Capítulo II – Introdução à Teoria da Probabilidade

Notas prévias:

- Não serão abordados neste ano lectivo os assuntos expostos nos slides:
 - 65 a 75
 - 114
 - 137 a 139 e
 - **169**
- <u>Serão tratados apenas na prática</u> os assuntos expostos nos slides <u>77 a 83</u>.

Teoria da Probabilidade

Noções Preliminares

Definição 1

Fenómenos aleatórios são fenómenos sujeitos à influência do acaso e, como tal, fora do alcance do observador.

Fenómenos aleatórios são caracterizados pela sua:

imprevisibilidade e regularidade estatística

Experiência aleatória

Definição 2

Experiência aleatória é todo o procedimento que verifica as seguintes propriedades:

- pode repetir-se um grande número de vezes nas mesmas condições ou pelo menos em condições semelhantes;
- a sua realização dá um resultado de entre um conjunto de resultados possíveis;
- cada um dos resultados da experiência é <u>imprevisível</u> mas é possível considerar "estabilidade na frequência da sua ocorrência".

Exemplos de experiências aleatórias

- lançamento de dois dados e registo do número de pontos que sai;
- lançamento de uma moeda e observação da face que fica voltada para cima;
- contagem do número mensal de acidentes de automóvel numa autoestrada;
- registo do tempo de vida de uma pessoa, em anos;
- registo do tempo de trabalho de uma máquina até à primeira avaria.

Espaço de Resultados. Acontecimento

Definição 3

Espaço de resultados ou espaço amostra é o conjunto de todos os resultados possíveis associados a uma experiência aleatória – representa-se por Ω .

Para os exemplos anteriores tem-se

- ② $\Omega = \{ \text{'face valor', 'face pais'} \} = \{ \text{'FV','FP'} \} = \{ 1, 0 \};$
- $0 \Omega = \mathbb{N};$

Acontecimentos. Álgebra dos acontecimentos

Definição 4

Acontecimento aleatório é qualquer subconjunto do espaço de resultados.

Seja Ω o espaço de resultados associado a uma experiência aleatória.

- Diz-se que A ⊂ Ω se realizou se o resultado, ω, da experiência é um elemento de A, i.e., ω ∈ A.
- A ⊂ B, diz-se A subacontecimento de B, se e só se a realização de A implica a realização de B;
- A^c ou Ā diz-se acontecimento complementar ou contrário a A, é o conjunto de todos os elementos de Ω que não estão em A;

Álgebra dos acontecimentos (cont.)

- A ∪ B, diz-se união de A com B, é o acontecimento que consiste na realização de pelo menos um dos acontecimentos.
- AB ou A ∩ B, diz-se produto ou intersecção, é o acontecimento que se realiza apenas quando ambos os acontecimentos se realizam.
- Os acontecimentos A e B dizem-se mutuamente exclusivos ou incompatíveis se e só se a realização de um implica a não realização do outro, i.e., se e só se AB = ∅.
- $A B = A \cap \overline{B}$ diz-se diferença dos acontecimentos $A \in B$ é o acontecimento que se realiza se e só se A se realiza sem que B se realize.
- Ø diz-se acontecimento impossível.
- Ω diz-se acontecimento certo.

Álgebra dos acontecimentos

Vamos recordar algumas propriedades das operações sobre acontecimentos (procure mais algumas...):

Propriedade	Interpretação
Associatividade	$(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$
Comutatividade	$A \cap B = B \cap A$ $A \cup B = B \cup A$
Distributividade	$(A\cap B)\cup C=(A\cup C)\cap (B\cup C)$
Leis de Morgan	$ \frac{(A \cup B) \cap C}{\overline{A \cap B}} = \overline{A} \cup \overline{B} \\ \overline{A \cup B} = \overline{A} \cap \overline{B} $

Probabilidade de um acontecimento

Definição 5-Definição clássica: Laplace (séc. XIX)

Sob a hipótese de que todos os casos são igualmente prováveis ou possíveis (princípio da simetria).

Probabilidade de realização de um acontecimento A

$$\mathbf{P} = \frac{\text{número de casos favoráveis a } A}{\text{número total de casos possíveis}}$$

Definição 6-Definição frequencista

Considere-se n repetições de uma experiência aleatória; n_A o n° de vezes que se verificou A. Para n "grande" tem-se para as frequências relativas

$$f_n(A) = n_A/n \approx P$$

A probabilidade é então interpretada como frequência limite.

Probabilidade de um acontecimento

 $\Omega-$ espaço de resultados associado a uma experiência aleatória.

Definição 7-Definição de Probabilidade: Axiomática de Kolmogorov

Probabilidade, P, é uma aplicação que a cada acontecimento de Ω associa um número real satisfazendo o seguinte conjunto de axiomas:

- **A1)** $P(A) \geq 0 \quad \forall A \subset \Omega$;
- **A2)** $P(\Omega) = 1;$
- **A3)** $P(A \cup B) = P(A) + P(B)$ se $A \cap B = \emptyset$. (Axioma das probabilidades totais).

Se Ω é infinito,

A3*) $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ se $A_i \cap A_j = \emptyset$, $i \neq j$ (Axioma completo das probabilidades totais).

Propriedades da probabilidade

- **2** $P(\emptyset) = 0$.
- **③** P(A) ≤ 1.
- **③** Se $B \subset A \Rightarrow P(A B) = P(A) P(B)$.
- Sejam $A_1, ..., A_n$ acontecimentos mutuamente exclusivos então $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$

Propriedades da probabilidade (cont.)

- $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C)$
- ② Generalização: Sejam $A_1, A_2, ..., A_n$ acontecimentos quaisquer $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) P(A_1 \cap A_2) P(A_1 \cap A_3) ... P(A_{n-1} \cap A_n) + P(A_1 \cap A_2 \cap A_3) + ... + P(A_{n-2} \cap A_{n-1} \cap A_n) + ... + (-1)^{n-1} P(A_1 \cap A_2 \cap ... \cap A_n).$

Exercício 1

Sejam A, B e C acontecimentos definidos num espaço de resultados $\boldsymbol{\Omega}$ tais que

$$P(A) = P(B) = P(C) = \frac{1}{4}; \ P(A \cap B) = P(B \cap C) = 0 \ e \ P(A \cap C) = \frac{1}{8}.$$

Calcule, justificando, a probabilidade de se verificar pelo menos um dos acontecimentos A, B ou C.

Probabilidade condicional

Definição 8-Definição de Probabilidade Condicional

Dados os acontecimentos A e B definidos em Ω , a probabilidade de A se realizar sabendo que B se realizou, ou seja, a probabilidade condicional de A dado B ou probabilidade de A se B representa-se por P(A|B), com P(B) > 0 e define-se como

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(AB)}{P(B)}$$

Desta definição resulta o seguinte teorema:

Independência

Teorema 1-Teorema da probabilidade composta

Se
$$P(A) > 0$$
 e $P(B) > 0$,

$$P(A \cap B) \equiv P(AB) = P(A) P(B|A) = P(B) P(A|B)$$

Definição 9

Dois acontecimentos A e B dizem-se mutuamente independentes se e só se

$$P(A \cap B) = P(A) P(B)$$
.

Da definição 9 conclui-se que se A e B são independentes então P(A|B) = P(A) se P(B) > 0 e P(B|A) = P(B) se P(A) > 0.

Independência

Teorema 2

Se A e B são independentes

 $A \in \overline{B}$, $\overline{A} \in B$ e $\overline{A} \in \overline{B}$, também são independentes.

Nota: Independência não é equivalente a exclusividade mútua.

Resultado:

Se P(A) > 0 e P(B) > 0 e A e B independentes $\Rightarrow A$ e B são não mutuamente exclusivos.

Obviamente o contra-recíproco é verdadeiro.

Generalização a três acontecimentos

Sejam A, B, C tais que
$$P(A) > 0$$
, $P(B) > 0$ e $P(C) > 0$, tem-se,
$$P(ABC) = P(A)P(B|A)P(C|AB) = P(B)P(C|B)P(A|BC) =$$
$$= P(C)P(A|C)P(B|AC).$$

Definição 10-Independência de três acontecimentos

Os acontecimentos A, B e C dizem-se mutuamente independentes ou apenas independentes se e só se

$$P(ABC) = P(A) P(B) P(C); P(AB) = P(A)P(B);$$

 $P(AC) = P(A)P(C); P(BC) = P(B)P(C).$

Nota: A independência par a par não assegura independência de um conjunto de acontecimentos.

Exercício 2

Uma empresa produz concentrado de tomate recorrendo a três processos de fabrico e embalamento. Sabe-se que 20% da produção e embalamento de concentrado provém do processo A, 30% do processo B e 50% do processo C.

Nalgumas embalagens daquele concentrado tem-se verificado a ocorrência de deficiências. Sabe-se 1% das embalagens provenientes do processo A, 2% das provenientes do processo B e 8% das provenientes do processo C, respectivamente, têm deficiência.

- Qual a percentagem de embalagens, produzidas naquela empresa, que apresentam deficiências?
- Verifica-se que uma embalagem escolhida ao acaso apresenta deficiências. Qual a probabilidade de ter sido fabricada e embalada pelo processo A?

Teorema da probabilidade total

A resolução da Pergunta 1. baseia-se no seguinte teorema

Teorema 3-Teorema da probabilidade total

Sejam $A_1, A_2, ..., A_n$ acontecimentos definindo uma **partição sobre** Ω , i.e.,

$$A_1 \cup A_2 \cup \cup A_n = \Omega \qquad \text{e} \qquad A_i \cap A_j = \emptyset, \quad \forall i,j, \ i \neq j.$$

Se $P(A_i) > 0$, então para qualquer acontecimento $B \subset \Omega$ tem-se

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i).$$

Teorema de Bayes

Relativamente à Pergunta 2. do exercício anterior, pretendemos *actualizar* a probabilidade de um acontecimento *a priori*, à custa da informação *a posteriori*.

O seguinte teorema formaliza a resposta à questão:

Teorema 4-Teorema de Bayes

Sejam $A_1,A_2,...,A_n$ acontecimentos formando uma partição de Ω , onde $P(A_i)>0$. Seja B um outro acontecimento de Ω , tal que P(B)>0. Então para k=1,...,n tem-se

$$P(A_k|B) = \frac{P(A_k).P(B|A_k)}{\sum_{i=1}^n P(A_i).P(B|A_i)}$$

Variável aleatória

Muitas vezes o resultado de uma experiência aleatória não é numérico ou sendo-o não interessa lidar com os resultados possíveis de Ω , mas pretende-se associar-lhe uma quantidade numérica.

Exemplo - lançamento de dois dados e soma dos pontos das faces.

É então mais cómodo associar a cada acontecimento um número, definido de acordo com o objectivo do estudo.

Chama-se variável aleatória a esta correspondência.

Variável aleatória

Definição 11

Chama-se **variável aleatória (v.a.)** e costuma representar-se por X, a uma função com domínio Ω e contradomínio em \mathbb{R} , cujo valor é determinado pelo resultado de uma experiência aleatória, i.e,

$$X:\Omega\to\mathbb{R}$$

$$X(\omega) = x$$

Tipos de variáveis aleatórias

Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores.

Exemplos:

- número de pintas que sai no lançamento de um dado;
- registo, a intervalos regulares, do número de pessoas em fila espera na caixa de um supermercado;

Variáveis aleatórias **contínuas** são as susceptíveis de tomar qualquer valor real num dado intervalo, que pode ser a recta real (definição mais rigorosa será dada à frente)

Exemplos:

- o peso de um indivíduo;
- o comprimento de uma folha de uma planta.

Variáveis aleatórias

Mas ... aos valores de uma variável aleatória X pretendemos associar uma probabilidade P_X ou, mais simplesmente, P

Isto consegue-se muito facilmente definindo uma função real de variável real do seguinte modo:

Definição 12

Chama-se função de distribuição cumulativa ou apenas função de distribuição associada à variável aleatória X e representa-se por F ou F_X , à aplicação

$$F: \mathbb{R} \to [0,1]$$
 tal que $F(x) = P[X < x]$.

Propriedades da função de distribuição

- **1.** $0 \le F(x) \le 1$
- 2. $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$ $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$.
- **3.** F é uma função monótona não decrescente, i.e., dados dois números reais x_1 e x_2 tais que $x_1 < x_2$, tem-se $F(x_1) \le F(x_2)$
- **4.** F(x) é contínua à direita, i.e., $\lim_{x\to x_0^+} F(x) = F(x_0)$.
- **5.** $P(X = a) = F(a) F(a^{-})$ onde $F(a^{-}) = \lim_{x \to a^{-}} F(x)$

Função de distribuição e Probabilidade

O conhecimento da função de distribuição F(.) é equivalente ao conhecimento da lei de probabilidade $P_X = P$.

Como $F(x) = P[X \le x] \longrightarrow \text{conhecer } P \Rightarrow \text{conhecer } F(x)$. Reciprocamente ... conhecer F(x), permite calcular a probabilidade dos vários tipos de intervalos.

- $P(X < x) = P(X \le x) P(X = x) = F(x^{-});$
- $P(X \ge x) = 1 P(X < x) = 1 F(x^-);$
- $P(X > x) = 1 P(X \le x) = 1 F(x);$
- $P(a < X \le b) = P(X \le b) P(X \le a) = F(b) F(a);$
- $P(a < X < b) = P(X < b) P(X \le a) = F(b^{-}) F(a);$
- $P(a \le X \le b) = P(X \le b) P(X < a) = F(b) F(a^{-});$
- $P(a \le X < b) = P(X < b) P(X < a) = F(b^{-}) F(a^{-}).$

Variáveis aleatórias

Vamos agora ver como calcular a função de distribuição cumulativa e consequentemente a probabilidade para cada um dos tipos de variáveis aleatórias caracterizados atrás:

- variáveis aleatórias discretas e
- variáveis aleatórias contínuas

Relembre-se que:

Uma variável aleatória diz-se discreta se toma um número finito ou uma infinidade numerável de valores.

Variáveis aleatórias discretas

Seja X uma v.a. tomando k valores, $x_1, ..., x_k$, cada um deles com probabilidades $p_1, ..., p_k$, respectivamente, i.e.,

$$p_i = P[X = x_i], (i = 1, \dots, k).$$

Definição 13

Chama-se função massa de probabilidade da v.a. X à aplicação que a cada valor $x_i \longrightarrow p_i$, tal que

$$p_i = P[X = x_i]$$

A função massa de probabilidade satisfaz:

$$p_i \geq 0, i = 1, ..., k$$
 $\sum_{i=1}^{k} p_i = 1.$

Nota: Se a v.a. tomar uma infinidade numerável de valores tem-se $p_i \ge 0$, $\forall i \ge 1$ $\sum_{i=1}^{\infty} p_i = 1$.

Variáveis aleatórias discretas

Chama-se distribuição de probabilidade da v.a. X ao conjunto de pares $(x_i, p_i)_{i=1,\dots,k}$.

Habitualmente a **lei (distribuição) de probabilidade** da v.a. *X* dispõese na forma:

A distribuição de probabilidade da v.a. discreta permite calcular facilmente a função de distribuição cumulativa F_X

$$F_X(x) = P[X \leq x] = \sum_{x_i \leq x} P[X = x_i],$$

ou seja temos a probabilidade cumulativa associada à variável X calculada em qualquer $x \in \mathbb{R}$.

Variáveis aleatórias contínuas

Definição 14

Uma variável aleatória diz-se **contínua** se existe uma função real de variável real, **f**, não negativa, tal que

$$F(x) = P[X \le x] = \int_{-\infty}^{x} f(t) dt - \infty < x < \infty$$

Nota:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) = P(a < X \le b) = P(a \le X \le b) \cdots$$

Variáveis aleatórias contínuas

Definição 15

A função *f* diz-se **função densidade de probabilidade** ou apenas **função densidade**. Deve verificar as seguintes condições:

$$f(x) \geq 0 \quad \forall x \in \mathbb{R}; \qquad \int_{-\infty}^{+\infty} f(x) dx$$

Exercício 3

O número de micro-ondas vendidos diariamente num estabelecimento é uma variável aleatória, X, com a seguinte distribuição de probabilidade

$$X = \left\{ \begin{array}{ccccc} 0 & 1 & 2 & 3 & 4 \\ 0.3 & 0.3 & 0.2 & 0.1 & 0.1 \end{array} \right.$$

- a) Determine a função de distribuição cumulativa de X; represente-a graficamente.
- b) Determine $P[1 \le X \le 3]$. Interprete esta probabilidade.

Exercício 4

Seja X a v.a. que designa o tempo de vida (em anos) de um dado equipamento, cuja função densidade é

$$f(x) = \begin{cases} \frac{1}{5} e^{-x/5} & x > 0 \\ 0 & x \le 0 \end{cases}$$

- a) Mostre que f é de facto uma função densidade.
- b) Determine a função de distribuição cumulativa de X; represente-a graficamente.
- c) Qual a probabilidade de esse equipamento durar entre 1 e 3 anos?

Variáveis aleatórias

Recordemos que:

- No caso de uma variável aleatória discreta a função de distribuição cumulativa é uma função em escada, onde os pontos de salto são os valores onde a v.a. está definida.
- No caso de uma variável aleatória contínua a função de distribuição cumulativa é uma função contínua.

Além de termos interesse em calcular probabilidades associadas a uma variável aleatória,

vamos agora calcular "indicadores" que a caracterizam — são valores reais habitualmente designados por parâmetros.

Valor Médio

Definição 16

Dada uma v.a. X chama-se valor médio, esperança matemática, valor esperado ou média e representa-se por E[X], μ_X ou simplesmente μ a

$$E[X] = \sum_{i=1}^{n} x_i p_i \quad X \text{ é v.a. discreta com distribuição } (x_i, p_i)$$

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx \quad X \text{ é v.a. continua com f.d.p. } f(x)$$

Observação

Se X for v.a. discreta com uma infinidade numerável de valores tem-se $E[X] = \sum_{i=1}^{\infty} x_i p_i$. Neste caso só existe valor médio se "aquela soma infinita existir".

Analogamente, no caso contínuo, só existe valor médio, $E[X] = \int_{-\infty}^{\infty} x \ f(x) \ dx$, se o integral for absolutamente convergente.

Valor Médio de uma função de X

Se X é uma v.a. e $Y = \varphi(X)$ é uma função real de variável real, define-se valor médio de $\varphi(X)$ como

$$E[\varphi(X)] = \sum_{i} \varphi(x_i) p_i \quad X \text{ \'e v.a. discreta com distribuição } (x_i, p_i)$$

$$E[\varphi(X)] = \int_{-\infty}^{+\infty} \varphi(x) f(x) dx \quad X \text{ \'e v.a. continua com f.d.p. } f(x)$$

Mais uma vez, para que exista valor médio exige-se que exista aquela "soma infinita" (no caso de se tratar de uma v.a. discreta com uma infinidade de valores) ou a convergência absoluta do integral.

Propriedades do Valor Médio

1. Linearidade

- E[a] = a.
- E[a + bX] = a + b E[X].
- $E[\varphi(X) + \psi(X)] = E[\varphi(X)] + E[\psi(X)]$

2. Positividade

Se $X \ge 0$, i.e. a variável toma apenas valores ≥ 0 , tem-se $E[X] \ge 0$.

3.
$$inf(X) \leq E[X] \leq sup(X)$$

Variância e Desvio Padrão

Definição 17

Chama-se variância de uma variável aleatória X e representa-se por Var[X], σ_X^2 ou apenas σ^2 a

$$\sigma_X^2 = E\left[(X-\mu)^2\right]$$

 $\sigma_X = \sqrt{Var[X]}$ chama-se desvio padrão.

Exercício 5

Verifique que se pode escrever $Var[X] = E[X^2] - \mu^2$

Variância e Desvio Padrão

Propriedades da variância e do desvio padrão

- 1. $Var[X] \ge 0$
- 2. $Var[a + b X] = b^2 Var[X]$.

Para o desvio padrão tem-se $\sigma_{(a+b|X)} = |b| \sigma_X$

Voltemos ao Exercício 3

O número de micro-ondas, de uma dada marca, vendidos diariamente num estabelecimento é uma variável aleatória, X, com a seguinte distribuição de probabilidade

$$X = \left\{ \begin{array}{ccccc} 0 & 1 & 2 & 3 & 4 \\ 0.3 & 0.3 & 0.2 & 0.1 & 0.1 \end{array} \right.$$

- a) Qual o valor esperado do número de micro-ondas vendidos por dia?
- Se cada micro-ondas é vendido por 85 Euros qual é a distribuição de probabilidade da receita bruta da venda de micro-ondas por dia.
- c) Calcule a receita bruta esperada da venda de micro-ondas por dia.

Exercício 6

Considere X a v.a. que designa a duração (em minutos) de cada chamada telefónica efectuada num certo local, cuja função densidade é

$$f(x) = \begin{cases} x e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

- a) Calcule a duração média de uma chamada telefónica.
- b) Calcule a variância de X.
- c) Se o preço de cada minuto de conversação for 60 cêntimos, qual é, em média, o preço de cada chamada telefónica.

Quantis e Mediana de uma variável aleatória

Definição 18

Dada uma v.a. X chama-se **quantil de probabilidade** p e representase por χ_p o menor valor da variável aleatória X tal que $F_X(\chi_p) \geq p$.

Se p=0.5, chama-se **mediana de** X, representa-se por $\chi_{0.5}$, e é o menor valor da variável tal que $F_X(\chi_{0.5}) \ge 0.5$.

Notas:

- Se X é v.a. contínua o quantil de probabilidade p é o valor χ_p tal que $F_X(\chi_p) = p$.
- Então se X é uma v.a. contínua a mediana $\chi_{0.5}$, é a solução de $F_X(x) = 0.5 \iff \int_{-\infty}^{\chi_{0.5}} f(t) dt = 0.5$.

Vectores aleatórios

Muitas vezes pretendemos associar a cada resultado de uma experiência aleatória $k \geq 2$ atributos numéricos. Obtemos então um vector (x_1, \cdots, x_k) , realização do **vector aleatório** (X_1, \cdots, X_k) .

Iremos referir-nos apenas ao caso k = 2, portanto trataremos de pares aleatórios

Exemplos Pretendemos registar:

- a quantidade de precipitado P e o volume V de gás numa experiência química
- para uma árvore seleccionada ao acaso, a altura e o diâmetro do tronco à altura do peito . . .

Pares aleatórios

Definição 19

Chama-se par aleatório (X, Y) à aplicação

$$(X, Y): \Omega \to \mathbb{R}^2$$

 $\omega \to (x, y)$

Tipos de pares aleatórios que vamos estudar:

- Par aleatório discreto

 componentes são ambas variáveis aleatórias discretas;
- Par aleatório contínuo ⇒ componentes são ambas variáveis aleatórias contínuas.

Pares aleatórios discretos

(X, Y) diz-se um par aleatório **discreto** se toma os valores (x_i, y_j) com probabilidades $p_{ij} = P[X = x_i, Y = y_j]$.

Definição 20

Chama-se **distribuição de probabilidades conjunta** do par (X, Y) aos valores (x_i, y_i) e respectivas probabilidades p_{ij}

p_{ij} é chamada função massa de probabilidade conjunta e deve verificar as seguintes condições:

$$p_{ij} \ge 0$$
 $\forall (i,j)$ e $\sum_i \sum_i p_{ij} = 1$.

Pares aleatórios discretos

Um modo cómodo de representar a distribuição de probabilidades conjuntas de um par aleatório discreto (X, Y) é na forma de um quadro

	Y	<i>y</i> ₁	y ₂		Уn	
X						
<i>X</i> ₁		<i>p</i> ₁₁	<i>p</i> ₁₂		p_{1n}	<i>p</i> _{1•}
<i>X</i> ₂		p_{21}	p_{22}		p_{2n}	<i>p</i> ₂ •
			•			
				•••		
Xm		p_{m1}	p_{m2}		p_{mn}	p _m •
		p •1	p •2		p •n	1

 $p_{i\bullet} = \sum_{j=1}^{n} p_{ij}$ e $p_{\bullet j} = \sum_{i=1}^{m} p_{ij}$ chamam-se probabilidades marginais de X e Y respectivamente.

Pares aleatórios discretos

Definição 21

A probabilidade condicional de X dado $Y = y_j$ (fixo) com $P[Y = y_j] > 0$ é definida como

$$P(X=x_i|Y=\mathbf{y}_j)=\frac{P(X=x_i,Y=\mathbf{y}_j)}{P(Y=\mathbf{y}_j)}=\frac{p_{ij}}{p_{\bullet i}},$$

Definição 22

Do mesmo modo a **probabilidade condicional** de Y dado $X = x_i$ (<u>fixo</u>) com $P[X = x_i] > 0$ é definida como

$$P(Y = y_j | X = \mathbf{x}_i) = \frac{P(X = \mathbf{x}_i, Y = y_j)}{P(X = \mathbf{x}_i)} = \frac{p_{ij}}{p_{i\bullet}}.$$

Pares aleatórios contínuos

Definição 23

Um par aleatório (X, Y) diz-se **contínuo** se existir uma função f(x, y), chamada **função densidade** (de probabilidade) conjunta, que verifica as seguintes condições:

•
$$f(x,y) \geq 0$$

Dado
$$A \subset \mathbb{R}^2$$
 tem-se $P[(X, Y) \in A] = \int \int_A f(x, y) dx dy$.

Densidades marginais

Definição 24

A densidade marginal de X é definida como $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$

e a

densidade marginal de Y como $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

Densidades condicionais

Definição 25

Define-se **densidade condicional** de X dado Y = y, fixo, como

$$f_{X|Y=y}(x) = \frac{f(x, y)}{f_Y(y)}, \qquad f_Y(y) > 0$$

Definição 26

Define-se **densidade condicional** de Y dado X = x, fixo, como

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)}, \qquad f_X(x) > 0$$

Independência de variáveis aleatórias

Definição 27

Dado o par aleatório (X, Y) diz-se que as variáveis X e Y são **independentes** se e só se

- $p_{ij} = p_{i\bullet} \times p_{\bullet j} \quad \forall i, j$, no caso de (X, Y) ser um par aleatório discreto
- $f(x,y) = f_X(x) \times f_Y(y)$ $\forall (x,y) \in \mathbb{R}^2$ no caso de (X,Y) ser um par aleatório contínuo.

Valor Médio

Definição 28

Dado o par aleatório (X, Y), e $g : \mathbb{R}^2 \to \mathbb{R}$, define-se

$$E[g(X, Y)] = \sum_{i} \sum_{j} g(x_i, y_j) p_{ij}$$
, no caso discreto

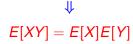
$$E[g(X, Y)] = \int \int_{B^2} g(x, y) f(x, y) dxdy$$
, no caso contínuo.

Propriedades do Valor Médio

- **1. Aditividade** $E[X \pm Y] = E[X] \pm E[Y]$
- **2.** Desigualdade de Schwarz Se $E[X^2]$ e $E[Y^2]$ existem então $E^2[XY] \le E[X^2]E[Y^2]$.

Corolário: $E^2[X] \le E[X^2]$ Nota: se $E[X^2]$ existe \Longrightarrow existe E[X].

3. Se X e Y variáveis aleatórias independentes



Valor Médio - propriedades

Nota:

O recíproco da propriedade 3. não é verdadeiro:

Verifique que se X e Y são v. a.'s com a seguinte distribuição de probabilidades

tem-se $E[XY] = E[X] \times E[Y]$ e no entanto X e Y não são independentes. **Verifique!**

A covariância

Definição 29

Dado o par aleatório (X, Y) chama-se covariância de X e Y a

$$Cov[X, Y] \equiv \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

Exercício 7

Verifique que Cov[X, Y] = E[XY] - E[X]E[Y]

A covariância - propriedades

Propriedades

1. Sejam X e Y variáveis aleatórias.

$$Var[X \pm Y] = Var[X] + Var[Y] \pm 2Cov[X, Y]$$

2. Se X e Y são variáveis aleatórias independentes

$$Var[X \pm Y] = Var[X] + Var[Y]$$

- Se X e Y são v. a.'s independentes ⇒ Cov[X, Y] = 0.
 Nota: O recíproco não é verdadeiro.
- **4.** Cov[a + bX, c + dY] = bd Cov[X, Y].
- **5.** $|Cov[X, Y]| \leq \sigma_X \sigma_Y$.

O coeficiente de correlação; propriedades

Definição 30

Chama-se coeficiente de correlação de X e Y e representa-se por ρ ou $\rho_{X,Y}$ a

$$\rho \equiv \rho_{X,Y} = \frac{Cov[X,Y]}{\sigma_X \, \sigma_Y}$$

 $(\sigma_X > 0 \text{ e } \sigma_Y > 0).$

Propriedades do coeficiente de correlação

- **1.** $-1 \le \rho_{X,Y} \le 1$
- **2.** Se X e Y são v. a. independentes $\implies \rho_{X,Y} = 0$.
- **3.** $\rho_{a+bX,c+dY} = \begin{cases} \rho_{X,Y} & \text{se } bd > 0 \\ -\rho_{X,Y} & \text{se } bd < 0 \end{cases}$

Momentos e função geradora de momentos

O cálculo do valor médio e da variância de uma v.a. X e ainda propriedades de pares aleatórios (ou genericamente vectores aleatórios) podem ser abordados de forma uniformizadora usando uma função adequada (quando ela está definida).

Considere-se uma função associada à v.a. X que vamos representar por M_X

```
egin{aligned} &M_X:\mathbb{R}\longrightarrow\mathbb{R}\ &	aligned{	aligned} 	aligned{	aligned
```

Momentos e função geradora de momentos

Exercício 8

Considere as sweguintes variáveis aleatórias:

- X, variável aleatória discreta, associada ao lançamento de uma moeda equilibrada.
- X, variável aleatória contínua, com função densidade

$$f(x) = \begin{cases} e^{-x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Para cada uma calcule $M_X(t)$, com $t \in \mathbb{R}$:

Função geradora de momentos

Tem-se o seguinte resultado:

$$M_X'(0) \equiv \frac{dM_X}{dt}|_{t=0} = E[X] \quad \text{e} \quad M_X''(0) \equiv \frac{d^2M_X}{dt^2}|_{t=0} = E[X^2]$$

Nota:

Esta função, a que se chama **função geradora de momentos**, pode ser então usada para determinar E[X] e Var[X], calculando a primeira e segunda derivadas em t=0 (se existirem).

Para as variáveis aleatórias indicadas no **exercício** do slide anterior, calcule E[X] e Var[X], com recurso a M_X .

Função geradora de momentos

Propriedades da função geradora de momentos

- **1.** $M_{a+b} X(t) = e^{at} M_X(bt)$.
- 2. Teorema 5–Teorema da unicidade

Se para duas v.a. X e Y se verifica $M_X(t) = M_Y(t)$ então X e Y têm a mesma função de distribuição.

Reciprocamente, se existir a função geradora de momentos, ela é única.

3. Se Xe Y são variáveis aleatórias independentes

$$M_{X+Y}(t) = M_X(t) \times M_Y(t)$$

Nota: Mais adiante esta propriedade será de grande utilidade.

Principais Modelos (Distribuições) Discretos

- Distribuição uniforme discreta
- Distribuição de Bernoulli e binomial
- Distribuição geométrica
- Distribuição hipergeométrica
- Distribuição de Poisson

A distribuição uniforme discreta

Definição 31

Uma v.a. X diz-se ter distribuição uniforme discreta se

$$P(X = x_i) = 1/k$$
, $i = 1, ..., k$, i.e., se toma os valores

com probabilidades 1/k, 1/k, ..., 1/k

Valor médio, variância e função geradora de momentos

$$E[X] = \frac{1}{k} \sum_{i=1}^{k} x_i; \quad Var[X] = \frac{1}{k} \sum_{i=1}^{k} (x_i - \mu)^2; \quad M_X(t) = \frac{1}{k} \sum_{i=1}^{k} e^{tx_i}.$$

A distribuição uniforme discreta

Caso particular

Se
$$X = \begin{cases} 1 & 2 & \cdots & n \\ 1/n & 1/n & \cdots & 1/n \end{cases}$$

$$E[X] = \frac{n+1}{2}; \quad Var[X] = \frac{n^2-1}{12} \quad e \quad M_X(t) = \frac{e^t(1-e^{nt})}{n(1-e^t)}, \ t \neq 0$$

A distribuição de Bernoulli

Considere-se que se **realiza uma experiência aleatória** na qual o objectivo é apenas registar se ocorreu:

```
realização de um acontecimento <u>sucesso</u>
não realização do acontecimento <u>insucesso</u>
```

Exemplos:

- o teste de uma dada droga num rato e o registo da reacção positiva ou negativa;
- a inspecção dos items numa linha de fabrico para observar se cada um é defeituoso ou não.

Cada uma das repetições sucessivas da experiência - prova.

Provas de Bernoulli

Diz-se que estamos perante provas de Bernoulli independentes se realizámos uma sucessão de provas satisfazendo:

- cada prova tem apenas um de dois resultados possíveis:
 sucesso ou insucesso.
- em cada prova a probabilidade de <u>sucesso</u>, p, permanece constante, sendo q = 1 p, a probabilidade de <u>insucesso</u>.
- o resultado de cada prova é independente do resultado das restantes.

A distribuição de Bernoulli e a distribuição binomial

Definição 32

Chama-se variável aleatória de Bernoulli à variável *X*, associada ao resultado de cada prova de Bernoulli e considera-se

- X = 1, com probabilidade p, se há sucesso;
- X = 0, com probabilidade 1 p = q, se há insucesso.

Definição 33

A v.a. X que <u>conta o número de sucessos</u> em n provas de Bernoulli independentes chama-se variável aleatória binomial, diz-se ter distribuição binomial e representa-se por $X \sim \mathcal{B}(n, p)$.

A distribuição de binomial

Exemplo

Numa experiência colocam-se 5 bolbos de junquilho a germinar, de um pacote com uma garantia de germinação de 40% dos bolbos. Qual a probabilidade de, desses 5 bolbos, 3 germinarem?

Como a germinação é independente de bolbo para bolbo, a probabilidade de germinarem 3 bolbos de entre os 5 é então

$$\binom{5}{3} (0.4)^3 (0.6)^2$$

A distribuição binomial

Então sendo X a v.a. que <u>conta o número de sucessos</u> em n provas de Bernoulli independentes, $X \sim \mathcal{B}(n, p)$, temos a

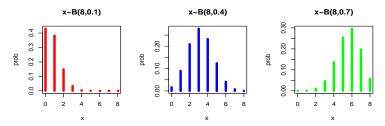
Caracterização da v.a. $X \sim \mathcal{B}(n, p)$:

$$\mathbf{x} = \mathbf{0}, \mathbf{1}, \mathbf{2}, ..., \mathbf{n}$$
 $\longrightarrow n^{\circ}$ de "sucessos" nas \mathbf{n} provas

$$P[X = x] = \binom{n}{x} p^x (1 - p)^{n-x}$$
 — probabilidade de se observarem x "sucessos"

A distribuição binomial-Exercício 9

Para n=8 e vários valores de p, veja a função massa de probabilidade.



Sugestão: Consulte as folhas de Introdução ao software e use os comandos (por exemplo, para obter o primeiro gráfico):

$$>$$
 x < $-$ 0:8
> plot(x,dbinom(x,size=8,prob=0.1),type="h", col = "red", lwd=4,xlab="x",main=" $X \sim B(8,0.1)$ ",ylab="prob")

A distribuição binomial

Valor médio, variância e função geradora de momentos $X \sim \mathcal{B}(n,p)$

$$E[X] = np$$
; $Var[X] = npq$; $M_X(t) = (p e^t + q)^n$

A distribuição binomial

Relação entre a distribuição do número de sucessos e de insucessos

$$X \frown \mathcal{B}(n,p) \Rightarrow (n-X) \frown \mathcal{B}(n,1-p).$$

Para valores de $n \le 20(25)$, existem tabelas para o cálculo das probabilidades.

As tabelas que temos à disposição apresentam os valores da função de distribuição cumulativa.

Considere-se de novo que temos provas de Bernoulli independentes, mas agora . . .

o número de provas não é fixo pois ... **pretendemos ir realizando provas até ocorrer** pela primeira vez o "sucesso".

Seja então X o número de provas necessárias até que ocorra pela primeira vez o "sucesso". Diz-se que X tem distribuição geométrica e costuma representar-se por $X \sim \mathcal{G}(p)$.

Caracterização da v.a. $X \frown \mathcal{G}(p)$

$$P[X = x] = pq^{x-1}$$
 $x = 1, 2, ...$ $0 $q = 1 - p$$

Valor médio, variância e função geradora de momentos

$$M_X(t) = \frac{p \ e^t}{1-qe^t} \quad (qe^t < 1); \quad E[X] = 1/p; \quad Var[X] = q/p^2$$

Observação:

Interpretando a distribuição geométrica como o número de provas que se vão realizando até se observar um "sucesso":

<u>Se tiverem decorrido mais de *m* provas</u> sem que se tenha verificado um "sucesso", <u>a probabilidade de se ter de esperar mais de *n* provas para se observar um "sucesso" <u>é a mesma</u> caso se estivesse <u>no início</u> da experiência.</u>

A observação anterior é apresentada no seguinte teorema:

Teorema 6 - Propriedade da falta de memória da distribuição geométrica

Se $X \sim \mathcal{G}(p)$ então sendo m e n inteiros positivos

$$P[X > m + n | X > m] = P[X > n]$$

Este teorema é muito fácil de provar, bastando recorrer ao conceito de probabilidade condicional e ainda ao seguinte resultado, fácil de provar

Resultado:

Se
$$X \sim \mathcal{G}(p)$$
 tem-se $P[X > n] = (1 - p)^n$, $n = 0, 1, 2, ...$

Mas ... há experiências nas quais a probabilidade de sucesso não se mantém constante, não sendo as provas independentes.

Exemplo

Num lote de 20 pneus enviados a um fornecedor sabe-se que há 6 defeituosos. Um cliente vai a esse fornecedor comprar 5 pneus. Qual a probabilidade de levar 2 defeituosos?

- O total de modos de seleccionar 5 pneus quaisquer do lote é $\binom{20}{5}$
- Há $\binom{6}{2}$ modos de seleccionar 2 defeituosos e, para cada um destes há $\binom{14}{3}$ modos de escolher 3 bons, para completar os 5.

Portanto ... a probabilidade de, dos 5 pneus escolhidos ao acaso, 2 serem defeituosos (e portanto 3 bons) é: $\frac{\binom{6}{2}\binom{14}{3}}{\binom{20}{3}}$

Definição 34

Diz-se que temos uma experiência hipergeométrica se

dada uma população de dimensão

$$N \operatorname{com} \left\{ \begin{array}{l} K \operatorname{"sucessos"} \\ N - K \operatorname{"insucessos"} \end{array}
ight.
ightarrow \underbrace{\operatorname{extraímos, sem reposição}}_{n}$$

Definição 35

A v.a. X que conta o número de sucessos numa experiência hipergeométrica \acute{e} uma v.a. hipergeométrica de parâmetros N, n e K e costuma representar-se por $X \sim \mathcal{H}(N,n,K)$

Qual a probabilidade de
$$\begin{cases} dos & K & seleccionar & x \\ dos & N-K & seleccionar & n-x \end{cases}$$
?

Seja
$$X \sim \mathcal{H}(N, n, K)$$

$$P[X = x] = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}, \quad max(0, n-N+K) \le x \le min(n, K)$$

Valor médio e variância de $X \sim \mathcal{H}(N, n, K)$

$$E[X] = n_{\overline{N}}^K; \quad Var[X] = n_{\overline{N}}^K \left(1 - \frac{K}{N}\right) \frac{N-n}{N-1}.$$

Observação: Quando N >> n, a probabilidade de sucesso em cada tiragem sem reposição varia muito pouco de prova para prova , então .

 \longrightarrow pode considerar-se a distribuição binomial como uma aproximação da distribuição hipergeométrica com p=K/N, i.e.,

Resultado:

Se N bastante maior que n tem-se

$$\mathcal{H}(N, n, K) \approx \mathcal{B}(n, p)$$
, com $p = K/N$.

Como regra prática, pode considerar-se boa a aproximação para n < N/10.

Considere que pretende contar, por exemplo, o número de:

- chamadas telefónicas recebidas numa central telefónica num certo intervalo de tempo;
- chegadas de clientes a uma bilheteira durante um certo período;
- chegadas de sinistrados a um banco de um hospital durante um certo período;
- dias que uma dada escola fecha durante o inverno;
- erros de tipografia por página;

Se a <u>contagem</u> do número de "sucessos" que ocorrem num dado intervalo de tempo ou num domínio específico, satisfaz as seguintes condições:

- <u>o número de "sucessos"</u> que ocorrem num dado intervalo de tempo ou domínio é <u>independente</u> do número que ocorre em qualquer outro intervalo ou domínio disjunto do anterior;
- a probabilidade que o "sucesso´´ se verifique uma vez em qualquer intervalo muito curto (ou região muito pequena), de amplitude δ , é proporcional a δ , i.e, é igual a $\lambda\delta$ e não depende do número de sucessos que ocorrem fora desse intervalo ou região;
- a probabilidade de que o "sucesso´´ se verifique mais do que uma vez num intervalo ou domínio de amplitude muito pequena é \approx 0.

diz-se que estamos perante experiências de Poisson ou um processo de Poisson

Definição 36

A v.a X que conta o número de sucessos numa experiência de Poisson diz-se ter **distribuição de Poisson** e depende apenas do parâmetro $\lambda \longrightarrow \text{número médio de sucessos}$ que ocorrem no intervalo de tempo (ou na região especificada).

Representa-se por $X \sim \mathcal{P}(\lambda)$ e a lei de probabilidade é:

$$P[X = x] = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x = 0, 1, 2...., \quad \lambda > 0.$$

Nota: Facilmente se verifica que $P[X=x] \ge 0 \quad \forall x=0,1,2...$, mas para mostrar que $\sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^x}{x!} = 1$, são necessários conhecimentos sobre séries de funções que actualmente os alunos não possuem.

Valor médio, variância e função geradora de momentos

$$M_X(t) = e^{\lambda(e^t - 1)}$$
 $E[X] = \lambda$ $Var[X] = \lambda$.

Teorema 7-Teorema da estabilidade da soma

Se as v.a. X_i i = 1, ..., k são independentes e $X_i \frown \mathcal{P}(\lambda_i)$ então

$$\sum_{i=1}^k X_i \curvearrowright \mathcal{P}\left(\sum_{i=1}^k \lambda_i\right).$$

Existem tabelas da Poisson para consulta \rightarrow função de distribuição cumulativa.

A distribuição de Poisson surge ainda como o limite da distribuição binomial quando $n \to \infty$ e $p \to 0$.

Teorema 8

Quando $n \to \infty$ e $p \to 0$, mantendo-se constante o produto np tem-se

$$X \sim \mathcal{B}(n,p) \Rightarrow X \sim \mathcal{P}(\lambda) \quad \text{com } \lambda = np.$$

Regra prática Em geral, a distribuição de Poisson fornece uma boa aproximação da distribuição binomial quando $n \ge 20$ e $p \le 0.05$

Principais Distribuições Contínuas

- Distribuição uniforme contínua
- Distribuição de Gauss ou normal
- Distribuição exponencial

A distribuição uniforme contínua

Definição 37

Uma v.a. contínua diz-se ter **distribuição uniforme** ou **rectangular** no intervalo (a,b) e representa-se por $X \sim \mathcal{U}(a,b)$ se a função densidade de probabilidade (f.d.p.) é da forma:

$$f(x) = \begin{cases} 1/(b-a) & a < x < b \\ 0 & x \le a \text{ ou } x \ge b. \end{cases}$$

Valor médio, variância e função geradora de momentos

$$E[X] = \frac{a+b}{2}; \quad Var[X] = \frac{(b-a)^2}{12} \quad e \quad M_X(t) = \frac{e^{tb}-e^{ta}}{t(b-a)}, \ t \neq 0$$

A distribuição uniforme contínua

Caso particular:

Considere a distribuição $\mathcal{U}(0,1)$

Exercício 10

Escreva a função densidade, a função distribuição cumulativa, valor médio, variância e função geradora de momentos.

Surge século XVIII \rightarrow ligada ao estudo dos erros de medições repetidas de uma mesma quantidade.

Papel fulcral nas Probabilidades e Estatística, porque:

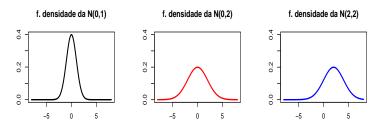
- muitas variáveis biométricas têm uma distribuição muito próxima da normal;
- por vezes uma variável que não é normal pode ser transformada de um modo simples numa outra com distribuição normal;
- a parte central de muitos modelos não normais é por vezes razoavelmente bem aproximada por uma distribuição normal.

Definição 38

Uma v.a. contínua X diz-se ter **distribuição normal** ou **de Gauss** com parâmetros μ e σ e representa-se por $X \frown \mathcal{N}(\mu, \sigma)$ se a sua f.d.p. é da forma:

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

$$-\infty < x < +\infty, \qquad -\infty < \mu < +\infty, \qquad 0 < \sigma < +\infty$$



Gráficos da função densidade normal para alguns valores de μ e σ .

Propriedades da curva densidade da variável com distribuição normal

- 1. É simétrica relativamente a μ .
- 2. É uma curva unimodal, a moda é μ .
- 3. Tem pontos de inflexão em $\mu + \sigma$ e $\mu \sigma$.

Valor médio, variância e função geradora de momentos

$$E[X] = \mu; \quad Var[X] = \sigma^2 \quad \mathrm{e} \quad M_X(t) = e^{\mu t} + \frac{\sigma^2 t^2}{2} \quad orall t \in \mathrm{IR}$$

Definição 39

Se $\mu = 0$ e $\sigma = 1$ a variável aleatória com distribuição $\mathcal{N}(0, 1)$ chamase **normal reduzida**.

A distribuição normal reduzida

Notações para a normal reduzida

$$Z \cap \mathcal{N}(0,1); \quad \varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$
 e $\Phi(z) = P[Z \leq z]$

Propriedade – consequência da simetria

$$\Phi(-z)=1-\Phi(z)$$

Tabelas → dão o valor da função de distribuição cumulativa da normal reduzida.

Alguns teoremas de grande importância no estudo da normal.

Teorema 9

Seja $X \frown \mathcal{N}(\mu, \sigma)$ a v.a. Y = a + bX é também normal e tem-se $Y \frown \mathcal{N}(a + b\mu, |b|\sigma)$.

Corolário - muito importante

Seja $X \sim \mathcal{N}(\mu, \sigma)$, então a v.a. $Z = \frac{X - \mu}{\sigma}$ tem distribuição normal reduzida, i.e., $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.

Exercício 11

Uma vacaria tem uma produção diária de leite que se admite seguir uma lei normal com $\mu=950~l$ e $\sigma=50~l$

- a) Qual a probabilidade de se ter uma produção inferior a 1000 litros?
- b) Qual a percentagem de dias em que a produção ultrapassa a produção média em mais de 100 litros?
- c) Se na região existe outra vacaria, com uma produção diária que se admite normal com $\mu=900\ I$ e $\sigma=40\ I$, funcionando independentemente da primeira, qual a probabilidade de num dado dia a produção total das duas vacarias ser superior a 1800 litros?

Para respondermos à alínea c) necessitamos do seguinte Teorema

Teorema 10

Sejam $X_1,...,X_n$, v.a. normais independentes, tais que $X_1 o \mathcal{N}(\mu_1,\sigma_1), \quad X_2 o \mathcal{N}(\mu_2,\sigma_2), \quad \cdots, \quad X_n o \mathcal{N}(\mu_n,\sigma_n).$ A v.a. $\mathbf{X} = \mathbf{X_1} + \mathbf{X_2} + ... + \mathbf{X_n}$ tem distribuição normal de parâmetros (μ,σ) , com $\mu = \mu_1 + \mu_2 + ... + \mu_n$ e $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2 + ... + \sigma_n^2}$

Teorema 11-Generalização do teorema anterior

Mostre que, sendo $X_1,...,X_n$ v.a. nas condições do teorema 10, a_1 X_1+a_2 $X_2+...+a_n$ X_n tem distribuição normal de parâmetros (μ,σ) , com $\mu=a_1$ μ_1+a_2 $\mu_2+...+a_n$ μ_n e $\sigma=\sqrt{a_1^2 \ \sigma_1^2+a_2^2 \ \sigma_2^2+...+a_n^2 \ \sigma_n^2}$.

Corolário

Sejam X_i n v.a. normais independentes e semelhantes, i.e., tendo todas o mesmo valor médio μ e a mesma variância σ^2 .

As variáveis aleatórias soma e média, definidas respectivamente como

$$S_n = \sum_{i=1}^n X_i$$
 e $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

têm distribuição normal assim definida

$$S_n \frown \mathcal{N}(n\mu, \sigma\sqrt{n})$$
 e $\overline{X}_n \frown \mathcal{N}(\mu, \sigma/\sqrt{n})$.

O Teorema Limite Central

Provámos que a soma de NORMAIS independentes é ainda uma normal. Mas temos mais ...

a distribuição aproximada da SOMA de *n* variáveis aleatórias com QUALQUER lei, mas independentes, identicamente distribuídas e verificando certas condições é também normal.

Teorema 12-Teorema limite central

Sejam $X_1, ..., X_n$ variáveis aleatórias independentes e identicamente distribuídas, com valor médio μ e variância σ^2 (finita).

A v.a. $\mathbf{S}_n = \sum_{i=1}^n \mathbf{X}_i$ verifica quando $n \in \text{"grande"}$:

$$rac{S_n - n\mu}{\sigma\sqrt{n}} \sim \mathcal{N}(0,1)$$

Aplicações do Teorema Limite Central

Note que também se tem

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

Teorema 13-Teorema de De Moivre

Seja X uma v.a. com distribuição binomial com valor médio $\mu=np$ e variância $\sigma^2=npq$. Então quando $n\to\infty$,

$$\frac{\textit{X}-\textit{np}}{\sqrt{\textit{npq}}} \sim \mathcal{N}(0,1)$$

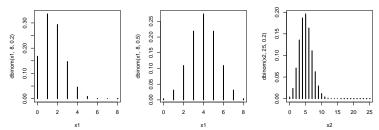
Aplicações do Teorema Limite Central

Recorde-se que se, na distribuição binomial, n grande e $p \approx 0$ (ou 1) uma boa aproximação é dada pela distribuição de Poisson.

E agora para valores de $p \approx 1/2$ o teorema limite central oferece muito boa aproximação para a normal.

Aplicações do Teorema Limite Central - Exercício12

Utilizando o \mathbb{R} , obtenha os seguintes gráficos da função massa de probabilidade de $X \sim \mathcal{B}(8,0.2), X \sim \mathcal{B}(8,0.5)$ e $X \sim \mathcal{B}(25,0.2)$.



O que observa?

Regra prática

Se na distribuição binomial np > 5 e $nq > 5 \implies$ a aproximação pela distribuição normal é boa.

Aplicações do Teorema Limite Central

Teorema 14

Seja
$$X \frown \mathcal{P}(\lambda)$$
. Quando $\lambda \to \infty$ então $\frac{X-\lambda}{\sqrt{\lambda}} \sim \mathcal{N}(0,1)$.

Regra prática:

A aproximação é considerada boa para $\lambda > 20$.

Correcção de continuidade

Observação: Quando considerámos a aproximação da distribuição binomial pela Poisson, ambas eram distribuições discretas. Os dois teoremas acabados de enunciar dão-nos uma aproximação de uma v.a. discreta por uma v.a. contínua.

Neste caso é necessário fazer-se o que se designa por **correcção de continuidade** que consiste em considerar todo o inteiro k representado pelo intervalo (k-1/2,k+1/2).

A distribuição exponencial

Uma variável aleatória diz-se ter **distribuição exponencial** de parâmetro β e representa-se por $X \sim \textit{Exp}(\beta)$ se a função densidade é

$$f(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta} & x > 0, \ \beta > 0 \\ 0 & x \le 0 \end{cases}$$

Valor médio, variância e função geradora de momentos

$$M_X(t) = \frac{1}{1-\beta t}$$
, $(t \le 1/\beta)$; $E[X] = \beta$; $Var[X] = \beta^2$

Aplicações:

Duração de vida, teoria da fiabilidade, tempos de espera,etc.

A distribuição exponencial: observações

Propriedade

A distribuição exponencial goza da propriedade da **falta de memória**, que podemos formalizar como: Se $X \sim Exp(\beta)$ tem-se P[X > t + h|X > t] = P[X > h], para t > 0, h > 0

Exercício

Mostre que se verifica a propriedade referida acima.

Uma interpretação da propriedade da falta de memória

Se um objecto tem tempo de vida com distribuição exponencial, então, qualquer que seja a sua idade o tempo de vida que resta não é afectado pelo tempo já vivido.

A distribuição exponencial: observações

Relação entre a distribuição exponencial e a distribuição de Poisson:

Considere-se contagens de sucessos em intervalos de tempo. O tempo ao fim do qual se verifica o primeiro sucesso é uma variável aleatória contínua.

Teorema 15

Se X, número de sucessos num intervalo de tempo, é tal que $X \frown \mathcal{P}(\lambda)$ então W a v.a. que designa o tempo de espera pelo primeiro sucesso (ou o tempo entre a ocorrência de dois sucessos consecutivos) satisfaz

$$W \frown Exp(\beta = 1/\lambda).$$