INSTITUTO SUPERIOR DE AGRONOMIA

Applied Operations Research - Module 3

15 July 2016 - Duration: 2h

Number:

Name:

1. Consider the linear programming model

$\min Z = 10x + 20y + 5z$	(1)
V	

 $x + y + z \ge 100\tag{2}$

 $z \le 50 \tag{3}$

 ≤ 25 (4)

 $x, y, z \ge 0 \tag{5}$

and the corresponding sensitivity report created by the Excel Solver (Tables 1 and 2).

	Final	Reduced	Objective	Allowable	Allowable
Name	Value	Cost	Coefficient	Increase	Decrease
x	25	0	10	10	$1\mathrm{E}{+30}$
y	25	0	20	$1\mathrm{E}{+}30$	10
z	50	0	5	15	$1\mathrm{E}{+}30$

x

	\mathbf{Final}	Shadow	Constant	Allowable	Allowable
Name	Value	Price	R.H. Side	Increase	Decrease
(2)	100	20	100	$1\mathrm{E}{+30}$	25
(3)	50	-15	50	25	50
(4)	25	-10	25	25	25

Table 2:	Constraints	(sensitivity :	report by	v the	Excel	Solver).

- a) Indicate an optimal solution to the problem and the corresponding value of the objective function.
- b) Are there non-binding constraints?
- c) Indicate an optimal solution and the corresponding value of the objective function if the objective function coefficient for
 - i) x was increased from 10 to 19
 - ii) y was decreased from 20 to 15.
- d) If the objective function coefficient for z was increased from 5 to 25, it would be possible to indicate an optimal solution from the current sensitivity report?
- e) By how much would the optimal value of the objective function change if the RHS of
 - i) constraint (2) was increased by one unit?
 - ii) constraint (3) was decreased by two units?
- f) If the RHS of constraint (4) was increased from 25 to 51, it would be possible to obtain the new optimal value of the objective function with the current sensitivity report?