1º TESTE PRÁTICO DE INVENTÁRIO FLORESTAL

14 de Março de 2012

Variáveis dendrométricas ao nível da árvore

Nome:	 	
Teste nº21		

1. Considere os dados de dois eucaliptos abatidos para efeito de cubagem.

Altura total: 13,98 m; cepo: 10 cm

QP -150, 2x1

n.º toro	I (m)	d1cc	d2cc	d1sc	d2sc
0	0,10	8,2	7,9	7,6	7,1
1,3	1,20	6,1	6,5	5,6	5,8
1	2,00	4,9	5,2	5,0	4,8
2	2,00	5,4	5,5	5,2	5,0
3	2,00	4,4	4,6	4,2	4,2
4	2,00	4,1	4,0	3,8	3,7
5	2,00	2,7	2,6	2,5	2,5
6	2,00	1,0	0,9	1,0	0,9

Altura total: 29,10 m; cepo: 10 cm

QP -	129.	3x2
------	------	-----

n.º toro	I (m)	d1cc	d2cc	d1sc	d2sc
0	0,10	32,2	28,6	29,5	26,6
1,3	1,20	23,2	23,9	21,8	22,7
1	2,00	22,5	21,8	21,0	20,8
2	2,00	21,6	21,3	20,4	20,3
3	2,00	19,4	18,9	18,7	18,2
4	2,00	18,7	19,4	17,9	18,2
5	2,00	17,1	17,1	15,8	16,2
6	2,00	15,7	16,1	15,4	15,4
7	2,00	15,0	14,9	14,6	13,8
8	2,00	14,5	13,6	13,7	12,8
9	2,00	12,4	12,3	11,6	11,3
10	2,00	11,2	10,4	10,2	9,8
11	2,00	8,3	9,1	7,7	8,2
12	2,00	5,5	5,6	4,7	4,9
13	2,00	3,0	3,6	2,7	2,8

- 1.1 Calcule os volumes totais com casca, recorrendo a uma metodologia de cubagem rigorosa que lhe pareça adequada ao tipo de dados de que dispõe.
- 1.2 Represente graficamente o perfil do tronco das duas árvores com o objectivo de comparar a respectiva forma.
- 1.3 Faça uma estimativa, por interpolação linear, do diâmetro a 10% da altura das árvores.
- 1.4 Calcule o coeficiente de forma ordinário e o coeficiente de forma dos 10%.
- 1.5 Com base no resultado da alínea 1.4, diga qual das duas árvores é mais cónica.
- 2. Com base nos valores do diâmetro à altura do peito e da altura da árvore do compasso mais largo (menor densidade à plantação) do exercício anterior, e utilizando as equações que se seguem, calcule:
- 2.1 o volume total da árvore com casca e com cepo
- 2.2 o volume sem casca e sem cepo por categorias de aproveitamento, utilizando as seguintes categorias:

categoria A: diâmetros com casca superiores a 20 cm e correspondendo a toros com comprimento de 2 m

categoria B: diâmetros com casca entre 20 e 12 cm, assim como os diâmetros superiores a 20 cm que não tenham sido incluídos na categoria A

categoria C: diâmetros com casca entre 12 e 6 cm

bicada: o restante volume

Equação de volume total (com casca e cepo):

$$v = 0.2105 \ \left(\frac{d}{100}\right)^{\!\!1.8191} \ h^{1.0703}$$

Equação de volume total (sem casca e sem cepo):

$$vu_st = 0.1241 \left(\frac{d}{100}\right)^{1.7829} h^{1.1564}$$

Equação de volume percentual (sem casca):

$$Pvu_{di} = \frac{vu_{di}}{vu_st} = e^{-0.1241} \frac{di^{1.7829}}{d^{1.1564}}$$

Equação de perfil do tronco (com casca):

$$d_i = d \, \left[-2.1823 \, \left(\frac{hi}{h} - 1 \right) + 0.8591 \, \left(\frac{hi^2}{h^2} - 1 \right) \right]$$

onde d (cm) e h (m) são, respectivamente, o diâmetro à altura do peito e a altura total; d_i (cm) \acute{e} o diâmetro de desponta com casca; h_i (m) \acute{e} a altura a que se observa o diâmetro de desponta d_i ; v (m³) \acute{e} o volume total com casca e com cepo; vu_st (m³) \acute{e} o volume total sem casca e sem cepo; vu_di \acute{e} a proporção que o volume sem casca até ao diâmetro de desponta d_i (vu_di) representa em relação ao volume total sem casca e sem cepo.

3. A figura abaixo mostra os dados obtidos com o relascópio de Bitterlich para cubagem de pinheiros bravos. Em cada árvore: a) mediu-se o d com suta (cm); b) fez-se pontaria para o d de modo a este ser coincidente com um número par de bandas (a uma distância variável) e registou-se o nº de bandas correspondente; da mesma distância, fez-se pontaria para o diâmetro igual a metade do d; fez-se leitura na escala dos 25 m (Ld/2), seguida de pontaria para a base da árvore (Lbase). Determine o volume da árvore 6 utilizando o método da altura formal.

	d	Método da altura formal			Altura com d=20cm		
Arv no	(suta)	Bandas	Ld/2	Lbase	L2e	Ld	Ltopo
1	22.0	1 <i>L</i>	14.90	-9.0			
2	26.0	1L+2e	26.45	-6.5			
3	31.0	1L+2e	20.53	-7.0			
4	33.0	1L+2e	21.30	-6.0			
5	31.0	1L+2e	28.33	-7.0			
6	42.0	1L+4e	26.32	-4.5			
7	27.5	1L+2e	26.49	-5.5			
8	24.0	1L+2e	33.29	-4.5			