
Lesson 5

Confidence Intervals and Hypothesis Testing.
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Confidence Intervals

We have discussed up to now the point estimation and methods of
determining parameter estimators of unknown θ.

We will now address the issue of interval estimation.
The intervals are preferred when, instead of proposing an isolated
estimate, θ̂, we can associate an error measurement, θ̂ ± ε, to mean
that probably the true value of the parameter will be within
θ̂ − ε , θ̂ + ε.
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Confidence Intervals

Definition
Consider a random sample (X1,X2, · · ·Xn) from a population with a dis-
tribution function F (x |θ). Let Θ?

1(X1, · · ·Xn) e Θ?
2(X1, · · ·Xn) two

statistics, such that

P(Θ?
1 < θ < Θ?

2) = 1− α, 0 < α < 1,

where α is a constant, not dependent on the parameter θ.

We say that (Θ?
1,Θ?

2) is an random interval, which contains θ with
probability 1− α.

With the use of a confidence interval to estimate a parameter we are
gaining?
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Confidence Intervals

Indeed, let us think, for example, in the X .
We have P[X = µ] = 0, but we already have a positive probability if
we consider

P{µ ∈]X − a,X + a[ } com a > 0

that is, there is a positive probability that the random interval contains
the unknown parameter.

Definition
Any interval (θ?1, θ

?
2), with θ?1 < θ?2, real numbers, which result from a

random interval realization is called confidence interval at (1−α)100%
for θ.
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Confidence Intervals

The determination of confidence intervals for the parameters need the
knowledge of the distribution of the estimators involved, called sample
distributions, that is, they are distributions of functions of the random
sample (X1,X2, · · · ,Xn), that we will use to get Confidence Intervals

Let’s remember

If X _ N(µ, σ) and σ known −→
X − µ
σ/
√

n
_ N(0, 1)
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Confidence Intervals

To obtain the Confidence Interval for σ2

Random variable Assumptions Distribution
(n−1)S2

σ2 Xi _ N(µ, σ) χ2
(n−1)

S2 =
∑n

i=1(Xi−X)2

n−1 i = 1, 2, · · · , n

Distribution χ2 definition

If Z1,Z2, · · · ,Zn are independent random variables N(0,1)
⇓

X = Z 2
1 + · · ·+ Z 2

n verifies X _ χ2
(n)

Tem-se E [X ] = n; Var [X ] = 2n
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Confidence Intervals

To construct the CI for µ with σ unknown

Random variable Conditions Distribution
X−µ
S/
√

n
Xi _ N(µ, σ) t(n−1)

S2 =
∑n

i=1(Xi−X)2

n−1 i = 1, 2, · · · , n

t − Student distribution

If Z _ N(0,1) and X _ χ2
(n) are r.v. independent

⇓

T =
Z√
X/n

_ t(n)
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Confidence intervals for µ

Confidence interval at (1− α)× 100% for µ when
X _ N(µ, σ)

If σ known

x − zα/2
σ√

n
< µ < x + zα/2

σ√
n

(zα/2 → value of the r,v. Z such that P(Z > zα/2) = α/2)

If σ unknown

x − tα/2,(n−1)
s√
n
< µ < x + tα/2,(n−1)

s√
n

Remarks: The semi-amplitude of the confidence interval and confidence or
confidence level at (1− α)× 100%

The larger the interval, the greater the degree of confidence, but the lower the
precision of the estimate is.
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Confidence Intervals (example)

Example of building a CI in , for the mean value of a normal with
known variance (academic example!)

Example Given the sample referring to 10 heights, assume that the
measurement errors are normal with mean 0 and standard deviation
1.5.

> x<-c(175,176, 173, 175, 174, 173, 173, 176, 173, 179)

> int.conf.z<-function(x,sigma,conf.level=0.95)

n <-length(x);xbar<-mean(x)

alpha <- 1 - conf.level

zstar <- qnorm(1-alpha/2)

SE <- sigma/sqrt(n)

xbar + c(-zstar*SE,zstar*SE) ## we define a function

> int.conf.z(x,1.5) # just do this

Obteve-se o I.C a 95% para µ ]173.7703; 175.6297[
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Confidence Intervals

Confidence Interval at (1− α)× 100% for µ

If X has any distribution, not normal

It is necessary to have a large sample-size, i.e., n large −→
application of the Central Limit Theorem

X − µ
σ/
√

n
∼ N (0,1) if σ known

Or, the usual situation,
X − µ
s/
√

n
∼ N (0,1) if σ unknown

Interval at (1− α)× 100% confidence forµ
x − zα/2

s√
n
< µ < x + zα/2

s√
n
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Confidence Intervals

Interval at (1−α)×100% confidence for σ2 in a normal population

(n − 1)s2

χ2
α/2,(n−1)

< σ2 <
(n − 1)s2

χ2
1−α/2,(n−1)

(χ2
α → is the value of the r.v. χ2 such that P[χ2 > χ2

α] = α)

Interval at (1− α)× 100% confidence for p

p̂ − zα/2

√
p̂(1−p̂)

n < p < p̂ + zα/2

√
p̂(1−p̂)

n

se X _ B(n,p) and n “large”
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Confidence intervals - two population means

Confidence intervals at (1− α)× 100% for µ1 − µ2 with
X1 _ N (µ1, σ1) and X2 _ N (µ2, σ2) and independent samples

if known variances

(x1 − x2)− zα/2

√
σ2

1
n1

+
σ2

2
n2
< µ1 − µ2 < (x1 − x2) + zα/2

√
σ2

1
n1

+
σ2

2
n2

if unknown variances but one can admit equal variances.

(x1 − x2)− tα/2 sp

√
1
n1

+ 1
n2
< µ1 − µ2 < (x1 − x2) + tα/2 sp

√
1
n1

+ 1
n2

tα/2 ≡ tα/2,(n1+n2−2) e s2
p =

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2
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Confidence intervals - two population means

Confidence interval at (1− α)× 100% for µ1 − µ2 in any two
(non-normal) populations, samples independent, of high dimensions
n1 and n2

(x1 − x2)− zα/2

√
s2

1
n1

+
s2

2
n2
< µ1 − µ2 < (x1 − x2) + zα/2

√
s2

1
n1

+
s2

2
n2

Confidence interval at (1− α)× 100% for µ1 − µ2, when the
variances σ2

1 and σ2
2 are unknown and unequal

This situation was handled by Welch-Satterthwaite who considered an
approximation of t to v.a. used in the construction of the interval above, the no

¯
of degrees of freedom being calculated approximately— we will come back to
this when we deal with Tests of Hypothesis.

Manuela Neves Mathematical Models and Applications (20/21) 176 / 212



Confidence intervals - two population variances

Confidence interval at (1− α)× 100% for σ2
1/σ

2
2, with

X1 _ N (µ1, σ1) and X2 _ N (µ2, σ2) and independent samples

Here, a new distribution appears, whose characterization was made by
Fisher and Snedecor, based on the quotient of two independent r.v.,
with chi-squared distribution.

The F distribution of Snedecor
Let U _ χ2

(m) and V _ χ2
(n) be independent random variables, then

X = U/m
V/n is said to have distribution F with (m,n) degrees of freedom

and is represented by X = U/m
V/n _ F(m,n).
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Confidence intervals - two population variances

Consider now two random samples of dimensions n1 and n2,
independently drawn from X1 _ N (µ1, σ1) and X2 _ N (µ2, σ2).

You get
S2

1/σ
2
1

S2
2/σ

2
2
_ F(n1−1,n2−1), variable that allows estimating σ2

1/σ
2
2.

Under these conditions there is

The confidence interval at (1− α)× 100% for
σ2

1

σ2
2

é

s2
1

s2
2 fα/2;(n1−1,n2−1)

<
σ2

1

σ2
2
<

s2
1 fα/2;(n2−1,n1−1)

s2
2
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Confidence Intervals (Paired Samples)

Confidence intervals for µ1 − µ2 (paired samples)

If in a given experiment the observations are related, i.e. paired by the
individual - , the concept of block appears here.

Let’s consider the paired sample (Xi ,Yi) (i = 1, ...,n)

Seja
D1 = X1 − Y1; D2 = X2 − Y2; ... Dn = Xn − Yn, i.e.,

let (D1,D2, ...,Dn) be the random sample of the differences

Manuela Neves Mathematical Models and Applications (20/21) 179 / 212



Confidence intervals (paired samples)

If D1,D2, ...,Dn are random variables coming from a normal with mean
value µD = µX − µY and variance σ2

D, unknown one has
D − µD

SD/
√

n
_ t(n−1)

Confidence interval at (1− α)× 100% for µD

d − tα/2,(n−1)
sD√

n
< µD < d + tα/2,(n−1)

sD√
n

If you cannot admit normal Di , but you have n ‘large’ the confidence
interval (1− α)× 100% for µD is

d − zα/2
sD√

n
< µD < d + zα/2

sD√
n
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Confidence Intervals for p1 − p2

Let X1 and X2 be random variables such that
X1 _ B(n1,p1) e X2 _ B(n2,p2);
n1 and n2 the dimensions of independent random samples

Confidence interval at (1− α)× 100% for p1 − p2 when sample
sizes are large

(p̂1−p̂2)−zα/2

√
p̂1 q̂1

n1
+ p̂2 q̂2

n2
< p1−p2 < (p̂1−p̂2)+zα/2

√
p̂1 q̂1

n1
+ p̂2 q̂2

n2

Remark: All these confidence intervals are calculated in with a
function that simultaneously performs a hypothesis test.
For that reason we will do examples later.
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Hypothesis Testing

In the statistical inference studied up to this point, we dealt with
estimators and construction of Confidence Intervals.

The Hypothesis Testing are inference procedures that in view of a
statistical assumptions made, assess their plausibility using rules
based on an observed sample.

A statistical hypothesis is a statement about an unknown feature of the
population.
A hypothesis testing is a statistical procedure that tests whether the
data support a statistical hypothesis

Hypothesis Testing Theory “puts our assumptions to be tested".
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Hypothesis Testing

Let X be a population with a distribution function known, dependent on
a parameter θ, F (x |θ), or an array of parameters θ = (θ1, ..., θk )
unknown.

The general idea based on a hypothesis test (parametric test) is the
following:
– assume the parameter θ has a certain value θ0 – this constitutes the
hypothesis to be tested - statistical-hypothesis, which is usually
represented by H0, which can be true or false.
H0 is rejected if there is factual evidence against it, supporting the
alternative hypothesis.

To test a statistical hypothesis is to apply a set of rules to decide
whether or not the conjecture should be with minimal probability of
errors.
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Introductory Example

In an olive oil bottling line the quantity of each bottle is a random vari-
able that is supposed to have normal distribution. The filling process is
considered regulated if µ = 1 liter , not admitting great deviations. To
control the filling process, 20 bottles were randomly selected of daily
production. Suppose we obtained an average of 0.965 liters with a
standard deviation of 0.08 liter.
Can it be said that the process is not regulated? Justify conveniently
the answer.

Resolution: To find out if the process is not regulated, we can
formulate a test of the hypotheses:

H0 : µ = 1 v.s. H1 : µ 6= 1
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Hypothesis Testing–First notions

The Rule of a test consists of:

- Divide the sample space into two complementary regions:

RA - acceptance region – the sample values for which the
decision is “ to accept” H0

RR or RC - rejection region or critical region – the sample values for
which H0 is rejected.

Since Statistical Inference is a “path” that goes from the particular to
the general, it can have associated errors:

Possible decisions that can be taken are :
H0 true and “accept” H0 → correct decision
H0 true and reject H0 → incorrect decision – error
H0 false and “accept”H0 → incorrect decision – error
H0 false and reject H0 → correct decision
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Hypothesis Testing–Type I and Type II Errors

Decision errors of reject or not reject H0 are designated respectively by
error of 1a species or error of type I and error of 2a species or type
II error, with the probabilities associated with each of the errors
commonly called

α = P (error of type I) = P ( reject H0|H0 true)
β = P (error of type II) = P(not reject H0|H0 false).

The α is usually called test significance level and
1− β = P (reject H0|H0 false) power of the test
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Hypothesis Testing

The following table summarizes what we have just said:

not rej. H0 rej. H0
H0 true correct decision type I error
H0 false type II error correct decision
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Hypothesis Testing

Therefore, a hypothesis testing requires two hypotheses:
1 one which is proposed by the experimenter and
2 the other one that is the opposite.

The first one, usually represented by H1, is call to
alternative hypothesis (hypothesis to be searched), the other
represented by H0, is called the null hypothesis.

The hypothesis to be tested is the null hypothesis, which as a
general rule we hope to reject.

It is usually written H0 vs H1.
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Hypothesis Testing

The ideal situation would therefore be to have α and β as small as
possible. However, this is not possible.

In fact, for fixed sample size, when an error decreases the other
increases.

What you usually do – Neyman-Pearson theory – is to set the value of
α and try to minimize the β. When there is a test under these
conditions it is usually called more potent test.

The Neyman-Pearson Theory established that performing a hypothesis
testing is based on the definition of Test Statistics and Critical
Regions associated with the formulated hypotheses.
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Let’s go back to the example

It is then assumed that the observed sample is the realization of the
random sample (X1,X2, · · · ,Xn) from a normal population and σ is not
known. The hypotheses to be tested are, as we have seen,

H0 : µ = 1 vs H1 : µ 6= 1;

the Test Statistics is
X − µ0

S/
√

n
, which under the null hypothesis has a

known distribution, which we know to be t(n−1). We have then

T =
X − 1
S/
√

n
_ t(19),

The critical region, corresponding to the significance level α is given
by T < −tα/2,(19) ∪ T > tα/2,(19)
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Hypothesis Testing

The answer to a hypothesis test is given in the form

Reject H0 - means that the observed data are strongly against
H0 - so, in this case it will be accepted the hypothesis H1

Do not reject H0 - means that there is not enough evidence to
reject H0.
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Steps in performing a hypothesis testing

Steps in performing a hypothesis testing:
1. Identify the parameter(s); to specify H0 e H1 and the level

of significance α.
2. Choosing a random variable – statistics test, which under

H0 known distribution (at least approximately).
3. Define the region of rejection or critical region – RC

(set of statistical values that are less “plausible” when H0

is true, so it causes to reject H0).
4. Calculate the value of the test statistic for the observed

sample.
5. If the calculated value ∈ RC −→ H0 is rejected

If the calculated value /∈ RC −→ H0 is not rejected
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The p − value

The indication of the observed value of the test statistic, for example
zcal , and the indication of a critical value zα for deciding, for example,

To reject H0 if zcal > zα (in a one-sided right test)
has recently been “replaced‘” by the calculation of a probability

– the probability of observing an equal or more extreme value
than observed, if the null hypothesis is true – what is denoted as
p-value
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The p − value

Note: this value is a quantity that nowadays any software is prepared
to calculate when a test is ordered.
We can interpret the p-value as the

measure of the degree of agreement between the data and H0

So:
- The smaller the p-value, the smaller the consistency between

the data and the null hypothesis– for a small p.value the null
hypothesis is rejected

It is usually adopted as decision rule:

reject H0 if p-value ≤ α
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Exercício

The following data refer to the total nitrogen concentration (ppm) in the
water of a lake that is used as a source of urban supply.

0.042 0.023 0.049 0.036 0.045 0.025
0.048 0.035 0.048 0.043 0.044 0.055
0.045 0.052 0.049 0.028 0.025 0.039
0.023 0.045 0.038 0.035 0.026 0.059

1 Determine a confidence interval for µ (at a 99% confidence level).
2 In order to be acceptable as a source of drinking water, the should

be less than 0.07 ppm. Do you think the data is compatible with
that criterion?
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Exercício–resolução

> azoto<-c(0.042,0.048,0.045,0.023,0.023,0.035,0.052,

+ 0.045,0.049,0.048,0.049,0.038,0.036,0.043, 0.045,

+ 0.025, 0.044, 0.055, 0.028, 0.025, 0.039,

+ 0.035, 0.026, 0.059)

> qqnorm(azoto)# este é um gráfico para uma

+ #primeira pesquisa da normalidade

> qqline(azoto)

Histogram of azoto
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Exercício–resolução

> t.test(azoto,mu=0.0,conf.level=0.99)

#alinea a) pode omitir-se mu=0.0

One Sample t-test

data: azoto

t = 18.5066, df = 23, p-value = 2.606e-15

alternative hypothesis: true mean is not equal to 0

99 percent confidence interval:

0.03382623 0.04592377

sample estimates:

mean of x

0.039875
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Exercise–resolution

> t.test(azoto, alternative='less', mu=0.07) #alinea b)

One Sample t-test

data: azoto

t = -13.9815, df = 23, p-value = 4.944e-13

alternative hypothesis: true mean is less than 0.07

95 percent confidence interval:

-Inf 0.04356776

sample estimates:

mean of x

0.039875
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Hypothesis Testing and CI in R

Confidence interval and hypothesis testing to compare the mean
values ??of two populations

>t.test(x, y ,

alternative = c("two.sided", "less", "greater"),

mu = 0, paired = FALSE, var.equal = FALSE,

conf.level = 0.95, ...)

Performs a test and CI for independent samples, using the
Welch-Satterthwaite t-test to get an approximation to the nþdegrees of
freedom. By default considers paired = FALSE, var.equal = FALSE.

>data(sleep);>sleep ## Uma alternativa a um teste a duas médias
## forma simples de realizar o teste para comparar 2 grupos

>t.test(extra ~ group, data = sleep, paired = TRUE)
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Hypothesis Testing and CI in R

Confidence interval and hypothesis testing to compare 2 variances of
populations that are assumed to be normal

>var.test(x, y, ratio = 1,

alternative = c("two.sided", "less",

"greater"),conf.level = 0.95, ...)

Confidence interval and hypothesis testing to verify if the proportion of
“successes” (in n trials in which x successes were observed, can be
admitted less than 0.4

>prop.test(x, n, p = 0.4, alternative = "less",

conf.level = 0.99, correct = FALSE)

Trata-se de um teste a p = 0.4 sem correcção de continuidade. É
obtido o intervalo a 99% de confiança.
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Exercise (TPC)

A study aims to compare an improved type of seed with the type of traditional
seed. The improved seed will be used if, on average, the plant growth after 20
days is higher than that of obtained from traditional seeds. 15 different
situations are created laboratory, varying temperature and humidity. In each
situation one seed of each type is sown and the following results are obtained
for the growth (in cm) of the plants after 20 days.

Situation 1 2 3 4 5 6 7 8
Improved seed 3.46 3.48 2.74 2.83 4.00 4.95 2.24 6.92
Traditional seed 3.18 3.67 2.92 3.10 4.10 4.86 2.21 6.91

Situation 9 10 11 12 13 14 15
Improved seed 6.57 6.18 8.30 3.44 4.47 7.59 3.87
Traditional seed 6.83 6.19 8.05 3.46 4.18 7.43 3.85

Should improved seeds be used? Respond by justifying and explaining any
additional hypotheses that need to be imposed.
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Exercise (TPC)

It is intended to test whether the proportion of elms affected by grafiosis is
identical in two zones A and B. In zone A, a random sample of 30 elms was
taken and 20 were found to be affected by grafiosis. In zone B, a sample of
35 elms was collected and 27 were found to be affected by graphiosis.
What conclusion can you take to the significance level of 0.05?
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Goodness of fit tests

The CIs and Hypothesis Testing procedures dealt with so far are
usually called parametric methods.

Whenever the procedures used are concerned with the behavior of the
population (and not with its parameters) or with the parameters but
without requiring knowledge of distributional hypotheses, we say, in
general, that we are dealing with nonparametric methods.
These procedures include the (‘goodness-of-fit tests’) and the tests
also called nonparametric tests (‘nonparametric tests’ or ‘distribution
-free tests’)
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Goodness-of-fit tests

We will start by considering the following (‘goodness-of-fit tests’) of
which we will refer:

o teste de Shapiro Wilk;
o teste de Kolmogoroff-Smirnov e
testes do Qui-quadrado

Let’s start with a very important test in our applications - a normality
test - i.e. allows determine whether a given set of observations can
be considered coming from a population with normal distribution – so
is a test of normality,

The Shapiro Wilk Test

what do you have proved to be one of the most potent. Let us see in
summary how process.
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The Shapiro-Wilk normality test

Let X be the characteristic under study in the population.

The following hypotheses are formulated:
H0 : X has a normal distribution
H1 : X has no normal distribution

The value of the test statistic is calculated Wcal =
b2

n∑
i=1

(xi − x̄)2

with constant b to be determined from the data and using a table
(which will not be given here).

We will not use the Shapiro-Wilk Test using tables, we will only run it
on .
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The Shapiro-Wilk normality test with R

> shapiro.test(azoto)

Shapiro-Wilk normality test

data: azoto

W = 0.944, p-value = 0.2001

Another fitting test, which, in addition to normality, allows for the
adjustment to other distributions taht is very important is the
Kolmogorov-Smirnov test.
This test, introduced by Kolmogorov and Smirnov in 1933, is based on
the difference (distance) between the distribution function postulated in
the null hypothesis and the empirical distribution function, built from the
sample.
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The Kolmogorov Smirnov Test

The hypotheses to be formulated are;
H0 : X has distribution F0
H1 : X has distribution different from F0

The test statistic is D = supx |F0(x)− F ∗
n (x)|, where F0 designates the

considered distribution function and F ∗
n the empirical distribution

function.

The behavior of that variable D was completely specified by those
authors in case X has a normal law with known parameters.
Lilliefors studied the same statistics when X was exponential.
Currently the softwares are prepared to carry out the test for other
distributions.
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The Kolmogorov Smirnov with R

Example: Let’s consider n = 200 values ??generated from a Weibull
distribution, with the parameters specified below:

>x.wei<-rweibull(n=200,shape=2.1,scale=1.1)

+ # gera valores de uma v.a. com

+ # distribuição de Weibull, com

+ # parâmetros de forma=2.1 e escala=1.1

>ks.test(x.wei,"pweibull",shape=2,scale=1)

One-sample Kolmogorov-Smirnov test

data: x.wei

D = 0.0765, p-value = 0.1918

alternative hypothesis: two-sided
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The Kolmogorov Smirnov with R

> x<-seq(0,2,0.1)

> plot(x,pweibull(x,scale=1,shape=2),type="l",col="red",

+ lwd=3, main="ECDF e Weibull CDF")

>plot(ecdf(x.wei),add=TRUE)
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Non-Parametric Tests (just a taste!)

Let us now consider that we intend to perform tests on parameters but
the assumptions of normality or approximation to the normal are not
verified. As we have already said, such tests are usually called
“distribution-free” but many authors call them non-parametric tests.

Let’s just make a brief note here about two very common tests that can
be applied when the tStudent test is not valid.
These tests are based on the orders of the observations, i.e. the
position of each observation in the ordered sample.

While parametric tests require the variables in question to be
quantitative tests, the nonparametric tests we are going to use can be
applied also qualitative variables, provided they are ordinal.
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Wilcoxon Tests

Wilcoxon test - non-parametric test for the study of the median of a
population or to compare the medians in two paired samples

Wilcoxon-Mann-Whitney test - test no parametric suitable for
comparison of two independent samples

wilcox.test(A,B) perform the test we called above
Wilcoxon-Mann-Whitney for the two independent samples A e B.

wilcox.test(A,B,paired=T) performs the test that we called
Wilcoxon for the two samples A and B, but now considered paired.
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Os testes de Wilcoxon no R

The following table gives the percentage of zinc concentration,
determined by two different methods, in 9 food samples

Amostra EDTA tritation Espectrometria atómica
1 7.2 7.6
2 6.1 6.8
3 4.9 4.8
4 5.9 5.7
5 9.0 9.7
6 8.5 9.1
7 6.6 7.0
8 4 4.7
9 5.2 4.9

Poder-se-á afirmar que existe uma diferença significativa entre os
resultados dos dois métodos?
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