
LESSONS 3 & 4

Introduction to the Theory of Estimation and
Statistical inference.
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Probability and Inference

It can be said that Probability and Inference have different objectives:
while in Probability one starts from a given scheme or model to
calculate the probability that certain results or events can be observed;
Inference is based on data or observations and one seeks to know or
to infer something about the model.

Inference is the “way of going from particular to general.”
Statistical Inference aims at defining procedures which, applied to a
sample drawn from the population, allow us to estimate unknown
parameters of the population or to estimate something about the
population model.

Indeed a particular sample is just one of many samples (in an infinity
number if the population is infinite) that can be obtained for one
sampling process.
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Probability and Inference

The extension of the particular to the general is called inductive
inference. It is the way to acquire new knowledge.
The degree of uncertainty that is linked to the inductive inferences can
be rigorously measured in terms of probability, if the experiment was
conducted according to certain principles (probabilistic or random).

The procedures that allow to extract samples from the population are
from the domain of Sampling Theory.

While Sampling refers, as a general rule, to procedures of data
collection representative of finite populations, Experimental Design
refers to the “production” of data, when controlling the variation of
some variables, leaving one or more free
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As a summary...
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Introduction to Sampling Theory

Let X be a variable of interest in a population under study.

In the sampling theory procedures are used to extract a collection of
population elements to obtain a sample.
We use that sample to infer properties of the variable being studied.
So it is concern of the sampling theory:

to collect representative samples of the population;
to determinate the sample size (for which it is crucial to estimate
the characteristic variability) to obtain estimates of parameters of
interest with a given precision

Before we mention some preliminary concepts in sampling, let’s have
look at an exercise:
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Exercise 1

Let’s suppose that we have a rectangular field of 5 km × 4 km and we
intend to choose at random areas of 100 m × 100 m.
We can define a pair of coordinates (i , j), with i = 1,2, · · · ,50 and
j = 1,2, · · · ,40.
Then the random choice of, for example, 10 plots could be done as
follows:

> ndim<-10; nlinhas<-seq(1:50);ncol<-seq(1:40)

> i<-sample(nlinhas,ndim);j<-sample(ncol,ndim)

> plots<-cbind(i,j);plots

i j

[1,] 27 34

[2,] 14 3

[3,] 36 4

...
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Sampling

Definition 1
The random variables X1,X2,Xn constitute a random sample of dimen-
sion n, which is usually represented by X = (X1,X2, . . . ,Xn), taken from
a population X , if they are mutually independent and have the same dis-
tribution as X .

Let (x1, x2, · · · xn) be a sample of n observations of the characteristic,
obtained after a sampling process.

Each of those values is an observed value of the n variables
(X1,X2, · · ·Xn) which are “replicas” of the variable X . So it is a
concrete sample.
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Theory of Estimation–Introduction

The Statistical Inference is intended to address two major problems:
to calculate approximate values (estimates) and to get confidence
intervals for unknown population parameters;
to formulate hypotheses and check for agreement between what is
assumed and the facts - Tests of Hypothesis

The first problem is in the domain of Theory of Estimation. If:

if we want to infer for the unknown parameter value θ using the
knowledge, even approximately, of the population distribution, we
are in a (parametric estimation);
the unknown distribution function of the variable under study, F or
parameters without the assumption of knowledge of a model for
population (non-parametric estimation).
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Point estimation: estimator and estimate

Given a random sample (X1,X2, ...,Xn), a Statistic is a function of
the random sample that does not involve unknown parameters.

Definition
Given an unknown parameter θ, an estimator of is a Statistic that for
each observed sample gives a value that estimates θ, which we call an
estimate of θ.

Θ∗(X1,X2, ...,Xn) is an estimator
θ∗(x1, x2, ..., xn) is an estimate

Make no confusion
- estimator - random variable
- estimate - approximate value of the parameter, obtained by the value
of the estimator using an observed sample
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Point estimation: estimator and estimate

Examples of estimators:

i) X = 1
n
∑n

i=1 Xi/n e ii) S2 = 1
n−1

∑n
i=1(Xi − X )2.

Given, for example, the sample (1,2,0,3,1,5)

The estimates associated with those estimators are:

i) x = 1
6
∑6

i=1 xi = 2 e ii) s2 = 1
5
∑6

i=1(xi − x)2 = 3.2

Let us consider the case of having a given population with a
distribution F (x |θ), with an unknown parameter θ.

Since we can define several estimators of a parameter, we have the
problem of choosing, if possible “the best”. Then one has to consider
certain properties that an estimator should verify.
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Properties of point estimators

Let’s look at some properties:

1. Consistency
An estimator Θ is said to be convergent for the parameter θ if

Θ∗ P−→ θ.

It is proved that this is a sufficient convergence condition for an
estimator Θ∗ para θ que

Var(Θ∗)→ 0 e E(Θ∗)→ θ

Let us see the following example illustrating the convergence of an
estimator.
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Example

Consider a population N (10,2) and see, using , the behavior of
sample mean for several sample
sizes, n = 2,5,10,15,20, ...,1000,1010,1020, ...,5000

> ns <- c(2, seq(5, 1000, by = 5), seq(1010, 5000, by = 10))

> estim <- numeric(length(ns)) # we could also do estim<-c()

> for (i in 1:length(ns)) {

+ amostra <- rnorm(ns[i], 10, 2)

+ estim[i] <- mean(amostra)

+ }

> plot(ns, estim,lwd=2)

> abline(h = 10,lwd=2,col=4)
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Illustrating Convergence

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●
●

●●

●
●
●

●
●

●

●

●

●
●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●
●●

●
●●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●
●

●

●
●●

●

●
●
●
●
●
●

●●

●●
●●

●

●●

●●

●

●

●

●●
●

●

●
●●

●
●
●
●●
●
●

●
●●

●

●

●

●
●

●

●
●●
●●

●
●

●

●●
●●
●

●

●●

●

●
●●●
●●
●●

●
●
●●
●

●

●●●

●●

●
●●
●

●

●

●

●

●
●●●
●●●●●●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●●

●

●
●
●●●
●
●●
●
●
●●
●
●

●

●
●●●
●
●
●●
●●
●

●

●
●●
●
●

●
●

●
●

●

●●
●
●
●

●

●

●
●●
●
●●●●●●●●●

●
●
●●●
●

●●
●

●

●●
●
●
●

●
●
●●
●

●

●●●

●

●
●

●

●●
●

●

●●
●●●●
●

●

●●●

●
●●
●
●●●

●

●●

●●●

●●
●●●
●
●●●

●●

●

●●●

●●
●

●●
●

●
●

●

●
●

●

●
●
●
●●●●

●
●●●
●●
●
●
●
●

●
●

●●
●
●●
●●●●●●●●

●

●

●
●

●

●

●●

●●
●●
●
●
●
●
●●

●
●●

●

●

●
●●
●
●●●
●

●●
●
●
●
●

●

●●●
●
●

●

●
●●●●●
●

●
●●●●●●●●

●
●
●
●●●
●
●
●
●●
●
●●
●
●
●●●●●●●●

●
●

●

●●

●●
●●
●

●●●
●●●

●

0 1000 2000 3000 4000 5000

9.
5

10
.0

10
.5

ns

es
tim

Manuela Neves (ISA/ULisboa) Mathematical Models and Applications (20/21) 139 / 160



Properties of point estimators

2. Unbias
The estimator Θ∗ is said to be unbiased if E(Θ∗) = θ.

It is actually a property that many estimators do not have and hence
having more interest in defining a measure of the difference between
the estimator and the parameter that it intends to estimate.

It is the bias that we will represent by bθ(Θ∗) and is defined as

bθ(Θ∗) = E(Θ∗)− θ
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Properties of point estimators

3. Mean Squared Error
The Mean Squared Error of the estimator Θ∗ a
EQM (Θ∗) = E

[
(Θ∗ − θ)2

]
.

This property is one of the most used criteria to compare estimators.

It is very easy to show that

EQM (Θ∗) = Var [Θ∗] + [bθ(Θ∗)]2

If Θ∗ is an unbiased estimator of a parameter then the mean squared
error ≡ variance, i.e.

E
[
(Θ∗ − θ)2

]
= Var (Θ∗)
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Precision and accuracy illustration

The term accuracy refers to the proximity of a measurement or
estimate to the true value.
The term precision or variance (precision) refers to the "degree of
agreement in a succession of measurements".
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Properties of point estimators

Desirable situation: unbiased estimator with minimum variance.
One says that the estimator is the most efficient.

An estimator of a parameter θ is the most efficient if it has the least
probability of moving away from θ, i.e., with minimum dispersion.

If we can not get unbiased estimators we are interested in looking for
estimators that have a minimal EQM, i.e.,

∀Θ̃ E

[
(Θ∗ − θ)2

]
6 E

[(
Θ̃− θ

)2
]

∀θ

There is an established criterion in the so-called inequality of
Fréchet-Cramer-Rao which, under certain conditions, provides a lower
limit for the EQM of an estimator (for more information see Murteira e
Antunes (2012) e Casella e Berger (2002))
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Methods of Estimation

So far we have talked about estimators and the properties they must
have. Interested in having procedures estimators with good properties.

Let us then speak of main parametric estimation methods.

Among the parametric estimation methods we will only refer to two :

The method of Moments e
The Maximum Likelihood Method
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The method of Moments

Introduced by Karl Pearson in the twentieth century, it was the first
method of estimation that appeared and that has a very simple
philosophy.

This method consists of:
– to consider as estimators of the unknown parameters the solutions of
the equations that are obtained by matching the theoretical moments to
the empirical moments.

It is a general method, with the only condition that the distribution of the
underlying population has a sufficient number (theoretical) moments.
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The method of Moments

Let θ1, ..., θk be unknown parameters of the r. v. X .
The method of moments consists of equalizing theoretical moments
and empirical moments, i.e.,

E [X ] = m′1 c/ m′1 = 1
n
∑n

i=1 xi
E [X 2] = m′2 c/ m′2 = 1

n
∑n

i=1 x2
i

...
E [X k ] = m′k c/ m′k = 1

n
∑n

i=1 xk
i

m′k = 1
n
∑n

i=1 xk
i are the empirical moments, calculated based on the

sample (x1, ..., xn).

Those equalities give us estimates which are the concretization of
estimators with the corresponding expressions.
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The method of Moments– examples

Example
Let us consider X _ N (µ, σ). Obtain the moment estimators of µ and
σ2?

We have :

E [X ] = µ e M ′1 = 1
n
∑n

i=1 Xi = X
E [X 2] = σ2 + µ2

e M ′2 = 1
n
∑n

i=1 X 2
i

so
µ∗ = X
(σ2)

∗
= 1

n
∑n

i=1 X 2
i − µ∗

2 ⇒ (σ2)
∗

= 1
n
∑n

i=1(Xi − X )2

Exercise
Let be X _ P(λ). Obtain the monent estimator of λ.
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The Method of Moments

The calculations are not complicated, but the empirical moments of
high order appear with high exponents, when there are many
parameters, leading to unstable estimates.
Therefore, as a rule of thumb, you should avoid using method of
moments for more than four parameters.

Remark: The estimators obtained by the method of moments are less
efficient than the maximum likelihood estimators, which we are now
talking about.
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The Likelihood

Let X be a r.v. whose distribution depends on an parameter θ,
unknown, and let (X1, ...,Xn) be a random sample. Let (x1, ..., xn) be
the observed sample.

Definition
The likelihood of the sample, represented by L(θ|x1, x2, ..., xn) is

f (x1, ..., xn|θ) =
n∏

i=1
f (xi |θ) caso contínuo

P(X1 = x1, ...,Xn = xn|θ) =
n∏

i=1
P(Xi = xi |θ) caso discreto
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The Maximum Likelihood Method (MLM)

The maximum likelihood method, proposed by Fisher in 1922 and
developed in 1925 consists of choosing as an estimate of θ the value
that maximizes the likelihood L(θ|x1, ..., xn), given a sample
(x1, ..., xn).

Let us see an illustration with
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A very simple example

In a small lake that we have in the garden there are some fish. I would
like to know how many fish the lake will have. How can I "estimate"?
A common procedure is the so-called capture-recapture method, of
which they have certainly spoken when they gave the hypergeometric
probability model. How is the method described?
- We caught M = 7 fish, we marked each one and released it
afterwards.
"You’ll wait a few days to go back to your habits, and we’ll fish a few
more."
- Let X a.v. be counted the number of captured-marked, i.e. are
recaptured.
- Suppose that the second time we got n = 4, of which 3 are marked,
then x = 3.
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The Maximum Likelihood Method (MLM)

Now we want to know the number N of fish that exist in the lake,
N = M + (N −M);
X represents the number of fish recaptured.

X _ H(N,n = 4,M = 7) então P[X = x ] =

(7
x

)(N−7
4−x

)(N
4

)
If we found 3 marked fish, what is the most likely number of fish there?
We know that N ≥ 7, but it could be N = 8,9,10,11,12,13,14...?
Sir Ronald Fisher asked: “What is the value of N which has the highest
likelihood?”
That is, for the possible values for N what makes the above probability
maximum?
Let’s solve in , calculating the probabilities and plotting
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Exemplo muito simples

N<-seq(7,14);N

plot(N,dhyper(3,7,N-7,4),type="h",lwd=4)

points(9,dhyper(3,7,2,4),type="p",col=2,lwd=4)

text(9.5,0.05,expression(hat(N)==9),col=2)
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The Maximum Likelihood Method (MLM)

In many situations, the likelihood functions satisfy conditions that allow
the value for which the likelihood is maximum is obtained by using
derivatives.

However, and since the logarithmic function is monotonous, as a
general rule it is more convenient to work with the log-likelihood
function,

logL(θ|x)
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The Maximum Likelihood Method (MLM)

So, in case there are derivatives (and for a single parameter θ), the
value of the maximizer is obtained by solving:

d logL
dθ

= 0 e
d2 logL

dθ2 < 0

Remark that
d logL

dθ
=

n∑
i=1

d log f (xi |θ)

dθ

The solution, θ̂(x1, ..., xn) is the maximum likelihood estimate,
which is a realization of the r.v..Θ̂ = Θ̂(X1, ...,Xn).

Let’s do a very simple exercise – To obtain the maximum likelihood es-
timator of the β parameter of the exponential model.
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Properties of Maximum Likelihood Estimators

Although it may not be unbiased, the maximum likelihood estimator of
a generic parameter θ is the unique efficient estimator (if there is an
efficient estimator) and

— is asymptotically normal with mean value θ and asymptotic variance
given by

1

E
[(

∂ logL
∂θ

)2
] =

1

nE
[(

∂ log f
∂θ

)2
] =

1

−E
[
∂2 logL
∂θ2

]
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The maximum likelihood in R

In there are functions to obtain the maximum likelihood estimates,
using iterative procedures.

We have, for example, the functions

mle() do package stats4

fitdistr() do package MASS

optimize () – suitable when there is only one parameter
optim () – suitable when there are two or more parameters
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Example

Let’s consider the – PlantGrowth data file.
Let’s use the sample of observed values of the “weight” variable. Let’s
assume that the observations are the realization of a r.s.
(X1,X2, ...,Xn), i.i.d. N (µ, σ)

First we need to write the log-likelihood function

Important note the optimization function, by default calculates
minimums, so we must write the negative log-likelihood

>minuslogL <- function(mu, sigma){

-sum(dnorm(x, mean = mu, sd = sigma, log = TRUE)) }

To obtain the maximum likelihood estimate, the optimization algorithm
requires initial values for the parameters to be estimated.
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Resolution

I considered values close to the observed mean and variance, in this
case 5 and 0.5, respectively, to illustrate.

>data(PlantGrowth)

>x <- PlantGrowth$weight

>media<-mean(x); dp<-sd(x);media;dp

>library(stats4)

library(stats4)

>MLest1 <- mle(minuslogL, start = list(mu = media, sigma = dp))

# outra tentativa

>MLest2 <- mle(minuslogL, start = list(mu = 5.1, sigma = 0.5))

>summary(MLest1);summary(MLest2)

Maximum likelihood estimation

Call:

mle(minuslogl = minuslogL, start = list(mu = media, sigma = dp))

Coefficients:

Estimate Std. Error

mu 5.0730000 0.12586801

sigma 0.6894075 0.08900152

-2 log L: 62.82084

Maximum likelihood estimation
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Most Common Estimators and Sampling Distributions
–Summary

Parameters that we are going to refer to, their estimators and estimates

Parameter to estimate Estimator Estimate
µ X =

∑n
i=1 Xi
n x =

∑n
i=1 xi
n

σ2 S2 =
∑n

i=1(Xi−X)2

n−1 s2 =
∑n

i=1(xi−x)2

n−1

p P̂ = X (a)

n p̂ = x (b)

n

µ1 − µ2 X1 − X2 x1 − x2

σ2
1 / σ

2
2 S2

1 / S2
2 s2

1 / s2
2

p1 − p2 P̂1 − P̂2 p̂1 − p̂2

(a) X - r.v. that counts ... and ˜ (b) x - observed number of successes in the sample of

dimension n.
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