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Topics of Questions 1 a 4 resolution

1. Let's write the value of the margins in the table

Father's age - mother's age Total

Sex of 1st child

-9 a -1 0 a 5 5 a 15

Masculino 14 117 37 168

Feminino 29 84 20 133

43 201 57 301

Answer:

a) 301

b) A=TRUE, B=estudo.sexo, C = 2, D =
43 ∗ 133

301
= 19

E =
20− 25.18605√

25.18605
= −1.03337 F = P [χ2

(2) < 11.8106] = 1− P.value = 0.9973

c) We are facing a contingency table with free margins, so we are going to carry out a Test

of Independence, i.e., it is intended to test whether there is independence between the age

di�erence of the parents and the sex of the �rst child or on the contrary there will be some

relationship.

H0 : the age di�erence of the parents and the sex of the �rst child are independent

H1 : there is some relationship.

i.e. H0 : pij = pi•p•j ∀(i, j) H1 : at least 2 of those equalities are not veri�ed

The test statistic is X2 =
∑2

i=1

∑3
j=1

(O(ij) − e(ij))2

e(ij)

Under the validity of the null hypothesis, we have, X2 ∼ χ2
(1)×(2) = χ2

(2)

As p.value = 0.002725 < 0.05 (level of signi�cance usually considered), textbf is rejected H0,

so we can say that there is some relationship between the age di�erence of the parents and the

sex of the �rst child.

From that test$expected table we see that there seems to be an in�uence on the sex of the

child when the father is younger than the mother, with the female sex being more frequent

than would be expected if there were independence.

Note that the test's validity conditions are veri�ed, all expected frequencies are even higher

than 5.

d) From the analysis of the results presented in test$residuals we see that the components �res-

ponsible� for the high value of the test statistic X2 are those referring to the age di�erence

between father and mother being between -9 and -1. The sign of the residuals also con�rms

that there is more tendency to have more female children than would be expected if there were

independence.

2. Answers are given in front of each command



> dna<-c("A","C","G","T") ## an alphanumeric vector (A, C, G, T) is created with

## the name dna

> seq2<-sample(dna,1000,replace=T,

+ prob=c(0.20,0.30,0.18,0.32))

## of the vector dna a random sample is taken, with size 1000, with replacement,

## where values A, C, G and T are sampled with probabilities defined in the vector prob.

## This sample is saved in the seq2 vector

> table(seq2) # creates a table of the absolute frequencies of each observed value

seq2

A C G T

192 289 183 336

> pbinom(192,1000,0.20)

[1] 0.2783474

# Para a v.a. X com dist. Binomial(n=1000,p=0.20) calcula P[X<=192]

> 1-pbinom(207,1000,0.20)

[1] 0.2749125

# For the random variable X, Binomial(n=1000,p=0.20)

# we calculated 1- P[X<=207]=P[X>207]=P[X>=208]

What is asked is to answer the test H0 : p = 0.20 vs H1 : p 6= 0.20 where X is a r.v. that counts

the number of times we observe �A� in the sequence ; X _ Binomial(n = 1000, p)

As I formulated a bilateral test, p − value = P [X <= 192] + P [X >= 208] = 0.5533, therefore
higher than any value of α habitual.

H0 is not rejected, therefore the nucleotide �A� can occur in the proportion de�ned in the study.

Nota: The following test could be used

prop.test(192, 1000, p = 0.2,alternative = "two.sided")

3. (X1, X2, .., Xn), random sample withdrawal of a population X,

f(x;β) =


β + 1

eβ+1
xβ se 0 ≤ x ≤ e

0 outros valores de x

Nota: We know that E[X] =
(β + 1)e

β + 2
.

Answer:

a) This density function only has an unknown parameter, so to apply the method of moments we

need only one equation, i.e., the estimator of β is the solution of the equation

E[X] = X ⇐⇒ (β + 1)e

β + 2
= X ⇐⇒ (β + 1) e = X(β + 2)⇐⇒ βe + e = βX + 2X

The estimator of β by the method of the moments is β∗ =
2X − e

e−X
b) Let?s start by thinking about the observed sample (x1, x2, ..., xn), in the continuous X popu-

lation.

The Likelihood is de�ned as



L(β|x1, ..., xn) = f(x1|β)× ...× f(xn|β) =
β + 1

eβ+1
xβ1 × ...×

β + 1

eβ+1
xβn =

(
β + 1

eβ+1

)n
Πn
i=1x

β
i

To determine the maximum of this function, it is easier to work with logL() (simpli�ed repre-

sentation)

logL() = log

(
β + 1

eβ+1

)n
+ log(Πn

i=1x
β
i ) = n log(β + 1)− n log(eβ+1) +

(
n∑
i=1

log xβi

)

logL() = n log(β + 1)− n(β + 1) + β

(
n∑
i=1

log xi

)
So now we just need to derive in order to β and then put equal to zero, to get the critical point,

which is a maximizer

d logL()

dβ
=

n

β + 1
− n+

n∑
i=1

log xi

n

β + 1
− n+

n∑
i=1

log xi = 0⇔ n

β + 1
= n−

n∑
i=1

log xi ⇒ β =
n

n−
∑n

i=1 log xi
− 1

Then we have the estimate and estimator of maximum likelihood for β, respectively,

β̂ =

∑n
i=1 log xi

n−
∑n

i=1 log xi
Θ̂ =

∑n
i=1 logXi

n−
∑n

i=1 logXi

c) We have an observed sample of dimension 30, extracted from that population, with which the

calculations presented were performed:

> sum(dados) > sum(log(dados))

[1] 59.77 [1] 19.39522

Given this sample of 30 values of the variable X and using the values of
∑n

i=1 xi = 59.77 and∑n
i=1 log xi = 19.39522 we have two estimates for β, given by the method of moments and the

method of maximum likelihood, respectively:

β∗ =
2× 59.77/30− e

e− 59.77/30
= 1.7445 β̂ =

19.39522

30− 19.39522
= 1.8289

4. Estimator of β

β∗ =
2(X − 1)

2−X
.

a) A=30; B=TRUE; C=2.003918

b) A bootstrap estimate of β is β∗B = 2.003918

c) A booststrap con�dence interval at 90% for β, is given by the percentiles Q∗
0.05 = 1.465054 and

Q∗
0.95 = 2.588998, therefore the CI textit booststrap at 90% is

]1.465054, 2.588998[


