Applied Operations Research

Simplex method at a glance

Question 1.

Consider the following linear programming model

$$
\begin{array}{crl}
\operatorname{Max} & Z=x_{1}-x_{2}+x_{3} & \\
\text { s.t. } & 2 x_{1}-x_{2}+2 x_{3} \leq 6 \\
& -2 x_{1}+4 x_{2}-x_{3} \geq \alpha \\
& x_{1}-x_{2}+2 x_{3} \geq 4 & \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 &
\end{array}
$$

and the point $P=(0,2,4)$.

1. Write the problem in the standard form.
2. Find, if any, a value for α such that P is a vertex of the feasible region and give the corresponding value of the objective function.
3. Consider that P is an optimal solution of the problem for the α value found previously. Comment the following sentence: "The plan $x_{1}-x_{2}+x_{3}=3$ intercepts the feasible region of the problem."

Question 2.

Consider the following linear programming model

$$
\begin{array}{rlr}
\operatorname{Max} \quad Z=x_{1}+2 x_{2}-x_{3} & \\
\text { s.t. } \left.\quad \begin{array}{rlr}
2 x_{1}+4 x_{2}+3 x_{3} & \geq 8 \\
& \leq 6 \\
x_{1}+x_{2} & \leq 4 \\
-x_{1}+x_{2} & & \leq 4 \\
& x_{1} & x_{3}
\end{array}\right)=4 \\
& x_{1}, \quad x_{2}, & x_{3}
\end{array}
$$

1. Write the problem in the standard form.
2. Find an optimal solution of the problem that is obtained from the initial problem by adding the restriction $x_{3}=0$ and indicate the corresponding binding constraints.
3. Does the solution of the previous question correspond to a vertex of the feasible region of the initial problem?
