Lesson 2

A brief review of concepts related to random
variables.
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Lesson 2—Plan

0 The concept of random variable and the probability
9 Parameters of a random variable
e Parameters in random pairs

@ Some discrete models
@ The uniform discrete distribution
@ The binomial distribution
@ The binomial negative distribution
@ The Poisson distribution

© Some continuous models
@ The normal or Gaussian distribution
@ The Central Limit Theorem
@ The uniform continuous distribution
@ The exponential and gamma distributions
@ The beta distribution

e Example of an exercise in the @®
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The concept of random variable and the

probability

When performing a random experiment, one (or more) real values can
be associated with each experiment result - we say we have defined
a random variable or (a random vector).

A random variable is usually represented by X.

A random variable may be:

@ discrete - for example the number of germinated seeds;
registration, at regular intervals, of the number of persons waiting
in a queue of a supermarket;

@ continuous - for example the weight of a subject; the diameter at
the height chest of a tree, the length of a sheet.
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Random variable — probability

Associated with each random variable (r.v.) there are:
@ a probability mass function, if X discrete,

The probability mass function is an aplication that
to each value x; — p; = P[X = x;], satisfying:
pi>0 i=1,..k e YK pi=1.

@ or a density function, if X continuous.

A function f is said to be a density function if it verifies the conditions:

+oo
f(x) >0 VxeclR; / f(x)dx =1

— 00
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Random variable — probability

Associated with each random variable (r.v.) there is also:

@ areal function F, which is denoted as the cumulative distribution
function and defined as

F(x) = PIX < x]

If X is discrete we have F(x) = P[X < x] =, < P[X = xi],

i.e., we have the cumulative probability associated with the variable X
calculated in any x € RR.

If X is continuous we have F(x) = P[X < x] = [*__f(t) dt

—00 < X < o0, where f is the density function.
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Random variable — probability

Examples of how to calculate a probability, using F:
Q@ Pla< X<b)=P(X<b)—P(X<a)=F(b)- F(a);

Q@ P(X=a)=F(a)— F(a)onde F(a)=Ilimy_,-F(x)
Q Pla<X<b)=P(X<b)—P(X<a)=Fb)-F(a);
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Parameters of a random variable

Expected Value

Given ar.v. X the mean value or expected value is denoted as E[X],
wx or simply o and is defined as

n
E[X] = Z x; pi X discrete r.v. with distribution (x;, p;)

i=1

+ oo
E[X] = / x f(x) dx X continuous r.v. with density 7(x)

— o0

Some properties

o E[a+bX]=a+ b E[X].

® E[p(X) + ¢(X)] = E[o(X)] + E[¢(X)]
@ inf(X) < E[X] < sup(X)
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Parameters of a random variable

The variance of a random variable X is denoted as Var[X], 0% or o2
and is defined as

ok =E [(X = u)z}

The ox = /Var[X] is the standard deviation.

Some properties
o Var[X] = E[X?] — (E[X])?
@ Var[X] >0
@ Var[a+ b X] = b? Var[X].

Fot the standard deviation we have oa4p x) = |b| ox
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Parameters in random pairs

Brief review of parameter properties in random pairs

If (X, Y) is arandom pair, tahat can be discrete or continous

Expected value

Given the random pair (X, Y), and g : R? — IR, we define

E[g(X,V)]=)_> a(x,y) pj, discretcase
i

E[g(X,Y)] = //nz g(x,y) f(x,y) dxdy , continuous case.

i
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Parameters in random pairs

Properties of the Mean Value
@ E[X £ Y]=E[X] £ E[Y]

@ Desigualdade de Schwarz  If E[X?] and E[Y?] exist then
(EIXY])? < E[X?]E[Y?].

Corollary: (E[X])? < E[X?]
Remark: if E[X?] exists = then E[X] also exists.

@ If X and Y are independent random variables

U
E[XY] = E[X]E[Y]

Remark: The reciprocal is not true
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The covariance

The covariance between X e Y
Given the random pair (X, Y) the covariance between X e Y'is

Cov[X, Y] = oxy = E[(X — ux)(Y — ny)]

Show that Cov[X, Y] = E[XY] — E[X]E[Y]
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Variance and covariance properties

°
Var[X + Y] = Var[X] + Var[Y] £ 2Cov|[X, Y]

@ If X e Y are independent random variables = Cov[X, Y] = 0.
Remark: The reciprocal is not true.

@ If X e Y are independent random variables

Var [X £ Y] = Var[X] + Var[Y]

o Covla+ bX,c+dY] = bd Cov[X, Y].
@ |Cov[X,Y]| <oxoy.

@ Correlation coefficient is defined as:

Cov[X,Y
pEp)gy:g (Jx>0;0y>0).
ox Oy
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The main discrete and continuous probability
models.
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Main discrete models

The uniform discrete distribution

Definition A r.v. X is said to have a discrete uniform distribution if it
assumes the values xq, ..., x, with probabilities 1/n,...,1/n, i.e.
P(X=x))=1/n, i=1,.,n.

1 2 ....n

Particular case X:{ 1/n 1/n - 1/n

Mean value and variance

2
n+1 Var[X] = n : 1

E[X] =

Instructions on @ to simulate > sample(v,size,rep=TRUE)
v vector with the values that the variable can assume
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Function sample( )

The function sample — allows us to create a random sample from the
elements of a vector, with or without replacement, with equal
probabilities or not.

>sample(1:20,15)

15 numbers are randomly selected from 1 to 20 without replacement
the default is “without replacement”.

To select with replacement with different probabilities do, for example:

>pb<-c(rep(0.1,3),.2,.3,.2);pb
>sample(1:6,30,rep=T,prob=pb)

If the probability is the same it can be omitted.

Nota: To generate the same sequence >set.seed(number)
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The uniform discrete distribution in R

> par (mfrow=c(2,2))

> x1<-sample(1:6,30,rep=T);xl
> distl<-table(xl) ;distl

> plot(distl)

Repeat 300, 3000, and 30000 times (see the graphs of the next slide
with variables x», x3, and xg);

Remark: Defining a function, for example:

> dado<-function(n) sample(l:6,n,replace=T)

> di<-dado(30) ;table(dl)

> table(dado(30)) # Do you see any difference?
> dado(300) ;dado (3000)
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Graphics from multiple tosses of a die
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The binomial distribution

When n Bernoulli independent trials are performed, the variable that
counts the number of successes that occur is said to have a binomial
distribution and it is represented by X — Binom(n, p), where p is the
probability of success. The probability of failure, 1 — p, is usually
represented by q.

X assumes the values x =0,1,2,...,.n  with probabilities given by
PIX=x]= () p* (1 -p)"

Mean value and variance

E[X]=np Var[X] = np(1 — p) = npq

To determine the value of those probabilities, quantiles, or the

cumulative distribution function, the @ has pre-defined functions for
many models.
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R functions for existing models

@ dfunction (x,...) - allows to obtain the probability mass function
(discrete model) or the density function (continuous model) in x;

@ pfunction(q,...) - allows to obtain the cumulative distribution
function, i.e., returns the probability that the variable is less than or
equal to qg;

@ qgfunction (p,...) - allows to calculate the quantile associated to
the probability p;

@ rfunction (n,...) - allows to generate a sample of n
pseudo-random numbers of the specified model.

Meaning:
density, probability, quantile, random
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Exercise Let’s try to use the functions associated to the binomial
model, for example, with d, p, g, r. Consider a
Binomial(n =10, p = 0.2).

x<- 0:10
dbinom(x,size=10,prob=0.2)
pbinom(3,size=10,prob=0.2,lower.tail = TRUE) # gives P[X<=3]
gbinom(0.75, size=10, prob=0.2, lower.tail = TRUE)

# gives the quantile of probability 0.75
rbinom(5, size=10, prob=0.2)
pbinom(3, size=10, prob=0.2, lower.tail = F) #da P[X>3]

vV V. + V V V V

The quantile is defined as the smaller value x, such that F(x,) > p,
being F the cumulative distribution function.

> par (mfrow=c(1,2))

> plot(x,dbinom(x,size=10,prob=0.2) ,type="h")

> plot(x,dbinom(x,size=10,prob=0.4),type="h")
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Exercises (cont.)

To exemplify the theoretical binomial distribution and the simulated one
(with the generation of pseudo-random numbers)

par (mfrow=c(1,3))

n<-5;p<-0.25

x<-rbinom(100,n,p) # 100 random numbers

ni<-table(x) ;ni

fi<-ni/sum(ni) ;fi

dbinom(0:n,size=5,prob=0.25)

plot (fi,type = "h", col = "red",lwd=3,
main="Binom(n=5,p=0.25)",ylim=c(0,.5))

xvals<-0:n;points(xvals,dbinom(xvals,n,p),type="h",1lwd=3)

points(xvals,dbinom(xvals,n,p),type="p",1lwd=3)

vV V + V V V V V V V

... Repeat with n=15, n=50.
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Examples (cont.)
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More probability models

In the @ environment the Negative Binomial model is defined as the
number of failures that are observed until the k “success ” is observed,
in a context of independent Bernoulli’s trials.

The variable X, number of failures under the above-mentioned
conditions is said to have Negative Binomial distribution and it is
represented by X — BN(k, p)

p is the constant probability of “success ” from trial to trial
k is the number of “successes ” that we want to get.
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The binomial negative distribution

Characterizing the r.v. X —~ BN(k, p):
Values x=0,1,2,...
Probabilites ~ P[X = x] = (**~7)pkg*
O<p<t, g=1-p

Mean value and variance of X —~ BN(k, p)

E[X] = £2 VarX] = 5

Example in ®

> x <- 0:15 #vector of variable values

> dnbinom(x,size=6, prob= 0.4) # probability of 0 to 15 failures
# + until there are 6 successes;

#another parameterization using the above average value

> dnbinom(x, mu = 9, size = 6)
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The geometric distribution

If Kk =1, i.e., if we want to determine the number of failures to get the
first success, the variable X is said to have geometric distribution,
X —~ Geo(p)

> Ni <- rgeom(20, prob = 1/4)
> gl<-table(factor(Ni, O:max(Ni)))
> plot(gl)

0 2 4 6 8 10

Manuela Neves (ISA/ULisboa) Mathematical Models and Applications (20, 97 /125



The Poisson distribution

Definition

The r.v. X that counts the number of successes that occur in a given
time interval or domain (independent of the number that occurs in any
other disjoint interval or domain) is said to have Poisson distribution.

It depends only on one parameter A — average number of successes
that occur in the time interval (or in the specified region).

It is represented by X —~ P(\) and the law of probability is:

e—)\ X
X!

PIX =x] = , x=0,1,2..
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The Poisson distribution

Mean value and variance
E[X] = A Var[X] = A\

Using the ®

> diff (ppois(c(47, 50), lambda = 50)) # P[47 < X <=50]
> ppois(50,50)-ppois(47,50) # verify that it is the same
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Some continuous models

The normal or Gaussian distribution

It has a pivotal role in Probability and Statistics because:

@ many biometric variables have a form very close to normal;

@ sometimes a variable that is not normal can be transformed in a
simple way into another with normal distribution;

@ the central part of many non-normal models is sometimes
reasonably well approximated by a normal distribution.
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Some continuous models

One continuous r.v. X is said to have a normal or Gaussian distribution
with parameters p and o and is represented by X —~ A(u, o) if the
density function is:

) = e |4 (54)°]

—00 < X < 400, —00 < p < 400, 0<o <+
v
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The normal or Gaussian distribution

Properties of the density curve of the normal distribution
1. It is symmetrical with respect to u.
2. ltis an unimodal curve, the mode is .
3. It has inflection pointsin u+o0 e u —o.

If »=0and o =1 the random variable with A/(0, 1) distribution is
called standard normal and is usually represented by Z, Z —~ N/(0, 1)

f. densidade da N(0,1) f. densidade da N(0,2) f. densidade da N(2,2)

T T T
o o o
N N N
o o =}
° o ‘/\ o | J\
° T T T ° T T T ° T T T

-5 0 5 -5 0 5 -5 0 5

Graphs of the normal density functjon for some values ??of e o.
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Exercises with the normal distribution in @

#calculations and graphs with the normal law

pnorm(1.96)

pnorm(-1.96)

prnorm(3,mean=5,sd=2)

gnorm(0.75,mean=5,sd=1)

qnorm(0.75,mean=5,sd=1,lower.tail=T)

gnorm(0.25,mean=5,sd=1,lower.tail=F)
#graficos

par (mfrow=c(1,2))

x<-seq(-7,7,.01)

plot (x,dnorm(x,0,1) ,type="1",ylim=c(0, .8) ,1wd=b)

lines(x,dnorm(x,0,.6),col="red",lwd=3)

lines(x,dnorm(x,0,2),col="blue",lwd=3)

lines(x,dnorm(x,1,.6),col="blue",lwd=3)

V VV V V V 4+ V V V V V. YV
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The normal distribution (graphs)

# generating values (cont. exercise)

> y<-rnorm(1000,mean=3,sd=1)

> hist(y,freq=F,ylim=c(0,0.5),

+ main="valores geradost+curva",col=gray(.9))
> curve(dnorm(x,mean=3,sd=1),add=T,1wd=3)
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“
o
= <
\—1 o
o 2
X < ‘0
€ © g o
5 o o
=
e}
o =
© © 1 T T T T 1
-6 -2 0 2 4 6 0 1 2 3 4 5 6

Manuela Neves (ISA/ULisboa) Mathematical Models and Applications (20,

104 /125



Important results with normal distribution

has a standard normal

X —
@ Letbe X —~ N(u, o) Then the r.v. > o
distribution, .6, Z = X" — A%(0,1).
g

@ Let X; nbe r.v. independent, all normal distributed, i.e. having all
the same mean value . and the same variance o2.

The random variables sum and average, respectively defined as
Sn227:1xi e X”:%ZP:1X/

have normal distribution defined as:

Sn —~ N(np,o+/n) e Xn —~ N(u,o/y/n).
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The Central Limit Theorem

We have seen that the sum of independent normal r.v. is still a normal
r.v. But the approximate distribution of the sum of n random variables
and under certain conditions is also normal

The Central Limit Theorem

Let Xi, ..., X, be independent and identically distributed random varia-
bles, with a mean value p and variance o2 (finite). Se n ‘large’ the r.v.
Sn =1, X, satisfies:

Sn—nu Xn— 1
~ N(0,1 Iso h ~ 1).
e N(0,1) and we also have v N(0,1)
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The Central Limit Theorem...exercise

# Uniform distribution(0,5)
par (mfrow=c(2,2))
am<-500
vec.med<-c(rep(0,am))
n<-c(2,3,10,30)
for(j in 1:4)
+ {for(i in 1:am)

{x<-runif(n(j],0,5)
vec.med[i]<-mean(x)}
qqnorm(vec.med,main=paste("Q-QPlot Normal, n =",n[j],
"n","Médias Pop. U(0,5),"),xlab=" ",

col="red")
gqline(vec.med,col="darkred")}

VvV V V V V V

+ + 4+ + + +
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The Central Limit Theorem...exercise

Q-QPlot Normal, n =2 Q-QPlot Normal, n =3
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The Central Limit Theorem — Applications

Let X be a r.v. with binomial distribution with mean value ;» = np and
variance o2 = npq.

X —~ B(n,p), i.e., mean value . = np and variance o2 = npq

~N(0,1) se n—oo

Empirical rule If in the binomial distribution, np > 5 and nq > 5 =
the approximation by normal distribution is a good one.
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The Central Limit Theorem — Applications

X—=A
If X — then —— ~ N(0,1).
> s NGO

Another convergence

If in the binomial distribution n — oo and p is small (let us say p < 0.05
and n > 20) X —~ B(n, p) ~ P(np) J
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Other continuous distributions

Uniform continuous and exponential distribution

> u<-runif (100)
> hist(u,freq=F,col=gray(.9) ,main="uniforme")
> curve(dunif (x),add=T,1lwd=3)

.. and exponential of mean value 2500

> x<-rexp(100,1/2500)

> hist(x,probability=TRUE,col=gray(.9) ,main="Exponencial
+ com média 2500")

> curve(dexp(x,1/2500) ,add=T)

Exponencial

uniforme com média 2500

Density
Density
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The gamma distribution

In many areas of sciences there are still many situations in which the
Gauss’s law does not serve to model the phenomenon.

Let us first briefly refer to thegamma distribution who owes his name to
the gamma function, studied in many areas of mathematics, defined

as: o
Ma) = / x*1eXdx  paraa>0
0

Some properties of the gamma function:
@ () = (a— 1) (e — 1) (a recurrence expression)
@ When « = nis a natural number, it is easy to verify that

rny=(n-1)(n-2)..r[1)=(n-1)

Manuela Neves (ISA/ULisboa) Mathematical Models and Applications (20, 112/125



The gamma distribution

Some more properties of the gamma function:
er(1/2)=r
@ The derivatives of the gamma function are thus defined:
() = / x*~1 (logx)k e~ dx
0

Some particular values of the derivatives useful in many
applications are

(1) = v = 0.57722...is the Euler constant
(1) =12 +n2/6 =1.97811...
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The gamma distribution

We say that a r.v. X has a a gamma distribution with parameters a e
B, (a >0, g > 0) and we write X —~ G(«, 3) with (a— the shape
parameter and  — the scale parameter) if the density function is:

1

-1 4o—x/pB
—Xx“ e x>0
f(x)=4 BT ()
0 x<0
f. dens. da Gamma(0.5,1) f. dens. da Gamma(2,2) f. dens. da Gamma(6,2)
< ] < <

)
1(x)
f(x)
02

1

0.0
L

o] 5 10 15 20 25 30 o 5 10 15 20 25 30 0 5 10 15 20 25 30

x

x x
Graphs of the density function of a r.v. with distribution G(1/2,1), G(2,2)and G(6, 2), from left to right, respectively.
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The gamma distribution

Mean value and variance of X ~ G(«, /)

EX]=ap Var[X] = o 3?

A very important particular case is that one we get by doing o = 1.
The resulting r.v. is said to have exponential distribution, is represented
by X —~ Exp(3) and the density function is thus defined,

) = %e—x/ﬁ x>08>0
0 x<0
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The exponential distribution

Mean value and variance
E[X]=75 Var[X] = 8

The exponential distribution has been widely used as a model
problems related to the duration of life, theory of reliability, waiting
times, etc.

Property
If Xi, i =1,...,nare independent and identically distributed random
variables with Exp(3), then

Z)(I - G(na ﬁ)
e
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The exponential distribution

Remarks:

@ There is a very important relationship between the exponential
and the Poisson distribution, which often arises in practice. While
observing the occurrence of certain events at time intervals, we
intend to characterize T the time to the end of which the first
occurrence occurs.

Teorema

Let X be a Poisson r.v. with parameter \. Let T be a r.v. that measures
the waiting time for the occurrence of the first event, then T has an
exponential distribution, T —~ Exp(/3), with parameter 5 = 1/\.
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The beta distribution

One continuous random variable X is said to have a beta distribution
with parameters (m, n) and we write X — Be(m, n) if its density
function is of the form

1 m—1 n—1
f(x) = { BmmX (1-x) 0<x<1 m>0,n>0
outros valores de x

where B(m, n) é a beta function so defined

1

B(m, n) = m _ /xm1(1 — x)"™dx
0
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The beta distribution

Properties
1 B(m n) = B(n, m)
(1 1)—1
B(3.3) =
—|—OO m—1
B(m,n) = f @de

Mean value and variance of the beta distribution
m mn

EIX] = m+n variX] = (m+n2(m+n+1)
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The beta distribution

The density function of a r.v. with beta distribution presents, as we
have said, a great variability of forms.

Thus we can characterize the aspect of the density as a function of the
parameters.

—se m>1,n> 1= existe uma Unica moda em
x=(m-1)/(m+n-2)

—se m< 1,n< 1= existe uma antimoda (forma de U)
—-se (m—1)(n—1) < 0= formadeJ

—se m= n= symmetry with respect to 0.5.
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The beta distribution

In the following figures, we can see some of these aspects:
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The beta distribution

Let X and Y be independent random variables such that
X ~ G(ay,by) e Y ~ G(az, bo2), then

X’(X—I— Y) ~ Be(a1,a2).

The beta distribution, just studied, is said to be in the standardized
form and is in fact the most widely used form. Its more general form
presents four parameters (a, b, m, n) and the density function is

_gym=1(p_y\n—1
f(x) = { B(,L,,,) = (ag_a),‘,finﬁ) a<x<b m>0,n>0

outros valores de x
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SUMMARY of some distributions in the R

Distribution name in the @  Function Arguments

Beta beta shape1, shape2
Binomial binom size, prob
Cauchy cauchy location, scale
Chisquare chisq df

Exponential exp rate

FDist f df1, df2
GammaDist gamma shape, scale
Geometric geom prob
Hypergeometric hyper m, n, k
Lognormal Inorm meanlog, sdlog
Logistic logis location, scale
NegBinomial nbinom size, prob
Normal norm mean, sd
Poisson pois lambda

TDist t df

Uniform unif min,max
Weibull weibull shape, scale
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Example of an exercise in the R

2 x>0
0 x<0
Let’s see that f is indeed a density function;

Calculate P[X > 1] and P[0.2 < X < 0.8]

Consider the following function f(x) =

>funcao<-function(x) {

+ fx<-ifelse(x<0,0,2*exp(-2%x))

+ return(fx)}

>par (mfrow=c(1,3))

>plot (funcao) ;plot (funcao,0,10) ;plot (funcao,0,5)

funcao (x)
L
funcao (x)
I

05 10 15 20
1
funcao (x)
1

T T
00 02 04 06 08 10 0 2 4 6 8 10 0 1 2 3 4 5

X X X
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Example of an exercise in theR

>integrate (funcao,0,Inf)

>integrate (funcao,1,Inf)
>res<-integrate(funcao,0,1) ;res;str(res)
>1-res$value

1 with absolute error < 5e-07
0.1353353 with absolute error < 2.1e-05
0.8646647 with absolute error < 9.6e-15

List of 5

$ value : num 0.865

$ abs.error : num 9.6e-15

$ subdivisions: int 1

$ message : chr "OK"

$ call : language integrate(f =funcao,lower = 0,upper = 1)

attr(*, "class")= chr "integrate"
[1] 0.1353353
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