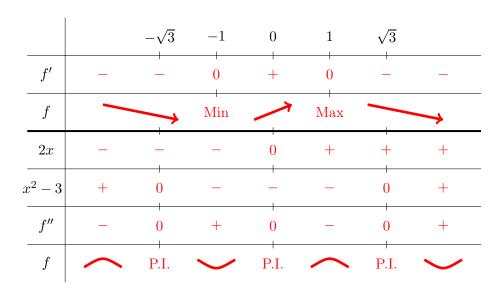
4. Monotonia e extremos.

Tem-se $f'(x) = \frac{1-x^2}{(1+x^2)^2} = 0 \Leftrightarrow x^2 = 1$, pelo que f tem pontos críticos x = 1 e x = -1. Além disso, como $(1+x^2)^2 > 0$ para todo o $x \in \mathbb{R}$, f'(x) tem o mesmo sinal de que $1-x^2 >$, pelo que f' toma

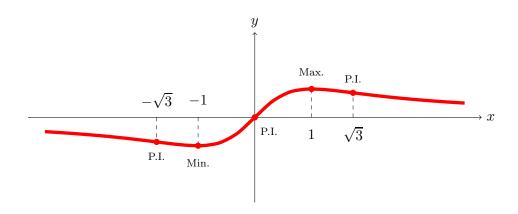
valores positivos em] – 1, 1[e negativos em] – ∞ , –1[\cup]1, + ∞ [(ver o quadro de sinais).

5. Pontos de inflexão e concavidades.

Tem-se $f''(x) = \frac{2x(x^2 - 3)}{(1 + x^2)^3} = 0 \Leftrightarrow x(x^2 - 3) = 0$, pelo que f tem pontos de inflexão x = 0, $x = \sqrt{3}$ e $x = -\sqrt{3}$ (ver o quadro de sinais).



6. Esboço do gráfico.



Estudo da função $f(x) = \frac{x}{\log x}$.

1. Domínio e assímptotas verticais.

Tem-se $D_f =]0, 1[\cup]1, +\infty[(porquê?).$

Tem-se $\lim_{x\to 1^-}\frac{x}{\log x}=-\infty$ e $\lim_{x\to 1^+}\frac{x}{\log x}=+\infty$ pelo que f admite assímptota vertical x=1, em $-\infty$ à esquerda de x=1 e em $+\infty$ à direita de x=1.

2. Assímptotas não verticais.

Tem-se

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x}{x \log x} = \lim_{x \to +\infty\infty} \frac{1}{\log x} = 0,$$

e

$$b = \lim_{x \to +\infty} \frac{x}{\log x} \stackrel{R.C.}{=} \lim_{x \to +\infty} \frac{1}{\frac{1}{x}} = \infty,$$

pelo que f não admite assímptotas não verticais.

 $3. \ Intersecção \ com \ os \ eixos \ coordenados$

Não há intersecção do gráfico de f com os eixos coordenados.

4. Monotonia e extremos.

Tem-se $f'(x) = \frac{\log x - 1}{(\log x)^2} = 0 \Leftrightarrow \log x = 1$, pelo que o único ponto crítico de f é x = e. Além disso, f'(x) < 0 para x < e, e f'(x) > 0 para x > e. Logo f é decrescente em $]0,1[\cup]1,e[$ e crescente em $]e,+\infty[$, tendo um mínimo em x = e.

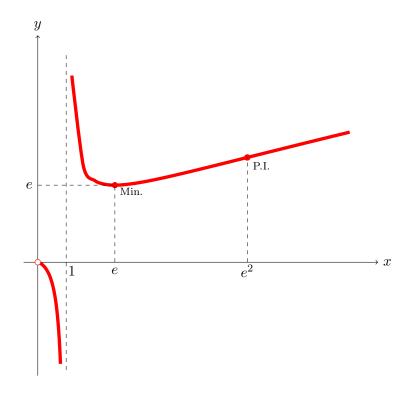
5. Pontos de inflexão e concavidades.

Tem-se $f''(x) = \frac{2 - \log x}{x(\log x)^3} = 0 \Leftrightarrow \log x = 2$, pelo que f tem um ponto de inflexão $x = e^2$. Além disso, tem-se

- $2 \log x > 0$ para $x < e^2$, e $2 \log x < 0$ para $x > e^2$.
- $(\log x)^3 > 0$ para x > 1 e $(\log x)^3 < 0$ para x < 1.

Logo f'' < 0 em $]0,1[\cup]e^2,+\infty[$ (onde f tem concavidade virada para baixo) e f'' > 0 em $]1,e^2[$ (onde f tem concavidade virada para cima).

6. Esboço do gráfico.



1.6 Primitivas

Nesta secção vamos considerar as funções definidas num intervalo aberto I.

Seja $f: I \to \mathbb{R}$ uma função definida num intervalo I. Chamamos **primitiva de** f (em I) a uma função derivável $F: I \to \mathbb{R}$ tal que F'(x) = f(x) para todo o $x \in I$. Denotamos,

$$F = P f = \int f$$
.

Exemplos

- 1. P1 = x.
- 2. $Pk = kx \ (k \in \mathbb{R}).$
- 3. $Px = \frac{x^2}{2}$.
- 4. $P x^2 = \frac{x^3}{3}$.
- 5. $P x^n = \frac{x^{n+1}}{n+1} \ (n \in \mathbb{N}).$
- 6. $P \frac{1}{x} = \ln x \text{ (em } \mathbb{R}^+).$

Notas:

- $\bullet\,$ Todas as funções contínuas definidas em Isão primitiváveis em I.
- Duas primitivas de uma função num intervalo diferem de uma constante, isto é, se F e G são duas primitivas de uma mesma função f num intervalo I, existe $k \in \mathbb{R}$ tal que G = F + k em I. Por outras

palavras, a família de funções,

$$F + k, \quad k \in \mathbb{R},$$

constitui a família de todas as primitivas de f (em I).

• Se f é primitivável num intervalo $I, x_0 \in I$ e $y_0 \in \mathbb{R}$, existe uma única função F definida em I tal que F = P f, e $F(x_0) = y_0$.

Exemplo

A família de funções,

$$F(x) = \frac{x^2}{2} + k, \qquad k \in \mathbb{R},$$

constitui a família de todas as primitivas de f(x)=x em \mathbb{R} . No entanto, a única primitiva de f que verifica a condição F(2)=4 é

$$F(x) = \frac{x^2}{2} + 2.$$

De facto,
$$F(2) = \frac{x^2}{2} + k = 4 \Rightarrow k = 2.$$

Primitivas imediatas

A partir da tabela de derivadas dada anteriormente obtemos as seguinte tabela de primitivas:

$$P k = kx$$

$$P x^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} \qquad P f' f^{\alpha} = \frac{f^{\alpha+1}}{\alpha+1}$$

$$P \frac{1}{x} = \ln|x| \qquad P f' e^f = \ln|f|$$

$$P e^x = e^x \qquad P f' e^f = e^f$$

$$P \sin x = -\cos x \qquad P f' \sin f = -\cos f$$

$$P \cos x = \sin x \qquad P f' \cos f = \sin f$$

$$P tg x = -\ln|\cos x| \qquad P f' tg f = -\ln|\cos f|$$

$$P \frac{1}{\sqrt{1-x^2}} = \arcsin x \qquad P \frac{f'}{\sqrt{1-f^2}} = \arcsin f$$

$$P \frac{-1}{\sqrt{1-x^2}} = \arccos x \qquad P \frac{-f'}{\sqrt{1-f^2}} = \arccos f$$

$$P \frac{1}{1+x^2} = \arctan x \qquad P \frac{f'}{1+f^2} = \arctan f$$

 $(k \in \mathbb{R}, \ \alpha \in \mathbb{R}, \ \alpha \neq -1).$

Exemplos

1.
$$Px \cos x^2 = P\frac{1}{2}(2x)\cos x^2 = \frac{1}{2}P(2x)\cos x^2 \xrightarrow{Pf'\cos f} \frac{1}{2}\sin x^2$$
.

2.
$$P \frac{1}{x^2} \sin \frac{1}{x} = P \left(-\frac{-1}{x^2} \right) \sin \frac{1}{x} = -P \frac{-1}{x^2} \sin \frac{1}{x} \xrightarrow{P f' \sin f} - \left(-\cos \frac{1}{x} \right) = \cos \frac{1}{x}.$$

3.
$$P \frac{e^x}{1 + e^{2x}} = P \frac{e^x}{1 + (e^x)^2} \stackrel{P \frac{f'}{1 + f^2}}{=} \operatorname{arctg} e^x$$
.

4.
$$P \frac{e^x}{1 + e^x} \stackrel{P \frac{f'}{f}}{===} \ln e^x$$
.

5.
$$P \frac{e^x}{\sqrt{1+e^x}} = P e^x (1+e^x)^{-\frac{1}{2}} \stackrel{P f'f^{-1/2}}{===} \frac{(1+e^x)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} = 2(1+e^x)^{\frac{1}{2}}.$$

6.
$$P \frac{e^x}{\sqrt{1 - e^{2x}}} = P \frac{e^x}{\sqrt{1 - (e^x)^2}} P \frac{f'}{\sqrt{1 - f^2}} \arcsin e^x$$
.

7.
$$P \frac{\cos x}{\sin x} \stackrel{P \frac{f'}{f}}{===} \ln|\sin x|$$
.

8.
$$P \frac{\cos x}{\sin^2 x} = P \cos x \sin^{-2} x \stackrel{Pf'f^{-2}}{=} \frac{\sin^{-1} x}{-1} = -\frac{1}{\sin x}$$
.

9.
$$P \cos x \sin^2 x \stackrel{Pf'f^2}{=} \frac{\sin^3 x}{3}$$
.

10.
$$P \frac{\sqrt{1+\ln x}}{x} = P \frac{1}{x} \sqrt{1+\ln x} \stackrel{Pf'f^{\frac{1}{2}}}{=} \frac{(1+\ln x)^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} \sqrt{(1+\ln x)^3}.$$

11.
$$P \frac{1}{x(1+\ln^2 x)} = P \frac{\frac{1}{x}}{1+\ln^2 x} \stackrel{P \frac{f'}{1+f^2}}{===} \arctan(\ln x).$$

12.
$$P \frac{1}{x(1+\ln x)} = P \frac{\frac{1}{x}}{1+\ln x} \stackrel{P \frac{f'}{f}}{===} \ln |\ln x|,$$

onde $k \in \mathbb{R}$, $\alpha \in \mathbb{R}$, $\alpha \neq 1$.

Regras de primitivação

A partir da regras de derivação da soma, produto e composição de funções, deduzem-se sem dificuldade as seguintes regras de primitivação.

Primitivação da soma

Se $f,g:I\to\mathbb{R}$ são funções primitiváveis num intervalo I,então

1. f+g é primitivável em I e tem-se

$$P(f+g) = Pf + Pg.$$

2. $kf \ (k \in \mathbb{N})$ é primitivável em I e tem-se

$$P(kf) = kPf$$
.

1.
$$P\left(x^2 + \frac{1}{x}\right) = Px^2 + P\frac{1}{x} = \frac{x^3}{3} + \ln|x|.$$

2.
$$P\left(4\cos x - \frac{3}{1+x^2}\right) = 4P\cos x - 3P\frac{1}{1+x^2} = 4\sin x - 3\arctan x$$
.

Primitivação por partes

Sejam $f,g:I\to\mathbb{R}$ funções definidas num intervalo I, com f primitivável e g derivável. Então $fg:I\to\mathbb{R}$ é primitivável, tendo-se

$$P(fg) = Fg - P(Fg'),$$

sendo F = P f.

• A primitivação por partes aplica-se usualmente para primitivar produtos de funções polinomiais, exponenciais, logarítmo, funções trignométricas e respectivas inversas. Neste método, a escolha da função a primitivar e da função a derivar não é, em geral, indiferente. Na seguinte tabela são sugeridas as funções a primitivar e a derivar nalgumas situações que aparecem frequentemente na prática.

	primitivar	derivar
$\operatorname{polin} \times \sin / \cos / \exp$	$\sin/\cos/\exp$	polin.
$\operatorname{polin} \times \ln$	polin	ln
$\exp \times \sin / \cos$	exp ou sin / cos	sin/cos ou exp
ln/arcsin/arctg	1	ln/arcsin/arctg

1.
$$P \underbrace{x}_{q} \cdot \underbrace{e^{x}}_{f} = \underbrace{x}_{q} \cdot \underbrace{e^{x}}_{F} - P \underbrace{1}_{q'} \cdot \underbrace{e^{x}}_{F} = xe^{x} - Pe^{x} = xe^{x} - e^{x}.$$

2.
$$P \underbrace{x}_{f} \underbrace{\ln x}_{g} = \underbrace{\frac{x^{2}}{2}}_{F} \underbrace{\ln x}_{g} - P \underbrace{\frac{x^{2}}{2}}_{F} \underbrace{\frac{1}{x}}_{g'} = \frac{x^{2}}{2} \ln x - \frac{1}{2} P x = \frac{x^{2}}{2} \ln x - \frac{x^{2}}{4}.$$

3.
$$P \ln x = P \underbrace{1}_{f} \underbrace{\ln x}_{g} = \underbrace{x}_{F} \underbrace{\ln x}_{g} - P \underbrace{x}_{F} \underbrace{\frac{1}{x}}_{g'} = x \ln x - P \mathbf{1} = x \ln x - x.$$

4.
$$P \underbrace{e^x}_f \cdot \underbrace{\sin x}_q = \underbrace{e^x}_F \cdot \underbrace{\sin x}_q - P \underbrace{e^x}_F \cdot \underbrace{\cos x}_{g'} \stackrel{\text{(*)}}{=} e^x \sin x - (e^x \cos x + P e^x \sin x).$$

Daqui resulta que $2 \operatorname{P} e^x \sin x = e^x \sin x - e^x \cos x$ e portanto que,

$$P e^x \sin x = \frac{e^x (\sin x - \cos x)}{2}.$$

(*)
$$P \underbrace{e^x}_f \cdot \underbrace{\cos x}_g = \underbrace{e^x}_F \cdot \underbrace{\cos x}_g - P \underbrace{e^x}_F \cdot \underbrace{(-\sin x)}_{g'}.$$

5.
$$\operatorname{P} \operatorname{arctg} x = \operatorname{P} \underbrace{1}_{f} \cdot \underbrace{\operatorname{arctg} x}_{g} = \underbrace{x}_{F} \cdot \underbrace{\operatorname{arctg} x}_{g} - \operatorname{P} \underbrace{x}_{F} \cdot \underbrace{\frac{1}{1+x^{2}}}_{g'}$$
$$= x \operatorname{arctg} x - \frac{1}{2} \operatorname{P} \frac{2x}{1+x^{2}} = x \operatorname{arctg} x - \frac{1}{2} \ln(1+x^{2}).$$

6.
$$P \underbrace{x^2}_g \cdot \underbrace{\cos x}_f = \underbrace{x^2}_g \cdot \underbrace{\sin x}_F - P \underbrace{2x}_{g'} \cdot \underbrace{\sin x}_F = x^2 \sin x - 2 \Big(-x \cos x - P \operatorname{1}(-\cos x) \Big)$$

= $x^2 \sin x + 2x \cos x - 2 \sin x$.

Primitivação por substituição

Sejam $f:I\to\mathbb{R}$ uma função primitivável num intervalo I e $\varphi:J\to I$ uma função derivável e injectiva num intervalo J tal que $\varphi(J)=I$. Então

$$P f(x) = P \left[f(\varphi(t))\varphi'(t) \right] \Big|_{t=\varphi^{-1}(x)}$$

1. P
$$\underbrace{\cos\sqrt{x}}_{f(x)} \stackrel{\text{(1)}}{=} P \underbrace{\cos(t)}_{f(\varphi(t))} \underbrace{2t}_{\varphi'(t)}|_{t=\sqrt{x}} \stackrel{\text{(2)}}{=} 2(t\sin t + \cos t)|_{t=\sqrt{x}} = 2(\sqrt{x}\sin\sqrt{x} + \cos\sqrt{x}).$$

(1) Substituição efectuada:

$$\sqrt{x} = t = \varphi^{-1}(x),$$

$$x = t^2 = \varphi(t),$$

$$x' = 2t = \varphi'(t).$$

(2)
$$P 2t \cos t = 2P \underbrace{t}_{g} \cdot \underbrace{\cos x}_{t} = 2(\underbrace{t}_{g} \cdot \underbrace{\sin t}_{F} - P \underbrace{1}_{g'} \cdot \underbrace{\sin t}_{F}) = 2(t \sin t + \cos t)$$

2.
$$P \frac{1}{\sqrt{\sqrt{x}+1}} \stackrel{(1)}{=} P \frac{1}{t} 4t(t^2 - 1) \Big|_{t=\sqrt{\sqrt{x}+1}} \stackrel{(2)}{=} 4 P (t^2 - 1) \Big|_{t=\sqrt{\sqrt{x}+1}}$$

= $4 \left(\frac{t^3}{3} - t \right) \Big|_{t=\sqrt{\sqrt{x}+1}} = 4 \left[\frac{\sqrt{(\sqrt{x}+1)^3}}{3} - \sqrt{\sqrt{x}+1} \right].$

(1) Substituição efectuada:

$$\sqrt{\sqrt{x}+1} = t = \varphi^{-1}(t),$$

$$\sqrt{x}+1 = t^2$$

$$\sqrt{x} = t^2 - 1$$

$$x = (t^2 - 1)^2 = \varphi(t)$$

$$x' = 4t(t^2 - 1) = \varphi'(t)$$

3.
$$P \frac{1}{1+\sqrt[3]{x^2}} \stackrel{\text{(1)}}{===} P \frac{1}{t^2+1} 3t^2 \Big|_{t=\sqrt[3]{x}} = 3 P \frac{t^2+1-1}{t^2+1} \Big|_{t=\sqrt[3]{x}} = 3 P \left(1 - \frac{1}{t^2+1}\right)$$

= $3 \left(t - \operatorname{arctg} t\right) \Big|_{t=\sqrt[3]{x}} = 3 \left(\sqrt[3]{x} - \operatorname{arctg}\sqrt[3]{x}\right).$

(1) Substituição:

$$x = t^{3} = \varphi(t)$$

$$x' = 3t^{2} = \varphi'(t)$$

$$t = \sqrt[3]{x} = \varphi^{-1}(t)$$

4.
$$P \frac{1}{1+e^x} \stackrel{\text{(1)}}{=} P \frac{1}{t+1} \cdot \frac{1}{t} \Big|_{t=e^x} \stackrel{\text{(2)}}{=} P \left(\frac{1}{t} - \frac{1}{t+1} \right) \Big|_{t=e^x} = (\ln|t| - \ln|t+1|) \Big|_{t=e^x}$$

= $\ln e^x - \ln(e^x + 1) = x - \ln(e^x + 1)$.

(1) Substituição:

$$t = e^{x} = \varphi^{-1}(x)$$

$$x = \ln t = \varphi(t)$$

$$x' = \frac{1}{t} = \varphi'(t)$$

(2) A função $\frac{1}{(t+1)t}$ é uma função racional própria, isto é, um quociente de polinómios cujo grau do denominador é superior ao do numerador. Como o denominador apenas admite as raízes simples t=0 e t=-1, garante-se que existem números reais $A,B\in\mathbb{R}$ tais que

$$\frac{1}{(t+1)t} = \frac{A}{t+1} + \frac{B}{t}.$$

Para determinar A, B, começamos por reduzir a expressão ao mesmo denominador

$$\frac{1}{(t+1)t} = \frac{A}{t+1} + \frac{B}{t} = \frac{At + B(t+1)}{(t+1)t}.$$

Daqui conclui-se que 1 = At + B(t+1), isto é que

$$1 = (A+B)t + B.$$

Pelo método dos coeficientes indeterminados, tem-se então

$$\begin{cases} A+B=0 \\ B=1 \end{cases} \Leftrightarrow \begin{cases} A=-1 \\ B=1 \end{cases}$$

Logo,

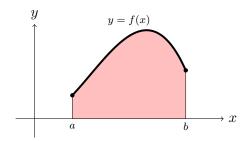
$$\frac{1}{(t+1)t} = \frac{1}{t} - \frac{1}{t+1}.$$

1.7 Cálculo integral

Consideremos uma função contínua $f:[a,b]\to\mathbb{R}$ tal que $f\geq 0$ em [a,b]. Pretende-se calcular a área da região \mathcal{R} delimitada pelo gráfico de f e pelo eixo dos xx,

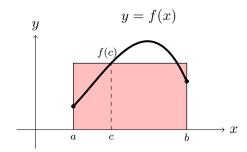
$$\mathcal{R} = \left\{ (x, y) \in \mathbb{R}^2 : a \le x \le b, \quad 0 \le y \le f(x) \right\},\,$$

que se encontra assinalada na seguinte figura.



O cálculo da área de \mathcal{R} não é trivial.

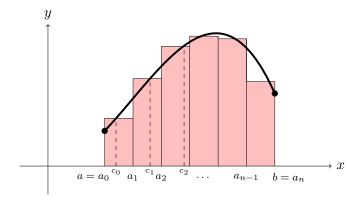
Podemos começar por calcular uma aproximação para o valor da área de \mathcal{R} calculando a área de um rectângulo de base b-a e de altura f(c), $c \in [a,b]$.



Nessa altura,

área
$$\mathcal{R} \approx f(c)(b-a)$$
.

De modo a melhorar a aproximação podemos subdividir o intervalo [a, b] em n intervalos de igual amplitude h = (b - a)/n, $[a_i, a_{i+1}]$, i = 0, ..., n - 1, e calcular a área de n rectângulos de base h e altura $f(c_i)$, $c_i \in [a_i, a_{i+1}]$.



Assim,

área
$$\mathcal{R} \approx f(c_1)h + \cdots + f(c_n)h$$
.

Intuitivamente a aproximação será tanto melhor quanto mais pequena for a amplitude h dos intervalos, ou seja, quanto maior for o número de intervalos. De facto, pode-se mostrar que,

área
$$\mathcal{R} = \lim_{h\to 0} (f(c_1)h + \cdots + f(c_n)h).$$

A este valor chamamos integral (definido) de f no intervalo [a,b] que se representa por

$$\int_{a}^{b} f(x)dx.$$

A função f(x) designa-se por função integranda e a, b designam-se por extermos de integração.

A noção de integral pode ser estendida para qualquer função contínua $f:[a,b]\to\mathbb{R}.$

Propriedades do integral

Sejam $f,g:I=[a,b]\to\mathbb{R}$ funções contínuas em $[a,b],\;\lambda\in\mathbb{R}$ e $c\in[a,b].$ Tem-se:

• Linearidade do integral:

1.
$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
.

2.
$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx.$$

• Monotonia do integral: se $f(x) \ge g(x)$ para todo o $x \in I$ tem-se,

$$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx.$$

• Aditividade do integral:

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Por convenção tem-se ainda:

$$\bullet \int_{a}^{a} f(x) \, dx = 0,$$

$$\bullet \int_{a}^{a} f(x) dx = - \int_{a}^{b} f(x) dx = 0.$$

1. Sabendo que

$$\int_{0}^{1} x \, dx = \frac{1}{2} \quad \text{e que} \quad \int_{0}^{1} x^{2} \, dx = \frac{1}{3},$$

obtemos pelas propriedades anteriores

$$\int_{0}^{1} (x+5x^{2}) dx = \int_{0}^{1} x dx + \int_{0}^{1} 5x^{2} dx$$
$$= \int_{0}^{1} x dx + 5 \int_{0}^{1} x^{2} dx = \frac{1}{2} + \frac{5}{3} = \frac{13}{6}.$$

2. Pretende-se comparar os integrais $\int\limits_0^1 x^2\,dx$ e $\int\limits_0^1 \sqrt{x}\,dx$ sem os determinar. Ora, como a função $\sqrt{x} \geq x^2$ em [0,1], vem pela monotonia do integral que

$$\int\limits_{0}^{1} x^{2} dx \le \int\limits_{0}^{1} \sqrt{x} dx.$$

Para calcular integrais tem-se a seguinte fórmula, conhecida por *fórmula* fundamental do cálculo integral ou fórmula de Barrow que relaciona o conceito de integral que envolve a noção de área e o conceito de primitiva, que envolve a noção de derivada.

Teorema Sejam $f:I=[a,b]\to\mathbb{R}$ uma função contínua e $F:I\to\mathbb{R}$ uma primitiva de f. Então

$$\int_{a}^{b} f(x)dx = \left[F(x)\right]_{a}^{b} = F(b) - F(a).$$

1.
$$\int_{a}^{b} k \, dx = k \int_{a}^{b} 1 \, dx = k[x]_{a}^{b} = k(b-a).$$

2.
$$\int_{0}^{1} x \, dx = \left[\frac{x^2}{2} \right]_{0}^{1} = \frac{1}{2}.$$

3. Pretende-se calcular $\int_{2}^{6} \sqrt{x+1} \, dx$.

Recordemos que $P f' f^{\alpha} = \frac{f^{\alpha+1}}{\alpha+1} (\alpha \neq -1)$. Assim,

$$\int_{2}^{6} \sqrt{x+1} \, dx = \int_{2}^{6} (x+1)^{\frac{1}{2}} \, dx = \left[\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}} \right]_{2}^{6}$$
$$= \frac{2}{3} \left[(x+1)^{\frac{3}{2}} \right]_{2}^{6} = \frac{2}{3} (7^{\frac{3}{2}} - 3^{\frac{3}{2}}).$$

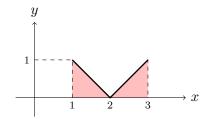
4. Pretende-se calcular $\int_{-\infty}^{3} e^{-x} dx$.

Recordando que $P(f'e^f) = e^f$, vem

$$\int_{1}^{3} e^{-x} dx = -\int_{1}^{3} -e^{-x} dx = -\left[e^{-x}\right]_{1}^{3} = -(e^{-3} - e^{-1}) = e^{-1} - e^{-3}.$$

5. Pretende-se calcular $\int_{1}^{3} |2-x| dx$.

Tem-se
$$|2-x| = \begin{cases} 2-x, & 2-x \ge 0 \\ x-2, & 2-x \le 0 \end{cases} = \begin{cases} 2-x, & 1 \le x \le 2 \\ x-2, & 2 \le x \le 3 \end{cases}$$
.



Assim

$$\int_{1}^{3} |2 - x| \, dx = \int_{1}^{2} (2 - x) \, dx + \int_{2}^{3} (x - 2) \, dx$$

$$= \left[2x - \frac{x^{2}}{2} \right]_{1}^{2} + \left[\frac{x^{2}}{2} - 2x \right]_{2}^{3}$$

$$= (4 - 2) - \left(2 - \frac{1}{2} \right) + \left(\frac{9}{2} - 6 \right) - (2 - 4) = 1.$$

6. Pretende-se calcular $\int_{1}^{e} \ln x \, dx$.

Primitivando por partes vem

$$P1 \cdot \ln x = x \ln x - Px \frac{1}{x} = x \ln x - x = x(\ln x - 1),$$

e portanto,

$$\int_{1}^{e} \ln x \, dx = \left[x(\ln x - 1) \right]_{1}^{e} = e(1 - 1) - (-1) = 1.$$

7. Pretende-se calcular $\int_{0}^{1} \frac{\operatorname{arctg} x}{1+x^{2}} dx.$

Recordando que (arctg x)' = $\frac{1}{1+x^2}$ e que $P f' f = \frac{1}{2} f^2$ obtemos

$$P\frac{\operatorname{arctg} x}{1+x^2} = P\frac{1}{1+x^2}\operatorname{arctg} x = \frac{1}{2}\operatorname{arctg}^2 x.$$

Portanto,

$$\int_{0}^{1} \frac{\arctan x}{1+x^{2}} dx = \frac{1}{2} \left[\arctan^{2} x \right]_{0}^{1} = \frac{1}{2} (\arctan^{2} 1 - \arctan^{2} 0) = \frac{1}{2} \left(\frac{\pi}{4} \right)^{2} = \frac{\pi^{2}}{32}.$$

8. Pretende-se calcular $\int_{1}^{\sqrt{3}} \frac{dx}{\arctan x(1+x^2)}.$

Recordando que $P\frac{f'}{f} = \ln|f|$,

$$P\frac{1}{\arctan x(1+x^2)} = P\frac{\frac{1}{1+x^2}}{\arctan x} = \log|\arctan x|,$$

e portanto,

$$\int_{1}^{\sqrt{3}} \frac{dx}{\arctan x(1+x^2)} = \left[\log|\arctan x|\right]_{1}^{\sqrt{3}} = \log|\arctan \sqrt{3}| - \log|\arctan 1|$$
$$= \log\frac{\pi}{3} - \log\frac{\pi}{4} = \log\frac{4}{3}.$$

9. Pretende-se calcular, $\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{x \, dx}{\sqrt{1-x^4}}.$

Recordando que (arcsen x)' = $\frac{1}{\sqrt{1-x^2}}$, e que

$$(\arcsin f)' = \frac{1}{\sqrt{1-f^2}} f' = \frac{f'}{\sqrt{1-f^2}},$$

vem

$$P\frac{x}{\sqrt{1-x^4}} = \frac{1}{2}P\frac{2x}{\sqrt{1-(x^2)^2}} = \frac{1}{2}\arcsin x^2,$$

e portanto,

$$\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{x \, dx}{\sqrt{1 - x^4}} = \frac{1}{2} \left[\arcsin x^2 \right]_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} = \frac{1}{2} \left(\arcsin \frac{1}{2} - \arcsin \frac{1}{2} \right) = 0.$$

10. Pretende-se calcular, $\int_{-1}^{1} \frac{dx}{x^2 - 4}$.

A função $\frac{1}{x^2-4}$ é uma função racional própria pois é um quociente de dois polinómios, sendo que o grau do denominador superior ao do numerador. O polinómio x^2-4 tem duas raízes simples -2, 2 e portanto

admite a factorização $x^2-4=(x+2)(x-2)$. Assim existem constantes reais A,B tais que

$$\frac{1}{x^2 - 4} = \frac{1}{(x - 2)(x + 2)} = \frac{A}{x - 2} + \frac{B}{x + 2}$$
$$= \frac{A(x + 2) + B(x - 2)}{(x - 2)(x + 2)} = \frac{(A + B)x + 2(A - B)}{x^2 - 4},$$

e portanto

$$\begin{cases} A+B=0 \\ 2(A-B)=1 \end{cases} \Leftrightarrow \begin{cases} B=-A \\ 4A=1 \end{cases} \Leftrightarrow \begin{cases} B=-\frac{1}{4} \\ A=\frac{1}{4}. \end{cases}$$

Daqui resulta que

$$\frac{1}{x^2 - 4} = \frac{1}{4(x - 2)} - \frac{1}{4(x + 2)}$$

e portanto

$$\int_{-1}^{1} \frac{dx}{x^2 - 4} = \int_{-1}^{1} \left[\frac{1}{4(x - 2)} - \frac{1}{4(x + 2)} \right] dx$$

$$= \frac{1}{4} \int_{-1}^{1} \frac{dx}{x - 2} - \frac{1}{4} \int_{-1}^{1} \frac{dx}{x + 2}$$

$$= \frac{1}{4} \left[\log|x - 2| - \log|x + 2| \right]_{-1}^{1}$$

$$= \frac{1}{4} (\log 1 - \log 3 - \log 3 + \log 1) = -\frac{\log 3}{2}.$$

Integração por substituição

Seja $f:I=[a,b]\to\mathbb{R}$ uma função contínua, J um intervalo de extremos α e β e $\varphi:J\to I$ uma função com derivada contínua tal que $\varphi(\alpha)=a$ e $\varphi(\beta)=b$. Então,

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

1.
$$\int_{0}^{1} \frac{e^{x}}{1+e^{x}} dx = \int_{1}^{e} \frac{t}{1+t} \frac{1}{t} dt = \int_{1}^{e} \frac{1}{1+t} dt = \left[\ln|t+1| \right]_{1}^{e} = \ln(1+e) - \ln(2).$$

Substituição efectuada:

$$t = e^{x}$$

$$x = \ln t = \varphi(t)$$

$$\varphi'(t) = \frac{1}{t}$$

$$x = 0 \Rightarrow t = e^{x} = e^{0} = 1$$

$$x = 1 \Rightarrow t = e^{x} = e^{1} = e$$

$$2. \int_{1}^{e^{2}} \frac{\ln(\sqrt{x})}{\sqrt{x}} dx = \int_{1}^{e} \frac{\ln t}{t} 2t dt = 2 \left[t(\ln(t) - 1) \right]_{1}^{e} = 2 \int_{1}^{e} \ln t dt = 2 \left[t(\ln(t) - 1) \right]_{1}^{e} = 2.$$

O cálculo da primitiva de ln t faz-se por partes (exercício).

Substituição efectuada:

$$\sqrt{x} = t$$

$$x = t^{2} = \varphi(t)$$

$$\varphi'(t) = 2t$$

$$x = 1 \Rightarrow t = \sqrt{x} = \sqrt{1} = 1$$

$$x = e^{2} \Rightarrow t = \sqrt{x} = \sqrt{e^{2}} = e$$

Aplicações do cálculo integral

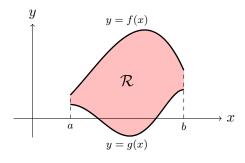
- Cálculo de áreas.
- Cálculo de volumes de sólidos de revolução.
- Cálculo de comprimentos de arco.

Cálculo de áreas

Teorema Sejam $f,g:I=[a,b]\to\mathbb{R}$ são funções contínuas tais que $f(x)\geq g(x) \text{ para todo o } x\in[a,b]. \text{ A área da região}$

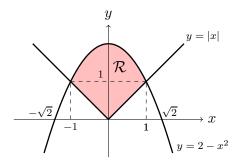
$$\{(x,y) \in \mathbb{R}^2 : a \le x \le b, \quad g(x) \le y \le f(x)\}.$$

é dada pelo integral $\int_{a}^{b} (f(x) - g(x))dx.$



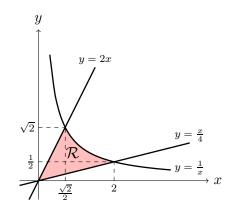
Se o sinal de f-g não for constante no intervalo [a,b] temos que determinar os pontos onde os gráficos de ambas as funções se intersectam e decompôr o intervalo em subintervalos onde esse sinal se mantenha constante. O valor da área será então a soma das áreas associadas a cada um desses subintervalos.

1. Calcular a área da região delimitada por y=|x| e $y=2-x^2.$



2. Pretende-se calcular a área da região

$$\mathcal{R} = \left\{ (x, y) : 0 \le y \le \frac{1}{x}, \frac{x}{4} \le y \le 2x, \right\}.$$



Para isso necessitamos de determinar os pontos de intersecção dos gráficos de cada uma das funções. Ora, a intersecção da hipérbole $y=\frac{1}{x}$ com a recta y=2x obtém-se resolvendo o sistema

$$\begin{cases} y = \frac{1}{x} \\ y = 2x \end{cases} \Leftrightarrow \begin{cases} y = \frac{1}{x} \\ \frac{1}{x} = 2x \end{cases} \Leftrightarrow \begin{cases} y = \frac{1}{x} \\ x^2 = 2. \end{cases}$$

Como $y \ge 0$ obtemos o ponto $(\frac{\sqrt{2}}{2}, \sqrt{2})$. Analogamente a intersecção da hipérbole $y = \frac{1}{x}$ com a recta $y = \frac{x}{4}$ obtém-se resolvendo o sistema

$$\begin{cases} y = \frac{1}{x} \\ \Rightarrow \begin{cases} y = \frac{1}{x} \\ \Rightarrow \end{cases} \end{cases} \Rightarrow \begin{cases} y = \frac{1}{x} \\ y = \frac{1}{x} \end{cases}$$

$$y = \frac{1}{x} \Rightarrow \begin{cases} y = \frac{1}{x} \\ \Rightarrow \end{cases} \end{cases} \Rightarrow \begin{cases} y = \frac{1}{x} \\ \Rightarrow \end{cases}$$

Como $y \ge 0$ obtemos o ponto $(2, \frac{1}{2})$. Assim,

Área =
$$\int_{0}^{\frac{\sqrt{2}}{2}} \left(2x - \frac{x}{4}\right) dx + \int_{\frac{\sqrt{2}}{2}}^{2} \left(\frac{1}{x} - \frac{x}{4}\right) dx$$
$$= \frac{7}{4} \left[\frac{x^{2}}{2}\right]_{0}^{\frac{\sqrt{2}}{2}} + \left[\log|x| - \frac{x^{2}}{8}\right]_{\frac{\sqrt{2}}{2}}^{2} = \cdots$$

Cálculo de volumes de sólidos de revolução

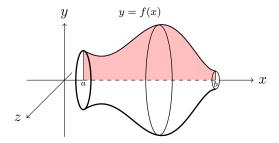
Vejamos agora como calcular o volume de sólidos de revolução usando o integral definido.

Seja $f:[a,b]\to\mathbb{R}$ é uma função contínua tal que $f(x)\geq 0$. Seja $V\subset\mathbb{R}^3$ o sólido de revolução em torno do eixo do xx definido por f, i.e., o volume

da região definida por rotação da área

$$\{(x,y): a \le x \le b, \ 0 \le y \le f(x)\},\$$

em torno do eixo do xx.

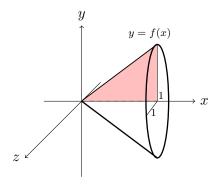


Teorema O volume do sólido de revolução definido por y=f(x) é dado pela fórmula,

$$V = \int_{a}^{b} \pi f^{2}(x) dx.$$

Exemplo

Pretende-se calcular o volume do cone de altura h=1 e cuja base é uma disco de raio R=1. O cone é o sólido de revolução definido pela função $f:[0,1]\to\mathbb{R} \text{ definida por } f(x)=x.$



O volume do cone é dado por

$$V = \int_{0}^{1} \pi x^{2} dx = \pi \left[\frac{x^{3}}{3} \right]_{0}^{1} = \frac{\pi}{3}.$$

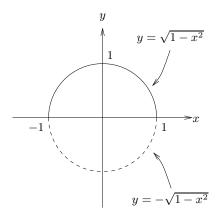
Cálculo de comprimentos de arco

Vejamos por último como calcular o comprimento de arco (ou comprimento de linha) para curvas definidas como gráficos de funções. Intuitivamente o comprimento de arco de uma função $f:[a,b]\to\mathbb{R}$ representa o comprimento de uma linha de expessura nula que é sobreposta ao gráfico de f entre os pontos (a,f(a)) e (b,f(b)).

Teorema Se $f:[a,b] \to \mathbb{R}$ é uma função com derivada contínua em [a,b], o comprimento de arco de f(x) entre os pontos (a,f(a)) e (b,f(b)) é dado por

$$l(f) = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$

Exemplo Pretende-se calcular o perímetro de uma circunferência de raio 1 de equação $x^2 + y^2 = 1$. Esta equação determina duas semi-circunferências, uma situada no semi-plano superior de equação $y = \sqrt{1-x^2}$ e outra situada no semi-plano inferior de equação $y = -\sqrt{1-x^2}$. O perímetro da cirunferência obtém-se duplicando o comprimento de arco de $y = f(x) = \sqrt{1-x^2}$ entre os pontos (-1,0) e (1,0) (ver a seguinte figura).



O perímetro da semi-circunferência é dado por

$$\int_{-1}^{1} \sqrt{1 + [f(x)']^2} \, dx = \int_{-1}^{1} \sqrt{1 + \left(\frac{-x}{\sqrt{1 - x^2}}\right)^2} \, dx$$

$$= \int_{-1}^{1} \sqrt{1 + \frac{x^2}{1 - x^2}} \, dx$$

$$= \int_{-1}^{1} \sqrt{\frac{1 - x^2 + x^2}{1 - x^2}} \, dx$$

$$= \int_{-1}^{1} \frac{1}{\sqrt{1 - x^2}} \, dx$$

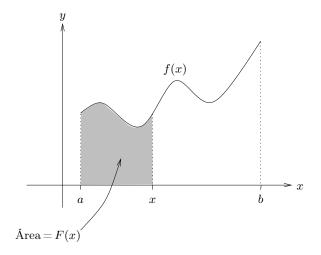
$$= \left[\arcsin x\right]_{-1}^{1} = \arcsin 1 - \arcsin (-1) = \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi.$$

Logo o perímetro da circunferência de raio 1 é 2π .

Integral indefinido

Seja $f:[a,b]\to\mathbb{R}$ uma função integrável. Chama-se integral indefinido de f (com origem em x=a) à função

$$F(x) = \int_{a}^{x} f(t) dt, \qquad x \in [a, b]$$



1. Se
$$f(x) = x, x \in [0, 1]$$
, então $F(x) = \int_0^x t \, dt = \left[\frac{t^2}{2}\right]_0^x = \frac{x^2}{2}$.

2. Seja
$$f(x) = \begin{cases} 2, & 0 \le x < 1, \\ 0, & 1 \le x < 3, \\ -1, & 3 \le x \le 4. \end{cases}$$

Seja F(x) o integral indefinido de f(x). Vamos determinar uma expressão analítica para F(x).

Por definição temos
$$F(x) = \int_{0}^{x} f(t) dt$$
, $x \in [0, 4]$, ou seja,

$$F(x) = \begin{cases} \int_{0}^{x} 2 dt, & 0 \le x < 1, \\ \int_{0}^{1} 2 dt + \int_{1}^{x} 0 dt, & 1 \le x < 3 \end{cases}$$

$$= \begin{cases} 2x, & 0 \le x < 1, \\ 2 + 0, & 1 \le x < 3, \\ 2 + 0 + (-x + 3), & 3 \le x \le 4. \end{cases}$$

Assim,

$$F(x) = \begin{cases} 2x, & 0 \le x < 1, \\ 2, & 1 \le x < 3, \\ -x + 5, & 3 \le x \le 4. \end{cases}$$

3. Seja
$$f(x) = \begin{cases} x - 1, & 1 \le x \le 2, \\ 3, & 2 < x \le 4 \end{cases}$$
.

Então

$$F(x) = \int_{1}^{x} f(t) dt = \begin{cases} \int_{1}^{x} (t-1) dt, & 1 \le x \le 2, \\ \int_{1}^{2} (t-1) dt + \int_{2}^{x} 3 dt, & 2 < x \le 4, \\ \left[\frac{t^{2}}{2} - t \right]_{1}^{x}, & 1 \le x \le 2, \end{cases}$$

$$= \begin{cases} \left[\frac{t^{2}}{2} - t \right]_{1}^{x}, & 1 \le x \le 2, \\ \left[\frac{t^{2}}{2} - t \right]_{1}^{2} + 3 \left[t \right]_{2}^{x}, & 2 < x \le 4, \end{cases}$$

$$= \begin{cases} \frac{x^{2}}{2} - x + \frac{1}{2}, & 1 \le x \le 2, \\ \frac{1}{2} + 3x - 6 = 3x - \frac{11}{2}, & 2 < x \le 4. \end{cases}$$

Nestes exemplos pode-se constatar que o integral indefinido de uma função f é uma função contínua, mesmo que f não o seja. De facto, esta e outras propriedades, muito importantes são verificadas pelo integral indefinido como vamos ver agora.

Teorema Seja $f:[a,b]\to\mathbb{R}$ uma função integrável e seja $F(x)=\int\limits_a^x f(t)\,dt,$ $x\in[a,b]$ o integral indefinido de f. Tem-se:

- (i) O integral indefinido é uma função contínua em [a, b].
- (ii) Se $f(x) \ge 0$ $[f(x) \le 0]$ para todo o $x \in [a, b]$ então F(x) é uma função crescente [resp. decrescente] em [a, b].
- (iii) Se f(x) é uma função contínua em $x_0 \in [a, b]$ então F(x) é uma função derivável em x_0 e tem-se $F'(x_0) = f(x_0)$. Em particular, se f(x) for contínua em [a, b] então F(x) é uma função derivável em [a, b], tendose F'(x) = f(x) para todo o $x \in [a, b]$, ou seja, $\left(\int_a^x f(t) dt\right)' = f(x)$, para todo o $x \in [a, b]$.

A propriedade (iii) significa que se f(x) for contínua em [a,b], F(x) é a única primitiva de f(x) em [a,b] que se anula em x=a. Ainda como consequência do teorema anterior obtemos imediatamente a fórmula fundamental do cálculo integral (fórmula de Barrow) dada anteriormente.

O integral indefinido pode ser estendido aos intervalos abertos.

Teorema Seja $f: I \to \mathbb{R}$ uma função contínua num intervalo aberto I. Seja $a \in I$. Consideremos a função $F(x) = \int\limits_a^x f(t)\,dt$. Então F(x) é uma função derivável em I e tem-se F'(x) = f(x) para todo o x em I.

Chapter 2

Cálculo vectorial e matricial

2.1 Vectores

Chamamos vector com n componentes reais ao n-uplo,

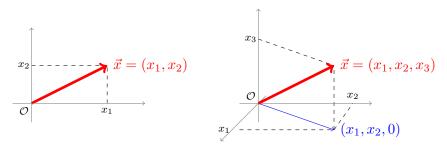
$$\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$$
,

onde \mathbb{R}^n denota o produto cartesiano,

$$\underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ factores}} = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}.$$

Iremos estar particularmente interessados em vectores com 2 e 3 componentes, i.e., vectores no plano e no espaço.

Representação geométrica de um vector num sistema de eixos coordenados:

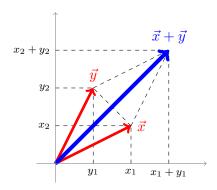


Operações com vectores

• Adição de vectores

Dados $\vec{x} = (x_1, \dots, x_n)$ e $\vec{y} = (y_1, \dots, y_n)$ define-se

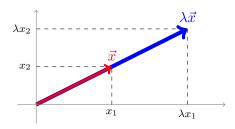
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n).$$



(Regra do paralelogramo)

$\bullet\,$ Multiplicação de um vector por um escalar

Dados $\vec{x} = (x_1, \dots, x_n)$ e $\lambda \in \mathbb{R}$ define-se $\lambda \vec{x} = (\lambda x_1, \dots, \lambda x_n)$.

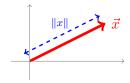


 $(\lambda = 2 \text{ na figura})$

Norma (ou comprimento) de um vector

Dado $\vec{x} = (x_1, \dots, x_n)$, define-se norma de \vec{x} por

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$



<u>Propriedades da norma.</u> Para todos os vectores $\vec{x}, \vec{y} \in \mathbb{R}^n$ e escalar $\lambda \in \mathbb{R}$, tem-se:

- $\|\vec{x}\| \ge 0$;
- $\bullet \|\lambda \vec{x}\| = |\lambda| \|\vec{x}\|;$
- $\|\vec{x} \pm \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$ (Designaldade triangular).

Um vetor $\vec{v} \in \mathbb{R}^n$ diz-se unitário se $\|\vec{v}\| = 1$. Dado um vetor não nulo, $\vec{x} \in \mathbb{R}^n$, define-se versor de \vec{x} , vers (\vec{x}) , como sendo o único vetor unitário com a mesma direção e sentido que \vec{x} . Daqui resulta que vers $(x) = \alpha \vec{x}$ com $\alpha > 0$ tal que $\|\alpha \vec{x}\| = \alpha \|\vec{x}\| = 1$. Logo $\alpha = \frac{1}{\|\vec{x}\|}$ e portanto,

$$\operatorname{vers}(\vec{x}) = \frac{\vec{x}}{\|\vec{x}\|}.$$

Por exemplo, se $\vec{x} = (3,4)$, $||(3,-4)|| = \sqrt{3^2 + (-4)^2} = 5$ e tem-se

$$\operatorname{vers}(\vec{x}) = \frac{\vec{x}}{\|\vec{x}\|} = \left(\frac{3}{5}, \frac{4}{5}\right).$$

Dizemos que normaliz'amos o vetor \vec{x} .

Distância entre $\vec{x} = (x_1, \dots, x_n)$ e $\vec{y} = (y_1, \dots, y_n)$ é

$$d(\vec{x}, \vec{y}) = ||y - x|| = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}.$$

Produto interno

Dados $\vec{x} = (x_1, \dots, x_n)$ e $\vec{y} = (y_1, \dots, y_n)$, define-se produto interno (ou produto escalar) de \vec{x} e \vec{y} por

$$\vec{x}|\vec{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n.$$

Propriedades do produto interno. Para todos os vectores $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ e para todo o escalar $\lambda \in \mathbb{R}$, tem-se:

- $\vec{x}|\vec{y} = \vec{y}|\vec{x}$;
- $\vec{x}|(\vec{y} + \vec{z}) = \vec{x}|\vec{y} + \vec{x}|\vec{z};$
- $\lambda(\vec{x}|\vec{y}) = (\lambda\vec{x})|\vec{y} = \vec{x}|(\lambda\vec{y});$

As propriedades anteriores decorrem imediatamente das propriedades análogas verificadas para o produto de números reais e mostram que ambos os produtos se operam de modo semelhante. Por exemplo, os casos notáveis da multiplicação em \mathbb{R} ,

$$(a \pm b)^2 = a^2 \pm 2ab + b^2,$$
 $(a - b)(a + b) = a^2 - b^2,$

'transcrevem-se" para o produto interno como,

$$(\vec{x} \pm \vec{y})|(\vec{x} \pm \vec{y}) = \vec{x}|\vec{x} \pm 2\vec{x}|\vec{y} + \vec{y}|\vec{y} = ||\vec{x}||^2 \pm 2\vec{x}|\vec{y} + ||\vec{y}||^2,$$

e

$$(\vec{x} - \vec{y})|(\vec{x} + \vec{y}) = \vec{x}|\vec{x} - \vec{y}|\vec{y} = ||\vec{x}||^2 - ||\vec{y}||^2.$$

Vamos agora ver como a noção de produto interno permite definir rigorosamente as noções de *comprimento*, *ortogonalidade* e *ângulo*.

Produto interno e norma

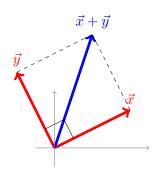
Dado $\vec{x} \in \mathbb{R}^n$, $\vec{x} = (x_1, \dots, x_n)$, tem-se $\|\vec{x}\|_2 = x_1^2 + \dots + x_n^2 = \vec{x}|\vec{x}$, ou seja,

$$\|\vec{x}\| = \sqrt{\vec{x}|\vec{x}}$$

Produto interno e ortogonalidade

Sejam \vec{x} e \vec{y} vectores de \mathbb{R}^n . Tem-se:

- $\|\vec{x} + \vec{y}\|^2 = (\vec{x} + \vec{y})|(\vec{x} + \vec{y}) = \vec{x}|\vec{x} + \vec{y}|\vec{y} + 2\vec{x}|\vec{y} = \|\vec{x}\|^2 + \|\vec{y}\|^2 + 2\vec{x}|\vec{y}$.
- Se $\vec{x} \perp \vec{y}$ tem-se também $\|\vec{x} + \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2$ (Teo. de Pitágoras).



Assim

$$\vec{x} \perp \vec{y} \Leftrightarrow ||\vec{x}||^2 + ||\vec{y}||^2 + 2x|y = ||\vec{x}||^2 + ||\vec{y}||^2 \Leftrightarrow 2x|y = 0 \Leftrightarrow x|y = 0,$$

ou seja,

$$\vec{x}|\vec{y} = 0 \Leftrightarrow \vec{x} \perp \vec{y}.$$

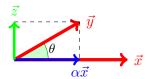
Produto interno, ângulo de vectores e projeção ortogonal

Para definir ângulo entre 2 vetores consideremos vectores não nulos \vec{x} e \vec{y} e a projeção ortogonal de \vec{y} sobre o vetor \vec{x} , $\operatorname{proj}_{\vec{x}}(\vec{y}) = \alpha \vec{x}$. Suponhamos ainda $\alpha > 0$.

Tem-se,

•
$$\cos \theta = \frac{\|\alpha \vec{x}\|}{\|y\|} \Leftrightarrow \|\alpha \vec{x}\| = \|\vec{y}\| \cos \theta;$$

• $\vec{y} = \alpha \vec{x} + \vec{z}$ para algum $\vec{z} \perp \vec{x}$.



Assim,

$$\vec{x}|\vec{y} = \vec{x}|(\alpha \vec{x} + \vec{z})$$

$$= \alpha(\vec{x}|\vec{x}) + \underbrace{\vec{x}|\vec{z}}_{0}$$

$$= \alpha ||\vec{x}|| ||\vec{x}|| \qquad (2.1)$$

$$= ||\vec{x}|| ||\vec{y}|| \cos \theta \qquad (2.2)$$

Logo, de (2.2) e (2.1) obtém-se respetivamente,

$$\cos \theta = \frac{\vec{x}|\vec{y}}{\|\vec{x}\| \|\vec{y}\|}, \quad 0 \le \theta \le \frac{\pi}{2}$$

$$\alpha = \frac{\vec{x}|\vec{y}}{\|\vec{x}\|^2}$$

A fórmula anterior é também válida quando $\frac{\pi}{2} \le \theta \le \pi$, isto é, quando $\alpha \le 0$ (a dedução faz-se de modo análogo).

Assim, dados vetores não nulos, $\vec{x}, \vec{y} \in \mathbb{R}^n$, define-se ângulo entre \vec{x} e \vec{y} como

$$\theta \in [0, \pi]$$
 tal que $\cos(\theta) = \frac{\vec{x}|\vec{y}}{\|\vec{x}\| \|\vec{y}\|}$

e tem-se para a projeção ortogonal de \vec{y} sobre \vec{x} , $\text{proj}_{\vec{x}}(\vec{y}) = \alpha \vec{x}$,

$$\operatorname{proj}_{\vec{x}}(\vec{y}) = \frac{\vec{y}|\vec{x}}{\vec{x}|\vec{x}}\vec{x}.$$

Em geral dada uma reta r que passa na origem e um vetor \vec{y} , define-se a projeção ortogonal de \vec{y} sobre r como sendo

$$\operatorname{proj}_r(\vec{y}) = \frac{\vec{y}|\vec{x}}{\vec{x}|\vec{x}}\vec{x},$$

onde \vec{x} é um qualquer vetor director da reta. O vetor $\operatorname{proj}_r(\vec{y})$ é o vetor da reta que se encontra mais próximo de \vec{y} . Define-se $\operatorname{distância}$ de \vec{y} à reta r como sendo distância de \vec{y} a $\operatorname{proj}_r(\vec{y})$, ou seja,

$$dist(\vec{y},r) = ||\vec{y} - proj_{\vec{x}}(\vec{y})||.$$

Exemplo

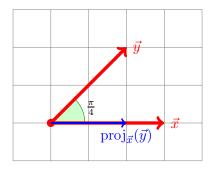
Sejam $\vec{x}=(3,0)$ e $\vec{y}=(2,2)$. O ângulo formado por \vec{x} e \vec{y} é único $\theta \in [0,\pi]$ tal que

$$\cos \theta = \frac{\vec{x}|\vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \frac{(3,0)|(2,2)|}{\|(3,0)\| \|(2,2)\|} = \frac{6}{6\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

Logo $\theta = \frac{\pi}{4}$.

A projeção ortogonal de \vec{y} sobre \vec{x} vem dada por

$$\operatorname{proj}_r(\vec{y}) = \frac{\vec{y}|\vec{x}}{\vec{x}|\vec{x}}\vec{x} = \frac{(2,2)|(3,0)}{(3,0)|(3,0)}(3,0) = (2,0).$$



A distância de \vec{y} à reta definida por \vec{x} vem dada por,

$$\operatorname{dist}(\vec{y}, r) = \|\vec{y} - \operatorname{proj}_{\vec{x}}(\vec{y})\| = \|(2, 2) - (2, 0)\| = 2.$$

Distância de um vetor a um plano

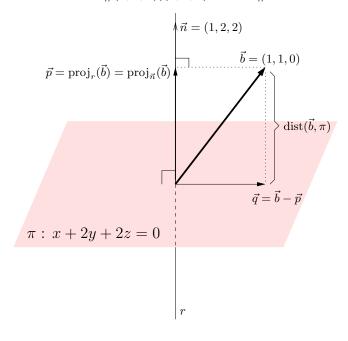
Podemos aplicar a projeção ortogonal para calcular a distância de um vetor (ou ponto) \vec{b} a um plano π que passa na origem de equaçaão cartesiana ax+by+cz=0.

A distância de \vec{b} a π é então dada pela norma da projeção de \vec{b} sobre o vetor normal ao plano $\vec{n}=(a,b,c)$:

$$\operatorname{dist}(\vec{b}, \pi) = \|\operatorname{proj}_{\vec{n}}(\vec{b})\| = \left\| \frac{\vec{b}|\vec{n}}{\vec{n}|\vec{n}} \vec{n} \right\|.$$

Por exemplo a distância de $\vec{b}=(1,1,0)$ ao plano π de equação x+2y+2z=0, vem dada por

$$\|\operatorname{proj}_{(1,2,2)}(1,1,0)\| = \left\| \frac{(1,1,0)|(1,2,2)}{(1,2,2)|(1,2,2)}(1,2,2) \right\| = \frac{1}{3}\|(1,2,2)\| = 1.$$



Se π não passar na origem, basta determinar um ponto $P_0 = (x_0, y_0, z_0)$ arbitrário de π , efectuar a mudança de variável $\tilde{x} = x - x_0$, $\tilde{y} = y - y_0$ e $\tilde{z} = z - z_0$, ou seja, substituir na equação de π , x por $\tilde{x} + x_0$, y por $\tilde{y} + y_0$ e z por $\tilde{z} + z_0$, e calcular a distância de $\vec{b} - P_0$ ao plano $\tilde{\pi}$ que passa na origem e é definido pelas novas coordenadas $(\tilde{x}, \tilde{y}, \tilde{z})$.

2.2 Matrizes e sistemas de equações lineares

Matrizes

Uma matriz~A do tipo $m \times n$ é uma coleção de mn elementos de $\mathbb{R},~a_{ij},$ $i=1,\ldots,m,~j=1,\ldots,n,$ dispostos em m linhas e n colunas,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Denota-se $A = [a_{ij}], i = 1, ..., m, j = 1, ..., n$, onde a_{ij} é o elemento de A que se encontra na linha i e coluna j de A.

Exemplo

$$A = \left[\begin{array}{ccc} 2 & 4 & 3 \\ & & \\ 1 & 0 & -3 \end{array} \right],$$

é uma matriz do tipo 2×3 , tal que

$$a_{11} = 2$$
, $a_{12} = 4$, $a_{13} = 3$, $a_{21} = 1$, $a_{22} = 0$, $a_{23} = -3$.

Se $a_{ij}=0$ para todo o i,j, A diz-se a matriz nula (do tipo $m\times n$) e denota-se $\mathbf{0}_{m\times n}$.

Matriz coluna e matriz linha

• Se n = 1 A diz-se uma matriz-coluna ou vetor. Nessa altura,

$$A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_m \end{bmatrix}_{m \times 1} = (a_1, a_2, a_3, \dots, a_m) \in \mathbb{R}^m.$$

Exemplo

$$A = \begin{bmatrix} 1 \\ -2 \\ 30 \end{bmatrix} = (1, -2, 30) \in \mathbb{R}^3.$$

• m = 1, A diz-se uma matriz-linha. Nessa altura,

$$A = \left[\begin{array}{ccccc} b_1 & b_2 & b_3 & \cdots & b_n \end{array} \right]_{1 \times n}.$$

Exemplo

$$A = \begin{bmatrix} -2 & 3 & -1 & 4 \end{bmatrix}_{1 \times 4}.$$

Matriz quadrada

Matriz quadrada (de ordem n) é uma matriz do tipo $n \times n$.

Chamamos diagonal principal de uma matriz quadrada $A=[a_{ij}]$ aos elementos da forma $a_{11},\,a_{22},\ldots,\,a_{nn}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}_{n \times n}$$

Dizemos que A é diagonal se forem nulos todos os elementos fora da diagonal principal, ou seja, $a_{ij}=0$ para todo o i,j tal que $i\neq j$. Nessa altura A denota-se também por

$$diag(a_{11}, \ldots, a_{nn}).$$

Exemplo

$$A = \operatorname{diag}(-1, 1, 3) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}_{3 \times 3}$$

Chama-se matriz *escalar* a uma matriz diagonal em que todos os elementos da diagonal principal são iguais entre si:

$$\operatorname{diag}(\alpha, \dots, \alpha) = \begin{bmatrix} \alpha & & & \\ & \alpha & & \\ & & \ddots & \\ & & & \alpha \end{bmatrix}_{n \times n}$$

Se $\alpha = 1$ a matriz escalar chama-se matriz identidade de ordem n,

Transposição de matrizes

Dada uma matriz A do tipo $m \times n$ define-se a matriz A^T do tipo $n \times m$, chamada transposta de A, cujas linhas são as colunas de A, escritas pela mesma ordem.

Exemplo

$$A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 3 & -4 & 5 \\ 0 & 5 & 1 & 7 \end{bmatrix}_{3 \times 4}, \qquad A^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 5 \\ -1 & -4 & 1 \\ 4 & 5 & 7 \end{bmatrix}_{4 \times 5}$$

Uma matriz quadrada A tal que $A = A^T$ diz-se sim'etrica.

Exemplo

$$\begin{bmatrix} 1 & 4 & 2 \\ \alpha & 3 & -3 \\ \beta & \gamma & -1 \end{bmatrix} \text{\'e sim\'etrica se e s\'o se} \begin{bmatrix} 1 & 4 & 2 \\ \alpha & 3 & -3 \\ \beta & \gamma & -1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \beta \\ 4 & 3 & \gamma \\ 2 & -3 & -1 \end{bmatrix},$$

isto é, se e só se $\alpha = 4$, $\beta = 2$ e $\gamma = -3$.

Operações algébricas com matrizes

As operações algébricas para matrizes generalizam as operações algébricas, adição, produto por um escalar e produto interno bem conhecidas para vetores.

Adição de matrizes

Dadas matrizes $A = [a_{ij}]$ e $B = [b_{ij}]$ do <u>mesmo tipo</u> $m \times n$ define-se a matriz A + B do tipo $m \times n$, em que o elemento que está na posição (i, j) é a soma do elemento na posição (i, j) de A com o elemento na posição (i, j) de B, ou seja, $A + B = [a_{ij} + b_{ij}]$

Exemplo

$$A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 3 & -4 & 5 \\ 0 & 5 & 1 & 7 \end{bmatrix}_{3\times4} \qquad B = \begin{bmatrix} 1 & -1 & 0 & 8 \\ -1 & 0 & 20 & 1 \\ 3 & 2 & 0 & 10 \end{bmatrix}_{3\times4},$$

$$A + B = \begin{bmatrix} 2 & 1 & -1 & 12 \\ 1 & 3 & 16 & 6 \\ 3 & 7 & 1 & 17 \end{bmatrix}_{3\times4}$$

Produto de uma matriz por um escalar

Dada uma matriz $A = [a_{ij}]$ do tipo $m \times n$ e um escalar $\lambda \in \mathbb{R}$, define-se a matriz λA do tipo $m \times n$, obtida mulitplicando todos os elementos da matriz A por λ , ou seja, $\lambda A = [\lambda a_{ij}]$

Exemplos

$$\bullet \ 100 \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 3 & -4 & 5 \\ 0 & 5 & 1 & 7 \end{bmatrix}_{3\times4} = \begin{bmatrix} 100 & 200 & -100 & 400 \\ 200 & 300 & -400 & 500 \\ 0 & 500 & 100 & 700 \end{bmatrix}_{3\times4}.$$

• $\alpha I_n = \operatorname{diag}(\alpha, \alpha, \dots, \alpha)$

Produto de matrizes

Duas matrizes A e B dizem-se encadeadas se o número de colunas de A for igual ao número de linhas de B. Dadas matrizes encadeadas,

$$A = [a_{ij}],$$
 do tipo $m \times n$,

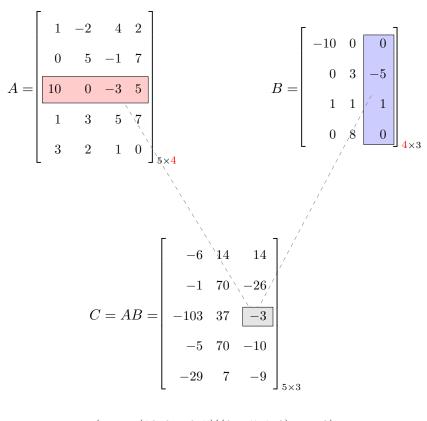
$$B = [c_{jk}],$$
 do tipo $n \times p$,

define-se a matriz produto

$$AB = C = [c_{ik}],$$
 do tipo $m \times p$,

onde $c_{ik} = (\text{linha } i \text{ de } A) \mid (\text{coluna } k \text{ de } B).$

Exemplo



$$(c_{33} = (10, 0, -3, 5)|(0, -5, 1, 0) = -3)$$

Propriedades das operações com matrizes

Dadas matrizes A, B, C e escalares $\alpha, \beta \in \mathbb{R}$, tem-se, (sempre que as operações façam sentido):

- A + B = B + A;
- A + (B + C) = (A + B) + C;
- $A + \mathbf{O} = A$ (elemento neutro da adição);
- $\lambda(A+B) = \lambda A + \lambda B$;

- $(\lambda + \mu)A = \lambda A + \mu A$;
- $\bullet \ (A+B)^T = A^T + B^T;$
- A(B+C) = AB + AC;
- $\lambda(AB) = (\lambda A)B;$
- $(\lambda \mu)A = \lambda(\mu A);$
- AI = IA = A (elemento neutro da multiplicação).
- $(AB)^T = B^T A^T$.

O produto de matrizes não verifica algumas propriedades importantes, bem conhecidas dos números reais:

• O produto de matrizes $\mathbf{n\tilde{a}o}$ é $\mathbf{comutativo}$ (em geral): dadas matrizes quadradas A e B da mesma ordem, podemos ter

$$AB \neq BA$$
.

De facto, basta considerar, $A=\begin{bmatrix}1&1\\&1&1\end{bmatrix}$ e $B=\begin{bmatrix}1&1\\0&1\end{bmatrix}$, tendo-se

$$AB = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \neq \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = BA.$$

• Não é válida a lei do anulamento do produto: se A e B são matrizes encadeadas,

$$AB = \mathbf{O}$$
 \neq $(A = \mathbf{O} \text{ ou } B = \mathbf{O}).$

De facto, basta considerar
$$A=\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 e $B=\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, tendo-se $AB=0_{2\times 1}$ (verfique!).

• Não é válida a lei do corte: dadas matrizes $A, B \in C$,

$$AB = AC \qquad \Rightarrow \qquad B = C.$$
 De facto, basta considerar $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 \\ 3 & 0 \end{bmatrix}$ e $C = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$, tendo-se $AB = AC$ com $B \neq C$ (verifique!).

Transformações geométricas no plano e no espaço

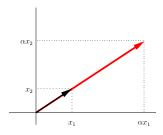
Vamos agora ver alguns exemplos de transformações **geométricas** no plano e no espaço que podem ser definidas usando o produto de matrizes. Estas transformações designam-se mais geralmente por transformações **lineares**.

Transformações geométricas no plano

• Homotetias:

$$A = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} \text{ define uma } \frac{\textbf{homotetia}}{\textbf{homotetia}} \text{ de razão } \alpha > 0:$$

$$\begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \end{bmatrix}.$$



Se $\alpha > 1$ [$\alpha < 1$] a homotetia é uma dilatação [contracção].

• Simetrias:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, define uma *simetria* relativamente ao eixo dos

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}.$$

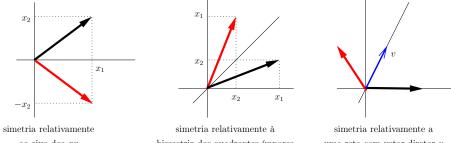
 $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, define uma *simetria* relativamente à bissectriz dos quadrantes ímpares:

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \cdot \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} x_2 \\ x_1 \end{array}\right].$$

- Em geral, a matriz

$$A = \frac{1}{v_1^2 + v_2^2} \begin{bmatrix} v_1^2 - v_2^2 & 2v_1v_2 \\ \\ 2v_1v_2 & v_2^2 - v_1^2 \end{bmatrix},$$

define uma *simetria* relativamente à reta que passa na origem definida pelo vetor diretor $\vec{v} = (v_1, v_2) \neq \vec{0}$.



ao eixo dos xx

bissectriz dos quadrantes ímpares

uma reta com vetor diretor v

• Rotações:

$$A = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \text{ define uma rotação de } \frac{\pi}{2} \text{ radianos:}$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}.$$

De facto, tem-se $(x_1, x_2)|(-x_2, x_1) = 0$ para todo o $(x_1, x_2) \in \mathbb{R}^2$.

Em geral,
$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
, define uma *rotação* de ângulo θ

radianos no sentido anti-horário em torno da origem:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}.$$

Transformações geométricas no espaço

Vejamos alguns exemplos de transformações geométricas no espaço.

• A matriz
$$S_z=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 define uma $simetria$ relativamente ao plano xOy :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ -x_3 \end{bmatrix}.$$

Definem-se de modo análogo as matrizes de simetria S_y e S_x relativamente aos planos xOz e yOz, respetivamente.

• A matriz
$$R_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, define uma $rota c \tilde{a} o$ de ângulo

 θ em torno do eixo dos zz:

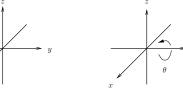
$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ z \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \\ z \end{bmatrix}$$

Definem-se de modo análogo as matrizes de rotação em torno do eixo dos xx e do eixo dos yy.

Rotação em torno do eixo dos xxde ângulo θ

Rotação em torno do eixo dos yy de ângulo θ

Rotação em torno do eixo dos zzde ângulo θ



$$R_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{y,\theta} = \begin{bmatrix} -\sin\theta & 0 & \cos\theta \\ & 0 & 1 & 0 \\ & \cos\theta & 0 & \sin\theta \end{bmatrix}$$

$$R_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \qquad R_{y,\theta} = \begin{bmatrix} -\sin\theta & 0 & \cos\theta \\ 0 & 1 & 0 \\ \cos\theta & 0 & \sin\theta \end{bmatrix} \qquad R_{z,\theta} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

O produto de matrizes via transformações geométricas

Podemos interpretar as colunas de AB como as imagens da transformação definida pela matriz A dos vetores que constituem as colunas de B.

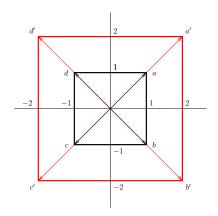
Exemplo A matriz

$$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right],$$

define uma homotetia que transforma o quadrado Q de vértices, (1,1), (1,-1), (-1,-1)e (-1,1),ou seja, definido pelos vetores $a=(1,1),\,b=(1,-1),\,c=(1,-1)$ (-1,-1)e d=(-1,1),no quadrado Q^\prime definido pelos vetores $[a^\prime|b^\prime|c^\prime|d^\prime]=$ $A \cdot [a|b|c|d] = [Aa|Ab|Ac|Ad]$ ou seja, definido pelas colunas da matriz

$$\left[\begin{array}{cc|c} 2 & 0 \\ 0 & 2 \end{array}\right] \cdot \left[\begin{array}{cc|c} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{array}\right] = \left[\begin{array}{cc|c} 2 & 2 & -2 & -2 \\ 2 & -2 & -2 & 2 \end{array}\right].$$

95

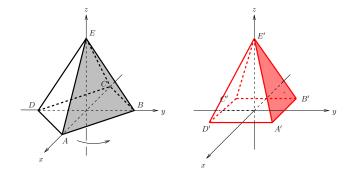


Exemplo A matriz

$$\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix},$$

define uma rotação de ângulo $\frac{\pi}{4}$ radianos em torno do eixo dos zz que transforma a pirâmide de base quadrangular definida pelos pontos A=(1,0,0), B=(0,1,0), C=(-1,0,0) e D=(0,-1,0) e com vértice E=(0,0,1), na pirâmide de base definida por A', B', C' e D' e vértice E', onde

$$[A'|B'|C'|D'|E'] = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -1 & 0 & 0\\ 0 & 1 & 0 & -1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$



Inversa de uma matriz

Uma matriz quadrada A de ordem n diz-se invertível (ou não singular) se existir uma matriz quadrada B de ordem n tal que

$$AB = BA = I_n$$
.

Notas:

- Prova-se que basta verificar uma das condições AB = I ou BA = I.
- A matriz B q
d existe é única, designa-se por inversa de A e de
nota-se por A^{-1} .

Uma matriz que não é invertível, diz-se *singular*.

Algumas propriedades

Sejam A, B matrizes invertíveis da mesma ordem. Têm-se:

- $(A^{-1})^{-1} = A$.
- A^T é invertível e tem-se $(A^T)^{-1} = (A^{-1})^T$.

• AB é invertível e tem-se $(AB)^{-1} = B^{-1}A^{-1}$.

Exemplos

$$\bullet \left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & 2 \end{array} \right]^{-1} = \left[\begin{array}{cc} 2 & 0 \\ 0 & \frac{1}{2} \end{array} \right].$$

• $A = \operatorname{diag}(a_1, a_2, \dots, a_n)$ é invertível sse $a_1, a_2, \dots, a_n \neq 0$, tendo-se

$$A^{-1} = \operatorname{diag}(a_1^{-1}, a_2^{-1}, \dots, a_n^{-1}).$$

$$\bullet \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right]^{-1} = \left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right].$$

$$\bullet \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \text{ pois } \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

• Mais geralmente, tem-se
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \text{ se } ad - bc \neq 0.$$

Quais serão as matrizes inversas das matrizes R_{θ} , S_z e $R_{z,\theta}$?

Equações matriciais e sistemas de equações lineares

Consideremos a equação matricial

$$Ax = b$$

onde $A = [a_{ij}]$ é uma matriz do tipo $m \times n$, $x = [x_j]$ é a matriz-coluna (i.e, vector) com n variáveis x_1, \ldots, x_n e $b = [b_i]$ é uma matriz-coluna com m componentes. Tem-se o seguinte:

o vector $x = (x_1, ..., x_n) \in \mathbb{R}^n$ é solução da equação matricial Ax = bse e só se x é solução do sistema *linear*, com m equações e n variáveis,

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m. \end{cases}$$

As matrizes A e b chamam-se, respectivamente, matriz dos coeficientes e matriz dos termos independentes do sistema Ax = b. A matriz do tipo $m \times (n+1)$,

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{bmatrix},$$

chama-se matriz ampliada do sistema Ax = b denota-se por [A|b].

Exemplo

Consideremos
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$$
 e $b = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Tem-se,
$$Ax = b \Leftrightarrow \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x_1 + 2x_2 \\ -x_1 + 0x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Portanto $x=(x_1,x_2)$ é solução da equação matricial Ax=b se e só se é solução do sistema linear com 2 equações e 2 variáveis,

$$\begin{cases} x_1 + 2x_2 = -1 \\ -x_1 + 0x_2 = 1, \end{cases}$$

cuja matriz ampliada [A|b] é

$$\left[\begin{array}{c|c} 1 & 2 & -1 \\ -1 & 0 & 1 \end{array}\right].$$

Se m=n=1, Ax=b reduz-se a uma equação linear com uma variável, sendo normalmente denotada por ax=b, tendo-se $x=a^{-1}b$ (se $a\neq 0$).

A notação matricial vai-nos permitir indicar a solução de um sistema Ax=b, com A matriz quadrada de ordem n, de uma forma análoga ao caso anterior, substituindo a condição $a\neq 0$ por A invertível.

Solução da equação Ax = b com A invertível

$$Ax = b \Leftrightarrow A^{-1}(Ax) = A^{-1}b$$

 $\Leftrightarrow (A^{-1}A)x = A^{-1}b$
 $\Leftrightarrow x = A^{-1}b.$

Logo a solução (única) de Ax = b é $x = A^{-1}b$.

Exemplo

Consideremos a matriz $A=\begin{bmatrix}1&2\\-1&0\end{bmatrix}$ do exemplo anterior e o vector $b=(b_1,b_2)$. A solução (única) de Ax=b é

$$x = A^{-1}b = \begin{bmatrix} 0 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} -b_2 \\ \frac{b_1 + b_2}{2} \end{bmatrix}.$$

Dois sistemas lineares do tipo $m \times n$ dizem-se *equivalentes* se possuirem o mesmo conjunto de soluções.

Exemplo

$$\begin{cases} x_1 + x_2 = 2 \\ 2x_1 - x_2 = 1 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_2 = 2 \\ x_2 = 1 \end{cases}$$

Classificação e resolução de um sistema linear

Um sistema linear pode ser,

- possível e determinado (PD) se possuir uma única solução.
- possível e indeterminado (PI) se possuir mais que uma solução (nesse caso possui ∞ soluções).
- impossível (I) se não possuir soluções.

Classificar/discutir um sistema é determinar se o sistema é PD, PI ou I.

Resolver um sistema é determinar o seu conjunto de soluções.

Operações elementares sobre as linhas da matriz ampliada

(que transformam a matriz ampliada de um sistema na matriz ampliada de um sistema equivalente)

 Multiplicar uma linha por um número real e adicionar o resultado a outra linha.

Ex:
$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & -3 & -3 \end{bmatrix} \quad (L_2 \to -2L_1 + L_2)$$

2. Multiplicar uma linha por um escalar não nulo:

Ex:
$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & -3 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \quad (L_2 \to \frac{-1}{3}L_2)$$

3. Trocar linhas entre si:

Ex:
$$\begin{bmatrix} 2 & 3 & 5 \\ 1 & 2 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 5 \end{bmatrix} \quad (L_1 \to L_2 \; ; \; L_2 \to L_1)$$

Definem-se analogamente operações elementares sobre as equações de um sistema.

Matriz em escada e matriz reduzida

Uma matriz diz-se em escada se o 1º elemento não nulo de cada linha,
 que se designa por pivot, estiver mais à direita que o 1º elemento não nulo da linha anterior.

Ex:
$$\begin{bmatrix} 1 & -1 & 2 & 5 & -1 \\ 0 & 2 & 1 & 4 & -5 \\ 0 & 0 & 0 & 9 & 2 \end{bmatrix}$$

 Uma matriz diz-se reduzida se estiver em escada, todos os pivots forem iguais a 1 e em cada coluna com pivot o único elemento não nulo é o próprio pivot.

 Definem-se analogamente sistema em escada e sistema reduzido, substituindo nas definições anteriores linha da matriz por equação do sistema.

Método de eliminação de Gauss

O método de eliminação de Gauss desenvolve-se em duas fases utilizando as operações elementares sobre as equações [linhas] de um sistema [matriz] para obter um sistema [matriz] mais simples equivalente ao sistema [matriz] original:

- (i) A fase descendente tem como objectivo pôr o sistema [matriz] em escada. No final desta fase podemos classificar o sistema. O sistema [matriz] em escada não é único, ou seja, depende das operações elementares que foram efectuadas.
- (ii) A fase ascendente aplica-se aos sistemas possíveis e tem como objectivo reduzir o sistema [matriz] em escada. O sistema [matriz] reduzido é único, ou seja, não depende das operações elementares que foram efectuadas.

Esquematicamente:

Vamos ilustrar o método de eliminação de Gauss nalguns exemplos.

Exemplo 1

Pretende-se resolver o sistema
$$\begin{cases} x_1 - x_2 + x_3 = 3 \\ 2x_1 - x_2 + 3x_3 = 8 \\ -x_1 + x_3 = 1 \end{cases}$$

Fase descendente:

$$\begin{bmatrix} 1 & -1 & 1 & 3 \\ 2 & -1 & 3 & 8 \\ -1 & 0 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & -1 & 2 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 3 & 6 \end{bmatrix} \longrightarrow$$

Não existem equações impossíveis no sistema e todas as colunas do sistema em escada têm pivot. Logo o sistema é possível e determinado.

Fase ascendente:

$$\longrightarrow \begin{bmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

Conjunto de soluções do sistema é $S = \{(1,0,2)\}.$

Exemplo 2

Resolver o sistema dado matricialmente por

$$\begin{bmatrix}
1 & 1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 & 1 \\
1 & 2 & 1 & 1 & -2
\end{bmatrix}$$

Fase descendente:

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & 2 & 1 & 1 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 2 & 0 & -5 \end{bmatrix} \longrightarrow$$

Não existem equações impossíveis. Existem colunas sem pivot. Logo o sistema é possível e indeterminado, com variável livre x_4 associada à coluna sem pivot.

Fase ascendente:

$$\longrightarrow \begin{bmatrix}
1 & 1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & -\frac{5}{2}
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 1 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & -\frac{3}{2} \\
0 & 0 & 1 & 0 & -\frac{5}{2}
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
1 & 0 & 0 & 1 & \frac{7}{2} \\
0 & 1 & 0 & 0 & -\frac{3}{2} \\
0 & 0 & 1 & 0 & -\frac{5}{2}
\end{bmatrix}$$

$$\begin{cases} x_1 &= \frac{7}{2} - x_4 \\ x_2 &= -\frac{3}{2} \\ x_3 &= -\frac{5}{2} \\ x_4 &= \forall \end{cases}$$

O conjunto de soluções do sistema é

$$S = \left\{ (x_1, x_2, x_3, x_4) : x_1 = \frac{7}{2} - x_4, \ x_2 = -\frac{3}{2}, \ x_3 = -\frac{5}{2}, \ x_4 = \forall \right\}$$

Podemos tomar valores arbitrários para x_4 . Se, por exemplo, tomarmos $x_4=1$ obtemos a solução $(\frac{3}{2},-\frac{3}{2},\frac{5}{2},1)$.

Exemplo 3

Resolver o sistema dado matricialmente por

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 2 & -2 & 0 \\ 2 & 5 & -4 & 0 \end{bmatrix}$$

Fase descendente:

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 2 & -2 & 0 \\ 2 & 5 & -4 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 5 & -4 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

A última linha da matriz corresponde à equação impossível

$$0x_1 + 0x_2 + 0x_3 = -1,$$

pelo que o sistema é impossível. Logo $S = \emptyset$.

Algorítmo para a determinação da inversa de uma matriz

Consideremos $A=\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$. Para calcular A^{-1} temos que determinar

uma matriz
$$X = [x|y] = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix}$$
, tal que $AX = I_2$.

Ora

$$AX = I_{2} \Leftrightarrow \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x_{1} + 2x_{2} & y_{1} + 2y_{2} \\ -x_{1} & -y_{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow Ax = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad Ay = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

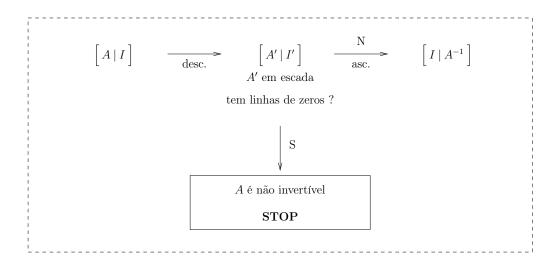
Resolvendo os sistemas obtemos $x = (0, \frac{1}{2})$ e $y = (-1, \frac{1}{2})$.

Logo
$$A^{-1} = \begin{bmatrix} 0 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
.

Em geral, para determinar a matriz inversa (quando existe) de uma matriz A de ordem n temos que determinar uma matriz $X = \begin{bmatrix} x_1 | \cdots | x_n \end{bmatrix}$ tal que $AX = I_n$, ou seja, temos que resolver as equações matriciais, com a mesma matriz de coeficientes A,

$$Ax_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad Ax_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad Ax_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Podemos resolver simultaneamente estas equações aplicando o método de Gauss para reduzir a matriz A:



Exemplos

1. Pretende-se determinar a inversa da matriz (se existir) $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$.

Aplicando o algorítmo da inversa, vem

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & 3 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 5 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{1}{5} & \frac{1}{5} \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & \frac{3}{5} & -\frac{2}{5} \\ 0 & 1 & \frac{1}{5} & \frac{1}{5} \end{bmatrix}.$$

Logo
$$\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}^{-1} = \frac{1}{5} \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}.$$

2. Pretende-se determinar a inversa da matriz (se existir) $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix}.$

Tem-se,

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 3 & 2 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} A'|I'| \end{bmatrix}$$

A' tem uma linha de zeros. Logo A é não invertível.