Conceitos de vetor e valor próprio

Definições de vetor próprio e valor próprio

Sejam A matriz quadrada de ordem $n, v \in \mathbb{R}^n$ com $v \neq \vec{0}$.

Diz-se que v é um vetor próprio de A se existir $\lambda \in \mathbb{R}$ tal que

$$A\mathbf{v} = \lambda \mathbf{v}$$

 λ designa-se por valor próprio associado ao vetor próprio v

Exemplo

Considerando
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
, tem-se que $v = (1, 1, 1)$ é vetor próprio

de A associado ao valor próprio $\lambda = 2$ uma vez que,

$$Av = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 2v$$

170 / 184

Valores e vetores próprios de uma matriz

Em geral, para determinar os vetores próprios de uma matriz é necessário começar por determinar os seus valores próprios!

Para isso vamos recordar algumas relações que nos vão ser úteis.

Observação

Seja A matriz quadrada de ordem n. As seguintes afirmações são equivalentes:

- ▶ O sistema homogéneo $Ax = \vec{0}$ é indeterminado.
- ightharpoonup car(A) < n.
- ► A não é invertível.
- b det(A) = 0.

Como determinar os valores próprios de uma matriz ?

Tem-se:

- $\lambda \in \mathbb{R}$ é valor próprio de uma matriz A se e só se existe um vetor próprio $v \neq \vec{0}$ tal que $Av = \lambda v$, isto é, $Av \lambda v = \vec{0}$, ou seja, $(A \lambda I)v = \vec{0}$.
- A condição anterior significa que o sistema homogéneo $(A \lambda I)x = \vec{0}$ admite uma solução $v \neq \vec{0}$ e portanto que é indeterminado.
- Pela observação do slide anterior aplicada à matriz $(A \lambda I)$ tem-se que:

$$\lambda \in \mathbb{R}$$
 é valor próprio de $A \quad \Leftrightarrow \quad \det(A - \lambda I) = 0$

Exemplo

Consideremos novamente a matriz $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ do exemplo do slide 170.

Tem-se que $\lambda=2$ é valor próprio de A, como visto no slide 170, uma vez que

$$\det(A - 2I) = \begin{vmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{vmatrix} = 0$$
 (possui uma linha de zeros).

172 / 184

Polinómio característico de uma matriz

Polinómio característico e multiplicidade algébrica

- A expressão $\det(A \lambda I)$ com $A_{n \times n}$ define um polinómio de grau n na variável λ , que se designa por polinómio característico de A e se denota por $p_A(\lambda)$.
- Pelas conclusões do slide anterior os valores próprios de A são as raízes reais e complexas do polinómio característico $p_A(\lambda)$.
- A multiplicidade algébrica de um valor próprio λ , que se denota por m.a.(λ), é o número de vezes que λ aparece repetido como raíz na factorização de $p_A(\lambda)$.

Exemplo do slide 170 revisitado

Consideremos novamente a matriz do slide 170, $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

► Tem-se,

$$p_A(\lambda) = \det(A - \lambda I) = \det\left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{bmatrix}\right)$$

$$= \det\begin{bmatrix} 1 - \lambda & 1 & 0 & 0 \\ 0 & 2 - \lambda & 0 & 0 \\ 0 & 1 & 1 - \lambda \end{bmatrix}$$
Laplace na 1\text{\text{a} column}
$$= (-1)^{1+1}(1 - \lambda) \det\begin{bmatrix} 2 - \lambda & 0 & 0 \\ 1 & 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 & 1 & 1 \end{bmatrix} + 0 + 0$$

$$= (1 - \lambda)(2 - \lambda)(1 - \lambda) = (1 - \lambda)^2(2 - \lambda).$$

- $p_A(\lambda)$ admite portanto a raíz dupla $\lambda=1$ uma vez que aparece repetida 2 vezes na factorização do polinómio e a raíz simples $\lambda=2$.
- ▶ Logo A admite os valores próprios distintos, $\lambda = 1$ com multiplicidade algébrica 2 (m.a.(1) = 2) e $\lambda = 2$ com multiplicidade algébrica 1 (m.a.(2) = 1).

174 / 184

Subespaço próprio de uma matriz

Seja λ é um valor próprio de A de ordem n e $v \in \mathbb{R}^n$, $v \neq \vec{0}(^{16})$. Tem-se:

$$v$$
 é vetor próprio de A associado a $\lambda \Leftrightarrow Av = \lambda v$ $\Leftrightarrow (A - \lambda I)v = \vec{0}$ $\Leftrightarrow v \in \mathcal{N}(A - \lambda I).$

Tem-se portanto sentido a seguinte definição.

Subespaço próprio e multiplicidade geométrica

Sejam A matriz quadrada de ordem n e $\lambda \in \mathbb{R}$ valor próprio de A. Chama-se subespaço próprio de A associado a λ ao subespaço vetorial de \mathbb{R}^n ,

$$E(\lambda) = \mathcal{N}(A - \lambda I)$$

A dimensão de $E(\lambda)$ designa-se por multiplicidade geométrica de λ .

Os vetores próprios de A associados ao valor próprio λ são os vetores não nulos do subespaço próprio $E(\lambda)$.

 $^{^{16}}$ Note-se que $\vec{0}$ nunca é vetor próprio de uma matriz !

Exemplo do slide 170 revisitado

Consideremos novamente a matriz $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Vimos no slide 174 que

A admite os valores próprios $\lambda = 1$ e $\lambda = 2$. Vamos calcular os respectivos subespaços próprios E(1) e E(2).

► Tem-se $E(1) = \mathcal{N}(A - 1I) = \mathcal{N}(A - I)$. Aplicando o método de Gauss,

$$\mathcal{N}(A-I) = \{(x_1, x_2, x_3) : x_2 = 0, x_1, x_3 \in \mathbb{R}\}$$

= \{(x_1, 0, x_3) : x_1, x_3 \in \mathbb{R}\} = \langle((1, 0, 0), (0, 0, 1)\rangle.

- Logo $E(1) = \langle (1,0,0), (0,0,1) \rangle$. Uma base para E(1) é portanto $\{(1,0,0), (0,0,1)\}$, tendo-se $m.g.(1) = \dim E(1) = 2$.
- Os vetores próprios de A associados ao valor próprio $\lambda=1$ são os vetores não nulos de E(1). Por exemplo, tomando $x_1=1$ e $x_3=-2$ obtém-se o vetor próprio (1,0,2) de A associado ao valor próprio $\lambda=1$.
- ▶ Geometricamente E(1) define o plano de \mathbb{R}^3 que passa na origem com vetores diretores (1,0,0) e (0,0,1).

176 / 184

Exemplo (cont.)

Relativamente ao subespaço próprio $E(2) = \mathcal{N}(A-2I)$ tem-se:

$$A - 2I = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}.$$

lacktriangle Aplicando o método de Gauss ao sistema $\left[\left. A - 2I \, \right| \, \vec{0} \, \right]$ obtém-se,

$$\left[\begin{array}{ccc|c} -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{array}\right] \quad \rightarrow \cdots \rightarrow \quad \left[\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

- ▶ Logo, $E(2) = \mathcal{N}(A 2I) = \{(x_3, x_3, x_3) : x_3 \in \mathbb{R}\} = \langle (1, 1, 1) \rangle$.
- Uma base para E(2) é portanto $\{(1,1,1)\}$, tendo-se m.g. $(2) = \dim E(2) = 1$.
- Os vetores próprios de A associados ao valor próprio $\lambda=2$ são portanto os vetores da reta que passa na origem com vetor diretor (1,1,1), com excepção da origem.
- A informação, dita espectral sobre a matriz A pode ser organizada numa tabela

λ	m.a. (λ)	$m.g.(\lambda)$	base de $E(\lambda)$
1	2	2	$\{(1,0,0),(0,0,1\}$
2	1	1	$\{(1,1,1)\}$