ORDENAMENTO E GESTÃO FLORESTAL

Exercício#7. Programação Dinâmica

Aplicação da programação dinâmica na definição da alternativa de gestão ótima de um povoamento com composição pura e com estrutura regular

Preço da madeira: opção 5

Preço da terra: 1920/ha

Deve resolver este problema de optimização da gestão de um povoamento utilizando os dois métodos considerados na programação dinâmica: processo de solução iniciado no primeiro estágio ("forward method") e inciado no último estágio ("backward method"). Utilize o conjunto de preços indicado.

		Opção															
Idade	Área basal	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
30	80-100	32	48	48	40	64	48	72	70	44	36	56	60	52	70	44	66
30	101-120	32	48	48	40	64	48	64	62	44	36	56	60	56	60	44	66
30	120+	40	48	64	48	72	56	64	62	52	44	56	70	62	60	52	70
40	80-100	56	80	72	48	80	96	104	100	92	60	88	100	76	100	52	82
40	101-120	48	72	64	48	80	96	104	100	92	52	80	100	76	100	52	82
40	120+	48	64	64	48	80	80	96	90	86	52	72	92	76	96	52	82
50	80-100	80	144	128	96	144	136	144	140	132	84	144	140	92	142	100	138
50	101-120	72	120	120	88	128	128	136	132	124	76	126	132	90	138	90	122
50	120+	64	112	116	88	120	104	128	124	100	68	118	124	90	130	90	114
60	80-100	96	192	128	128	160	160	160	156	156	100	190	158	124	160	130	160
60	101-120	96	192	128	128	160	160	160	156	156	100	190	158	124	160	130	160
60	120+	96	192	128	128	160	160	160	156	156	100	190	158	124	160	130	160

Os preços referem-se a material lenhoso em pé (u.m./u.v.) e assumindo a realização de um corte raso. No caso dos desbastes, estes valores devem ser reduzidos em 8 u.m./u.v. por forma a reflectir o custo adicional da operação. As diferenças entre preços resultam da repartição por categorias de aproveitamento do material lenhoso que varia com a área basal. Assume-se o seguinte:

- a. Os preços não variam no tempo.
- b. A taxa de desconto i para cálculo do valor actual de rendimentos e custos é tal que (1% i)¹⁰ 2 (cerca de 7%)
- c. Os estágios são definidos pela idade do povoamento: 0, 20, 30, 40, 50 e 60 anos. Não se considera a possibilidade de qualquer intervenção (desbaste ou corte final) até imediatamente antes dos 30 anos de

1

- d. A variável de estado em cada estágio (idade) é a área basal do povoamento. Considere intervalos de 10 unidades para definir as classes de densidade. Os valores centrais desses intervalos são os valores 80, 90, 100,..., 160.
- e. Os cortes realizam-se no final do estágio. Exemplo: ao "caminhar" da idade de 20 anos para a de 30, o corte, a realizar-se, ocorrerá aos 30 anos; a área basal residual definirá então o valor da variável de estado (o nó da rede) no estágio correspondente a esta última idade.
- f. A realização de um corte raso nos povoamentos é obrigatória e poderá ocorrer aos 30, 40, 50 ou 60 anos.
- g. A área basal residual, depois de um desbaste, não poderá ser inferior a 80 unidades.
- h. A área basal minima a remover num desbaste é de 40 unidades.
- i. No estágio correspondente à idade de 20 anos consideram-se apenas 2 valores possíveis para a variável de estado área basal (2 nós na rede): 80 e 110. Para os alcançar incorre-se em custos de, respectivamente, 0 e 40 ct/ha. São custos de instalação que ocorrem no ano 0 (não é necessário actualizá-los).
- j. Informação relativa ao crescimento:
- Crescimento em área basal (unid/ha) :

Área basal	Idade							
	20	30	40	50				
80	20	30	10	10				
90	20	30	20	10				
100	20	20	20	20				
110	20	20	20	20				
120	20	10	10	20				
130	20	10	10	10				
140	10	10	10	10				
150	0	0	0	0				

Volume (u.v./ha):

Área basal	Idade							
	30	40	50	60				
80	16	20	24	26				
90	18	22	27	29				
100	20	25	30	32				
110	22	27	33	35				
120	24	30	36	39				
130	26	33	39	42				
140	28	35	42	45				
150	30	37	45	48				

- a) Desenhe a rede que representa todas as alternativas de gestão do povoamento possíveis, de acordo com a informação dada.
- b) Indique o número total de nós e de arcos a considerar. Inclua um nó inicial e todos os nós que condensam a informação relativa a revoluções futuras a repetir à perpetuídade ("bare land nodes").
- 2. Preencha um quadro com os valores actuais associados a cada arco. Este quadro será utilizado mais tarde para determinar a alternativa óptima de gestão para o povoamento utilizando a programação dinâmica. Note que o momento de corte (idade) corresponde à idade associada ao nó no final do arco que representa a actividade de corte. Note ainda, que o preço a considerar

no caso do corte raso é diferente do associado ao volume que sai em desbaste. Organize o quadro de acordo com as seguintes colunas:

Idade inicial.

Área basal inicial.

Área basal final

C: valor actual dos custo.

Volume imediatamente antes do corte.

Volume após o corte.

Volume retirado.

P: valor actual do preço.

P * V - C

Nota: neste problema não se consideram custos de exploração pelo que C, custo de instalação, será utilizado apenas para calcular o valor associado aos arcos iniciais.

3. a) Utilize a rede desenhada em 1. a) e o quadro organizado em 2. para determinar o valor associado aos nós na rede. Utilize o "forward method". Apresente os cálculos num quadro com as colunas seguintes:

Nó de chegada (não esqueça que o nó é identificado pelo estágio - idade - e pela variável de estado - área basal). Indique nesta coluna os valores correspondentes.

Nó de origem (também identificado pela idade e área basal). Note que para se atingir um nó na rede se poderá partir em alguns casos de mais do que um nó no estágio anterior: poderá haver mais que um nó de origem.

N: valor associado aos nós de origem.

A: valor associado ao arco.

A + N: valor associado ao percurso.

Valor associado ao nó de chegada.

Nota: na primeira linha do quadro deverá estar o nó correspondente à idade 0, a qeetá associado um valor nulo. Nas linhas seguintes estarão os nós possíveis no segundo estágio - idade 20. O quadro sistematiza o processo de cálculo dos valores associados aos nós. É possível identificar todos os percursos que poderão levar a qualquer nó na rede. No quadro final, haverá uma linha para cada arco na rede e um conjunto de linhas para cada nó de chegada (arcos que terminam neste mesmo nó).

- b) Identifique as alternativas de gestão (prescripcões) óptimas para cada revolução (30, 40,..., 60 anos). No caso de se considerar um horizonte de planeamento à perpetuídade qual é a revolução óptima? Apresente os cálculos.
- 4. A utilização do "backward method" exige o conhecimento prévio do valor dos nós finais ("bare land nodes") o valor do solo. Considere a estimativa do mesmo dada acima. Esta poderá ser incorrecta. No entanto, como verificará, este método de solução permite encontrar a alternativa de gestão optimizadora, ainda que essa estimativa seja grosseira. Para isso haverá que resolver o problema mais do que uma vez. Note que a estimativa do valor do solo se refere ao ano 0: para iniciar este processo de solução deverá actualizar de forma adequada esse valor para calcular os valores associados aos "bare land nodes".
- a) Proceda como em 3. a) para determinar os valores das alternativas de gestão do povoamento utilizando agora o "backward method". Organize a informação num quadro com as colunas seguintes:

Nó de origem.

Nó de chegada (poderá haver mais do que um para um mesmo nó de origem).

N: valor associado ao nó de chegada.

A: valor associado ao arco.

A + N: valor associado ao percurso.

Valor associado ao nó de origem.

Nota: as primeiras linhas no quadro terão como nós de chegada os "bare land nodes".

- b) Indique o volume retirado em cada idade e a respectiva área basal residual no caso da alternativa óptima de gestão.
- 5. Como se referiu acima, a solução obtida em 4. poderá ser incorrecta se a estimativa do valor do solo utilizada não for adequada. Calcule este valor utilizando a informação obtida em 4:
 - a) Determine o valor actual associado à primeira revolução na alternativa óptima de gestão.
 - b) Utilize este valor para calcular o verdadeiro valor do solo.
- c) Compare a estimativa do valor do solo com que trabalhou em 4. com o novo valor. Comente a possibilidade da revolução óptima ser diferente da obtida em 4. (será mais longa, mais curta ou a mesma no caso de considerar o novo e correcto valor do solo?)
- 6. Proceda como em 4. e resolva de novo o problema considerando o valor do solo calculado em 5. o correcto. Poderá eventualmente simplificar a rede e reduzir o número de calculos a realizar com base no que respondeu em 5. c).
- Compare as soluções obtidas em 4. e em 6. Interprete as diferenças caso existam.