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Notations 4

Non bold letters (upper or lower case) represent scalar
quantities: x , y , A,. . .

Lower case bold letters represent vectors x, y, !x, !y,. . .

Upper case bold letters represent matrices A, B, X, Y,. . .
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LINEAR ALGEBRA
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Eigenvalues and eigenvectors 6

Definition

Ap×p = [aij ] a square matrix of order p. A vector v ∈ Rp, v "= !0, is
called an eigenvector of A if there is λ ∈ R such that Av = λv.
λ is called the corresponding eigenvalue.

Example

A =




3 0 2
0 −1 1
2 0 0



 , v =




10
1
5





We have

Av =




3 0 2
0 −1 1
2 0 0








10
1
5



 =




40
4
20



 = 4




10
1
5



 = 4v

Hence v is an eigenvector of A associated to the eigenvalue λ = 4.
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Eigenvalues and eigenvectors (cont.) 7

The spectrum of A, denoted σ(A), is the collection of the p
eigenvalues of A (including repetitions), i.e., the collection of p
roots (real and complex) of its characteristic polynomial,
pA(x) = det(A− xIp) (which has degree p)

The eigenspace associated with an eigenvalue λ, denoted E (λ), is
the linear space spanned by the eigenvectors associated with λ

The trace of A, denoted tr(A), is the sum of all diagonal elements of
A and equals the sum of all eigenvalues of A (including repetitions):

tr(A) = a11 + a22 + · · ·+ app =
∑

λ∈σ(A)

λ

The determinant of A (not defined here) equals the product of all
eigenvalues of A (including repetitions):

detA =
∏

λ∈σ(A)

λ

A is invertible ⇔ det(A) "= 0 ⇔ 0 is not an eigenvalue of A
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Example revisited 8

Returning to the example of slide 6 we have the the following:

σ(A) : −1, −1, 4

tr(A) = 3 + (−1) + 0 = 2 corresponds to the sum of its diagonal
elements which is also equal to sum of its eigenvalues (counting
with repetitions): (−1) + (−1) + 4 = 2

det(A) = (−1)× (−1)× 4 = 4 "= 0 which is equal to the product of
its eigenvalues (counting with repetitions)

E (−1) = 〈(1, 1, 0)〉 has dim=1

E (4) = 〈(0, 1, 5)〉 has dim=1

Since dimE (−1) + dimE (4) = 2 < 3 = p, A is not diagonalizable, i.e.,
we cannot find an invertible matrix P and a diagonal matrix Λ such that
A = PΛP−1

Exercise

Verify that (1, 1, 0) is an eigenvector of A associated to the eigenvalue
λ = −1
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Eigenvalues and eigenvectors - R 9

R

A=matrix(c(3,0,2,0,-1,1,2,0,0),ncol=3,byrow=TRUE)

A

EV<-eigen(A) # eigenvalues and eigenvectors of A

det(A) # determinant of A

tr<-sum(diag(A)) # trace of A

tr
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Orthonormal sets 10

Definition

Given v1, . . . , vq ∈ Rp with q ≤ p we say that {v1, . . . , vq} is an
orthonormal set if

‖vi‖ = 1, ∀i and vi ⊥ vj (i "= j)

If q = p, {v1, . . . , vq} is called an orthonormal basis of Rp

Denoting by Vp×q = [V1 · · · Vq ] the matrix whose columns are the q
vectors, v1, . . . , vq, we have the following:

{v1, . . . , vq} is an orthonormal set iff VTV = Iq

{v1, . . . , vp} is an orthonormal basis iff VTV = VVT = Ip iff
V−1 = VT

In the later case we can write for all u ∈ Rp,

u = (uTv1)v1︸ ︷︷ ︸
projv1 (u)

+ · · ·+ (uTvp)vp︸ ︷︷ ︸
projvp (u)

(1)
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Orthonormal basis 11

If ‖u‖ = 1 and {v1, . . . , vp} is an orthonormal basis of Rp we have,
applying (1) of slide 10,

u = cos(θ1)v1 + · · ·+ cos(θp)vp

with uT u = cos2(θ1) + · · ·+ cos2(θp) = 1, where θi , i = 1, . . . , p,
denotes the angle between u and vi

The case p = 2:

v1

v2

θ1

θ2

cos(θ1)v1

cos(θ2)v2 u = cos(θ1)v1 + cos(θ2)v2
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Interlude: matrix multiplications 12

If Am×n =

[
a1 a2 · · · an
| | |

]
and Bn×p =





−bT
1 −

−bT
2 −
...

−bT
n −




, with

aj ∈ Rm and bj ∈ Rp , j = 1, . . . , n, then

AB =
n∑

j=1

ajb
T
j

Example

[
1 3
2 4

] [
1 2 0
3 −1 1

]
=

[
1
2

] [
1 2 0

]
+

[
3
4

] [
3 −1 1

]

=

[
10 −1 3
14 0 4

]

Note that if b = (β1, . . . ,βn) one gets, Ab = A




β1
...
βn



 =
∑n

j=1 βjaj
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Eigenvalue decomposition of a symmetric matrix 13

Theorem

Let A be a symmetric matrix (AT = A) of order p. Then we can find matrices Vp×p

and Λp×p, such that

A = VΛVT (2)

where:

V = [ v1 v2 · · · vp ] verify VTV = VVT = Ip: matrix of (unit and pairwise
orthogonal) eigenvectors of A

Λ = diag(λ1, λ2, . . . ,λp) with λ1 ≥ λ2 ≥ · · · ≥ λp: diagonal matrix containing
the corresponding (real) eigenvalues of A (Avi = λivi )

Using the decomposition of a matrix product in terms of sums of columns and rows
products described in slide 12, we can rewrite (2) as,

A = λ1v1vT1 + λ2v2vT2 + · · ·+ λpvpvTp ,

which is called the spectral decomposition of A
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Singular value decomposition of an arbitrary matrix 14

Theorem (Compact SVD)

Let A be matrix of type N × p and rank r. Then we can find matrices UN×r , ∆r×r

and Vp×r , such that

A = U∆VT (3)

where:

U = [ u1 · · · ur ] verify UTU = Ir : matrix of (unit and pairwise orthogonal) left
singular vectors of A

V = [ v1 · · · vr ] verify VTV = Ir : matrix of (unit and pairwise orthogonal)
right singular vectors of A

∆ = diag(δ1, . . . , δr ) with δ1 ≥ · · · ≥ δr > 0: diagonal matrix of the nonzero
singular values of A (Avi = δiui and ATui = δivi )

Using the results of slide 12 we can rewrite (3) as,

A = δ1u1vT1 + δ2u2vT2 + · · ·+ δrur vTr ,

which is called the singular value decomposition of A
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PRINCIPAL COMPONENT ANALYSIS
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Some statistics - univariate case 16

Given the vectors xi = (x1, . . . , xN) and y = (y1, . . . , yN) ∈ RN , of observations of two
variables across N individuals, we define:

(sample) mean of x:

x̄ =
1

N

N∑

i=1

xi

(sample) variance of x:

s2x =
1

N − 1

N∑

i=1

(xi − x̄)2

(sample) covariance between x and y:

s2xy =
1

N − 1

N∑

i=1

(xi − x̄)(yi − ȳ) =
1

N − 1
(x∗)T y∗,

where x∗ = (x1 − x̄ , . . . , xN − x̄) and y∗ = (y1 − ȳ , . . . , yN − ȳ) are the
corresponding centered vectors

(sample) linear correlation coefficient between x and y:

r2xy =
s2xy
sx sy
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Variable’s cloud and individual’s cloud 17

Let XN×p = [ xij ] be a data matrix where:

each column of X represents the observations of some variable
across N individuals. We write,

XN×p = [x1 · · · xp] with xj = (x1j , . . . , xNj) ∈ RN , j = 1, . . . , p

The columns x1,. . . , xp define a cloud of p points in RN - variable’s
cloud

each row of X represents the observations of a single individual
w.r.t. p variables:

XT
p×N = [x1 · · · xN ] with xi = (xi1, . . . , xip) ∈ Rp, i = 1, . . . ,N

The rows x1,. . . , xN define a cloud of N points in Rp - individuals’s
cloud
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Row and column space 18

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024



Summary statistics - multivariate case 19

The sample mean vector of X , xG = (x̄1, . . . , x̄p) with

x̄j =
1
N

∑N
i=1 xij , is the individuals’s cloud center of gravity, that is,

xG =
1

N

N∑

i=1

xi ∈ Rp

The (sample) covariance matrix of X is

S = [s2jk ] =
1

N − 1

N∑

i=1

(xi − xG )(xi − xG )T ,

with the covariance between variables j and k equal to

s2jk =
1

N − 1

N∑

i=1

(xij − x̄j)(xik − x̄k )

The inertia (total variability) of X is given by
tr(S) = s211 + · · ·+ s2kk , that is,

1

N − 1

N∑

i=1

‖xi − xG ‖2 =
1

2N(N − 1)

N∑

i,j=1

‖xi − xj‖2
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Centered data matrix and covariance 20

For each j = 1, . . . , p, the centered vector of the N observations of
variable j is

x∗j = (x1j − x̄j , . . . , xNj − x̄j) ∈ RN

The (sample) covariance s2jk can then be written, using the centered

variables x∗j and x∗k , as a simple inner product (in RN) divided by N − 1,

s2jk = cov(xj , xk) =
1

N − 1
(x∗j )

Tx∗k (4)

Likewise, if we define the centered data matrix as

X∗ = [ x∗1 · · · x∗p ],

i.e.,
(X∗)T = [ (x1 − xG ) · · · (xN − xG ) ],

the covariance matrix S = [s2jk ] of X can be written as

S = 1
N−1(X

∗)TX∗
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Standardized data matrix and correlation 21

For each j = 1, . . . , p, the vector of the N observations of standardized variable j is

zj =

(
x1j − x̄j

sj
, . . . ,

xNj − x̄j
sj

)
=

(
x∗1j
sj

, . . . ,
x∗Nj
sj

)
∈ RN

and we obtain the corresponding standardized data matrix,

Z = [ z1 · · · zp ]

The (sample) linear correlation coefficient between variables j and k is

rjk =
s2jk
sj sk

=
1

N − 1

N∑

i=1

(
xij − x̄j

sj

)(
xik − x̄k

sk

)
=

1

N − 1
zTj zk

Hence the (sample) correlation matrix R = [rij ] of X equals the covariance
matrix of the standardized data matrix, i.e.,

R = 1
N−1Z

TZ

The total variability (inertia) of Z is

tr(R) = r11 + · · ·+ rpp = p

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Principal component analysis - motivation 22

Principal component analysis (PCA) is a statistical multvariate
method that aims to reduce the dimensionality of a dataset X while
preserving its information, i.e., the data set total variability, as much
as possible

This goal is achieved by defining a set of uncorrelated variables,
called principal components, that are linear combinations of the
original (or standardized) variables, in such a way that the first few
principal components explain the maximum proportion of the data
set total variability

The dimension reduction is (particularly) effective when the original
variables are (highly) correlated

PCA is probably the most widely used multivariate statistical
method
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Example: iris flower data set 23

The well known iris flower data set consists of 4
measurements, sepal and petal lengths and widths,
SL,SW,PL,PW (in cm), containing 50 iris flowers of each one
of the following three species, setosa, versicolor and virginica

Hence the iris flower dataset defines a cloud of 150 points in
R4. We can try to have a geometrical grasp of the shape of
this 4-dimensional cloud by projecting it on a two dimensional
space (plane), using all possible combinations of two variables

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Example: iris flower data set

pairs(iris[-5],asp=TRUE,pch=16,col=c(rep("red",50),
rep("green",50),rep("blue",50)))

Sepal.Length

1.5

2.0

2.5

3.0

3.5

4.0

4.5

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 3 4 5

Sepal.Width

Petal.Length

1 2 3 4 5 6 7

0 1 2 3

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

1

2

3

4

5

6

7

Petal.Width
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Best 2-dimensional representation using PCA 25

Another approach is to define new synthetic uncorrelated
variables that are linear combinations of the original iris
flowers measurements, the so-called principal components
(PC), in such a way each PC explains, as much as possible, of
the total dataset variability

The projection of the cloud of iris flowers on the plane
associated with the first two PCs, called principal factorial
plane (PFP), explains 98.1% of the iris dataset variability and
thus provides an excellent 2-dimensional portray of the
original cloud of iris flowers

This is actually the best representation among all
2-dimensional representations of the iris flower dataset, in the
sense that it is the 2-dimensional representation that retains
the largest amount of the dataset variability
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Best two-dimensional representation of the iris flowers 26

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

PC1

PC
2
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Eigenvalues of the covariance matrix 27

Let XN×p be a data matrix and S = 1
N−1(X

∗)TX∗ the corresponding
covariance matrix. Then:

S is symmetric (ST = S)

xTSx is a semi-definite positive quadratic form, that is,

xTSx ≥ 0, ∀x ∈ Rp

the eigenvalues λ1, . . . ,λp of S are nonnegative real numbers and
we may assume that

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

If moreover all variables are globally non-correlated then all
eigenvalues of S are strictly positive real numbers. In this case S is
invertible, xTSx is a definite positive quadratic form, which
amounts to say that

xTSx > 0, ∀x ∈ Rp , x "= !0
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Linear combinations 28

Consider again the data set XN×p = [ x1 · · · xp ] containing the
observations of p variables across N individuals.

A linear combination of the p columns x1, . . . , xp of X as the form

y = α1x1 + · · ·+ αpxp = [ x1 · · · xp ]




α1
...
αp



 = Xa,

where

a = (α1, . . . ,αp) =




α1
...
αp



 ∈ Rp ,

is the vector of coefficients (loadings) (see slide 12)
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Covariance between linear combinations 29

Given a, b ∈ Rp, the covariance between the linear combinations Xa and Xb is

cov(Xa,Xb) = aTSb (5)

Actually, using (4) of slide 20 we have,

cov(Xa,Xb) =
1

N − 1
[(Xa)∗]T (Xb)∗

exercise
=

1

N − 1
(X∗a)TX∗b

=
1

N − 1
aT (X∗)TX∗b = aT

1

N − 1
(X∗)TX∗b

= aTSb

In particular, var(Xa) = aTSa

Exercise

Prove that centering a linear combination of variables x1, . . . , xp is equivalent to the
linear combination of the centered variables x∗1 , . . . , x

∗
p with the same coefficients, i.e.,

(Xa)∗ = (α1x1 + · · ·+ αpxp)∗ = α1 x
∗
1 + · · ·+ αp x∗p = X∗a,

where X = [ x1 · · · xp ], X∗ = [ x∗1 · · · x∗p ] and a = (α1, . . . ,αp) ∈ Rp
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First principal component - formulation 30

To define the first principal component we seek a linear combination of
the p observed variables x1, . . . , xp that maximizes the variance, that is,
we want to solve the following problem:

determine a ∈ Rp such that var(Xa) = aTSa is maximum

Without further restrictions on vector a the problem is ill-posed since if
we multiply the vector of coefficients a by a scalar λ we obtain

var(X(λa)) = λaTSλa = λ2aTSa = λ2var(Xa),

which shows that the variance of a linear combination can be arbitrarily
large. To overcome this issue we reformulate the problem as follows:

determine a ∈ Rp with ‖a‖ = 1 : var(Xa) = aTSa is maximum (6)

The previous problem can be equivalently formulated as the problem of
maximizing the so-called Rayleigh-Ritz ratio (cf. slides Prof. Cadima)

determine a ∈ Rp \ {!0} : aTSa
aTa is maximum (7)
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First principal component (cont.) 31

The covariance matrix S admits a spectral decomposition (see slide 13)
of the form,

S = λ1v1v
T
1 + λ2v2v

T
2 + · · ·+ λpvpv

T
p (8)

where v1, . . . , vp ∈ Rp are unit and pairwise orthogonal eigenvectors of S
associated to (sorted) real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

By the results of slide 11, we have for all a ∈ Rp, ‖a‖ = 1,

a = cos(θ1)v1 + · · ·+ cos(θp)vp, (9)

with
cos2 θ1 + · · ·+ cos2 θp = 1, (10)

where θi denotes the angle between the vectors a and vi , , i = 1, . . . , p
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First principal component (cont.) 32

Applying (8), (9) and (10) from the previous slide, along with relations
λ1 ≥ · · · ≥ λp > 0, ‖vi‖2 = vTi vi = 1 for all i and vTi vj = 0, i &= j , we obtain by
straightforward computations (since all inner products envolving vi and vj , j &= i ,
vanish),

aTSa = λ1 cos
2 θ1 + · · ·+ λp cos

2 θp

≤ λ1 cos
2 θ1 + · · ·+ λ1 cos

2 θp

= λ1(cos
2 θ1 + · · ·+ cos2 θp) = λ1

Thus var(Xa) = aTSa ≤ λ1 (the largest eigenvalue of S). Taking a = v1, we get

aTSa = vT1 Sv1 = λ1 cos
2 θ1︸ ︷︷ ︸
1

+λ2 cos
2 θ2︸ ︷︷ ︸
0

+ · · ·+ λ1 cos
2 θp︸ ︷︷ ︸
0

= λ1

The maximum variance of a linear combination Xa, with unit vector of coefficients a,
of x1, . . . , xp , is attained along the direction of a unit eigenvector v1 of S associated
with the largest eigenvalue λ1. Hence the first principal component is

PC1 : y1 = Xv1 with maximum variance λ1

The larger the value of λ1, the more the cloud of points is elongated along the PC1

O critério da ACP (maximizar variância) corresponde a procurar combinações lineares
dos vectores de comprimento máximo (com soma 1 de quadrados dos coeficientes).
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Second principal component 33

For the second principal component PC2, we seek a linear combination of x1, . . . , xp ,
Xa, with ‖a‖ = 1, that maximizes var(Xa) = aTSa and is uncorrelated with PC1, i.e.,

cov(Xa,Xv1) = aTSv1 = λ1a
T v1 = 0.

. Hence we want to solve the following problem (assuming λ1 > 0):

determine a ∈ Rp with

{
‖a‖ = 1
a ⊥ v1

: var(Xa) = aTSa is maximum

Since a ⊥ v1 ⇔ cos θ1 = 0, we seek a = cos(θ2)v2 + · · ·+ cos(θp)vp , with
cos2(θ2) + · · ·+ cos2(θp) = 1 and we obtain similarly,

aTSa = λ2 cos
2 θ2 + · · ·+ λp cos

2 θp

≤ λ2(cos
2 θ2 + · · ·+ cos2 θp) = λ2

Taking a = v2 (a unit eigenvector of S associated with the second largest eigenvalue
λ2 and orthogonal to v1), one gets

aTSa = λ2

The second PC is thus defined by a unit eigenvector v2 of S, associated with the
second largest eigenvalue λ2 and orthogonal to the vector v1

PC2 : y2 = Xv2 with maximum variance equal to λ2

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Principal components 34

In general, to define the j-th principal component PCj , j = 2, . . . , p, we seek a linear
combination of the p original observed variables, that maximizes the variance and is
uncorrelated with PC1, . . . ,PCj−1 (assuming λj−1 > 0:

determine a ∈ Rp with






‖a‖ = 1
a ⊥ v1

...
a ⊥ vj−1

∣∣∣∣∣∣∣∣∣

var(Xa) = aTSa is maximum (11)

We construct in this way a collection of p principal components

y1 = Xv1, y2 = Xv2, . . . , yp = Xvp

with maximum variances,
λ1 ≥ λ2 ≥ . . . ≥ λp > 0,

where v1, . . . , vp are unit and pairwise orthogonal eigenvectors of S, respectively
associated to λ1, . . . ,λp , i.e., for all j , k = 1, . . . , p, k &= j we have

‖vj‖ = 1, vj ⊥ vk , Svj = λjvj
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Vector of loadings 35

The vector vj defining the j-th principal component yj = Xvj , contains
the coefficients, also called loadings, of the j-th principal component
w.r.t. the original observed variables x1, . . . , xp. In other words, writing
the vector of loadings as vj = (α1, . . . ,αp) we obtain,

yj = α1x1 + · · ·+ αpxp

If the p eigenvalues of the covariance matrix S are pairwise distinct,
i.e., λ1 > · · · > λp > 0, the vector of loadings defining each PC is
unique up to sign: if yj = Xvj is a solution of (11) of slide 34, then
y′j = X(−vj) is also a solution of (11) - this is the most common
situation

If there are repeated eigenvalues of S the PCs associated with
repeated eigenvalues are not uniquely determined. Actually, the
vectors of loadings defining these PCs can arise from any
orthonormal base of the eigenspace associated with the repeated
eigenvalue and therefore can be defined in infinitely many distinct
ways
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Scores matrix 36

Recall that,

XN×p = [xij ] is the original data matrix of the p observed variables across N
individuals

XT = [ x1 · · · xN ], with xi = (xi1, . . . , xip) the i -th row of X, i.e., the
coordinates of i -individual in the cloud of N points of Rp

xG = (x̄1, . . . , x̄p) is the center of gravity (also called barycenter) of the cloud of
individuals

X∗ = [x∗ij ] is the centered data matrix, where x∗ij = xij − x̄j

xi − xG = (x∗i1, . . . , x
∗
ip) the i -th row of X∗, i.e., the vector of the coordinates of

individual i in the centered cloud of N points

V = [ v1 · · · vp ] is the matrix of loadings

The matrix Y∗ = [y∗
ij ] = X∗V is called scores matrix: the rows of Y∗ correspond to

the vectors of coordinates, also called (factor) scores, of the N individuals w.r.t the
new coordinate axes defined by the vectors of loadings of the PCs

The column j of Y∗, y∗j , contains the values of the (centered) cloud of N individuals
w.r.t the new sinthetic variable yj that defined the PCj
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Scores of individual i when p = 2 37

xG

PC1

PC2

v1

v2

y ∗
i1

y ∗
i2

xi

[ y ∗
i1 y ∗

i2 ] =
[
projv1(x

i − xG) projv2(x
i − xG)

]
= (xi − xG )[ v1 v2 ]
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Covariance of the scores matrix 38

The covariance matrix of the (centred) scores matrix Y∗, is

cov(Y∗) = cov(X∗V) =
1

N − 1
(X∗V)T (X∗V)

= VT 1

N − 1
(X∗)TX∗V = VTSV = Λ = diag(λ1, . . . ,λp)

The total variation of Y∗, i.e., the dataset total variability is

p∑

j=1

var(y∗j ) =
p∑

j=1

λj = tr(Λ) = tr(S) =
p∑

j=1

var(xj)

The quality of the reduction obtained by keeping the first k PCs
(1 ≤ k ≤ p) is assessed by the proportion of variability explained by
the first k PCs:

λ1 + · · ·+ λk

λ1 + · · ·+ λp
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Covariance and correlation 39

The covariance between the variable xj and the PC yk is

cov(xj , yk) =
1

N − 1
[(Xej )

∗]T (Xvk)
∗ =

1

N − 1
(X∗ej)

T (X∗vk)

= eTj
1

N − 1
(X∗)TX∗vk = eTj Svk = eTj λkvk

= λke
T
j vk = λkvjk

where vjk = eTj vk is j-th component of vk , i.e., (j , k)-entry of the
loadings matrix V

The correlation between xj and yk is

cor(xj , yk) =
cov(xj , yk)√

xj
√
yk

=
λkvjk
sj
√
λk

=

√
λkvjk
sj

The contribution of individual i to the construction of PCk is the
proportion of the variance of PCk that is due to individual i (in %):

ctri ,k =
1

N−1(y
∗
i ,k)

2

λk
× 100 =

(y∗
i ,k)

2

∑N
j=1(y

∗
j,k )

2
× 100
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Example: iris flower dataset revisited 40

R

X=iris[-5] # non standardized

head(X)

iris.acp<-prcomp(X) # performs PCA on the covariance
matrix

summary(iris.acp)

iris.acp$sdev # std accounted by the PCs

sum(iris.acp$sdev[1]ˆ2) # total variance

iris.acp$rot # matrix of loadings

iris.acp$x # matrix of scores

plot(iris.acp$x[,1:2],asp=TRUE,pch=16,col=c(rep("red",50),
rep("green",50),rep("blue",50))) #
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Importance of the PC components 41

The R command summary(iris.acp) gives, for each j , the standard
deviation

√
λj associated with PCj , the proportion of the total variance

explained by PCj ,
λj∑
k λk

, and the cumulative variance explained by the

first j PCs:

PC1 PC2 PC3 PC4
Standard deviation 2.0563 0.49262 0.2797 0.15439
Proportion of Variance 0.9246 0.05307 0.0171 0.00521
Cumulative Proportion 0.9246 0.97769 0.9948 1.00000

Thus we have that:

The cloud of points projected on the line associated with the first
PC explains about 92% of the dataset’s total variability

The cloud of points projected on the plane associated with the first
two PCs (principal factorial plane - PFP) explains about 98% of the
total variability of the dataset,

and so on. . .
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More on the R command prcomp 42

iris.acp$sdev give, for each j , the standard deviation
√

λj associated with PCj :
2.0562689 0.4926162 0.2796596 0.1543862

sum(iris.acp$sdev[1]ˆ2) gives the dataset total variance: 4.572957

iris.acp$rotation returns the matrix of loadings, where column j contains the
coefficients of the PCj , yj , written as linear combination of the original observed
variables x1, . . . , x4:

PC1 PC2 PC3 PC4
Sepal.Length 0.3614 -0.6566 0.5820 0.3155
Sepal.Width -0.0845 -0.7302 -0.5979 -0.3197
Petal.Length 0.8567 0.1734 -0.0762 -0.4798
Petal.Width 0.3583 0.0755 -0.5458 0.7537

The first PC (for instance), is a linear combination of the observed measurements as:

y1 = 0.3614 Sepal.Length − 0.0845 Sepal.Width + 0.8567 Petal.Length + 0.3583 Petal.Widt

≈ 0.3614 Sepal.Length + 0.8567 Petal.Length + 0.3583Petal.Width

which represents a kind of overall measurement of the iris flowers that explains a large
amount (≥ 90%) of the total variability of the iris dataset
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More on the R command prcomp - loadings 43

The columns of the loading matrix are unit eigenvectors of S and
pairwise orthogonal

R

V<-iris.acp$rotation

S <- cov(S)

round(t(V)%*% V,10) # gives the identity matrix

v1 <- V[,1]

lambda1 <- iris.acp$sdev[1]ˆ2

S %*% v1

lambda1%*% v1
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More on the R command prcomp - scores 44

iris.acp$x returns the matrix of factor scores, where each row i contains coordinates
of the individual i w.r.t. the PCs, i.e., w.r.t. the new synthetic variables y1, . . . , y4:

PC1 PC2 PC3 PC4
-2.68413 -0.31940 0.02791 0.00226
-2.71414 0.17700 0.21046 0.09903
-2.88899 0.14495 -0.01790 0.01997
-2.74534 0.31830 -0.03156 -0.07558

...
...

...
...

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024



More on the R command prcomp - scores 45

R

N <- 150 X.G <- colMeans(X) # iris’s cloud center of gravity

Xc <- scale(X,scale=FALSE) # centred iris data matrix

Yc <- Xc %*% V # scores matrix

head(Yc) ; head(iris.acp$x) # should be equal!

sum(iris.acp$x[,1]ˆ2)/(N-1) ; iris.acp$sdev[1]ˆ2
# contributions of each individual to the 1st PC
Yc[,1]*Yc[,1]/sum(Yc[,1]*Yc[,1])
vspace.25ex
# individuals with contribution above the average
Yc[,1]*Yc[,1]/sum(Yc[,1]*Yc[,1]>1/150

# quality of the representation of individual i in each PC
Yc[1,]*Yc[1,]/sum(Yc[1,]*Yc[1,])

# quality of the representation of individual i in the PFP
(Yc[1,1]*Yc[1,1]+Yc[1,2]*Yc[1,2])/sum(Yc[1,]*Yc[1,])

cos2<-matrix(0,ncol=4,nrow=150)

for (i in 1:150) { cos2[i,]<-Yc[i,]*Yc[i,]/sum(Yc[i,]*Yc[i,]) }
sort(rowSums(cos2[,1:2]))

order(rowSums(cos2[,1:2]))

plot(iris.acp$x[,1:2],pch=16,col=c(rep("red",50),
rep("green",50),rep("blue",50)),asp=TRUE)

points(iris.acp$x[rowSums(cos2[,1:2])<.7,1:2],pch=1)

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Representation of the iris flower dataset in the PFP 46
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Drawbacks of the PCA on the covariance matrix 47

Variable(s) with much larger variance(s) tend to dominate the first principal
component. Actually, by (6) in slide 30 the first PC is Xa such that
a = (α1, . . . ,αp) maximizes

var(Xa) =
p∑

i=1

α2
i var(xi ) + 2

∑

i<j

αiαj cov(xi , xj ), with ‖a‖ =
p∑

i=1

α2
i = 1

The PCs are invariant under orthogonal transformations of the variables (e.g.
rotations), but not under differentiated change of scales in each variable. As a
consequence the PCA is highly dependent on the units of measurements - this is
a major drawback

Another important drawback when there are distinct units of measurements is
how to a interpret a PC if the PC is a linear combination of variables expressed
in totally different units of measurements, say, for instance temperature and
weight?

When the variables have different units of measurements or very different variances it
is advisable or even mandatory to standardize (i.e., to center and reduce the variables
to unit variance) prior to perform the PCA. This amounts to compute the eigenvectors
of the correlation matrix of X
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PCA on the correlation matrix 48

Let XN×p = [xij ] be the usual data matrix and ZN×p = [zij ], be the
corresponding data matrix of the standardized variables zij =

xij−x̄j
sj

The covariance matrix of the standardized data Z is

R = cov(Z) =
1

N − 1
ZTZ,

which corresponds to the correlation matrix of X

The PCs are now given by Yj = Zvj where v1, . . . , vp are unit and
pairwise orthogonal eigenvectors of R associated with eigenvalues
λ1 ≥ · · · ≥ λp > 0

The total variance is now the number of variables:

p =
p∑

i=1

var(zj) = λ1 + · · ·+ λp

The correlation coefficient between zj and yk reduces to

cor(zj , yk) =
√
λkvkj
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Interpretation of the results in space of variables 49

Each standardized variable zj and each PC yk , can be represented as vectors in RN .
This allows to reinterpret geometrically some of the previous statistics:

The variables zj , j = 1, . . . , p, lie in a hypersphere of radius
√
N − 1:

‖zj‖2 = zTj zj = (N − 1)var(zj ) = N − 1

More generally, the length of centered variable is also proportional to its
standard deviation (exercise)
The length of each PC is proportional to its variance:

‖yk‖2 = yTk yk = (Zvk)
T (Zvk)

= vTk ZTZvk = (N − 1)vTk Rvk

= (N − 1)λk = (N − 1)var(yk )

The correlation coefficient between zj and yk is the cosine of the angle θjk
between the variables zj and yk :

cor(zj , yk) =
cov(zj , yk )√

var(zj )
√

var(yk)
=

zTj yk
N−1

‖zk‖√
N−1

√
λk

=
zTj yk

‖zk‖(
√
N − 1

√
λk)

=
zTj yk

‖zj‖ ‖yk‖
= cos(θjk)

The correlation coefficient between zj and zk is the cosine of the angle between
the vectors representing these variables (exercise)
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How many PCs ? 50

No exact answer can be given. Some empirical rules are listed below:

To define a cutoff %: to consider a given cumulative percentage of the total
variation (usually between 70% and 90%) and to choose the smallest number m
of PC such that the % of explained variance by the first m PCs exceeds the
chosen %.

Scree plot: to look for a elbow point in the scree plot of the variance

Kaiser’s rule (for PCA on correlation matrix): to retain the PCs with variance
greater than the average value 1: the PCs with variance inferior to 1 contain
less information than the original variables and are not worthing to retain. (for
the PCA on the covariance matrix, the cutoff value 1 should be replaced by the
average of the PCs variances)

Jolliffe’s variant of Kaiser’s rule (for PCA on correlation matrix): is a more
conservative rule that proposes a cutoff value of 0.7

Broken-stick model: a unit stick is randomly broken into p segments. The
expected length of the k-th largest segment is %∗k = 1

p

∑p
j=k

1
j . This rule retains

the PCs while the variance of each PCk keeps above the length %k
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PCA on the correlation matrix - summary 51

All variables have the same variance and therefore their importance is equalized

The cloud of individuals tend to have a more rounded shape

The PCA tends to reflect existing correlation patterns among variables

The first PC tends to be dominated by groups of variables that are highly
correlated. Actually, by (6) in slide 30 applied to the correlation matrix Z we
deduce that the first PC is Za such that a = (α1, . . . ,αp) maximizes

var(Za) =
p∑

i=1

α2
i + 2

∑

i<j

αiαj cor(zi , zj), with ‖a‖ =
p∑

i=1

α2
i = 1

The PCs can be interpreted since they are linear combinations of dimensionless
variables

The number of PCs that are necessary to explain a given proportion of the
dataset total variability is usually higher compared to the PCA on the covariance
matrix
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A more geometrical approach to PCA using SVD 52

Applying the SVD to the centered data matrix X∗ we obtain

X∗ = U∆VT =
∑r

j=1 δjujv
T
j

where

∆r×r = diag(δ1, . . . , δr ) is the diagonal matrix containing the (positive) singular
values of Z with δ1 ≥ δ2 ≥ · · · ≥ δr > 0

UN×r = [ u1 · · · ur ], with u1, . . . , ur ∈ RN , is the matrix of left singular vectors
of Z

Vp×r = [ v1 · · · vr ], with v1, . . . , vr ∈ Rp, is the matrix of right singular vectors
of Z

UTU = VTV = Ir , that is, the left and right singular vectors, are unit and
pairwise orthogonal vectors vectors

For each k = 1, . . . , r , we have a rank k linear approximation of X∗,

X(k) =
k∑

j=1

δjujv
T
j = U(k)∆(k)V(k)T

Here U(k) and V(k) are the submatrices containing the first k columns of U and V,
respectively, and ∆(k) is the diagonal matrix containing the first k singular values
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Best rank k-linear approximation 53

For instance, we have the following rank one and rank two linear approximations,

X(1) = δ1u1v
T
1 = U(1)∆(1)V(1)T

X(2) = δ1u1v
T
1 + δ2u1v

T
2 = U(2)∆(2)V(2)T

All rows of X(k) are linear combinations of vT1 , . . . , vTk . Moreover:

For each k, the cloud of N points defined by the rows of X(k) lie in a
k-dimension linear subspace W(k) of Rp (generated by the vectors v1 . . . , vk ),
that is close to the cloud of centered points defined by the rows of X∗

Denoting by i the point defined by row i of X∗ (a red dot in next slide) and by
i ′ the corresponding k-approximated point in W(k) (corresponding projected
blue dot), which is defined by the row i of X(k), we have that i − i ′ is a linear
combination of vj , j > k, and thus orthogonal to the linear space W(k)

Denoting by di the distance between i and the origin (center of gravity), by di′
the distance between i ′ and the origin and setting ei = d(i , i ′), we have a
decomposition

d2
i = d2

i′ + e2i (12)
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Best fitting k-dimensional linear space 54

XG = "0

di

Rp

1
2

j

p

W
k

i

i ′

ei

d2
i = d2

i ′ + e2i

di ′
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Best k-dimensional fitting 55

The cloud of (blue) points X(k) gives the best rank k approximation
of X∗, corresponding to the best fitting k-dimensional linear space
in terms of least square distances, between the centered cloud of
points defined by X∗ and the cloud of the projected points in the
k-dimensional space, X(k). In other words it minimizes the sum of
square distances

∑
i e

2
i (Eckart-Young’s Theorem)

Using the decomposition (12) of the slide 52 we obtain,

var(X∗)︸ ︷︷ ︸
total var.

=
1

N − 1

∑

i

d2
i =

1

N − 1

∑

i ′

d2
i ′ +

1

N − 1

∑

i

e2i

= var(X(k))︸ ︷︷ ︸
explain. var.

+
1

N − 1

∑

i

e2i

︸ ︷︷ ︸
unexplain. var.

Therefore the optimal solution in the sense of the least square
distances, minimizes the variance that is left unexplained, i.e.,
maximizes the variance of the cloud of N points projected in a
k-dimensional space (explained variance) - main goal of PCA!
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Equivalence between the EVD and SVD approaches 56

We shall assume all singular values positive (otherwise we have to work with a slight
different version of the SVD decomposition):

(X∗)TX∗ = (U∆VT )T (U∆VT ) = V∆TUTU∆VT = V∆2VT ,

which is equivalent to say that,

S = V

(
1

√
N − 1

∆

)2

VT (13)

Hence the PC loadings, i.e., the eigenvectors of S, are the right singular vectors of X∗

and the corresponding PC standard deviations, the singular values of X∗ divided by√
N − 1. The PC factor scores are given by

Y∗ = X∗V = U∆VTV = U∆,

and the left singular vectors verify

U = X∗V∆−1 = Y∗∆−1,

where Y∗∆−1 is a matrix of normalized scores (more precisely, with constant standard
deviations 1√

N−1
)

One can consider, alternatively, the SVD of 1√
N−1

(X∗)TX∗. In this case the PCs

variances λj are the squared singular values δ2j of 1√
N−1

(X∗)TX∗ (see the slides of

Prof. Cadima)
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comparing PCA via EVD and via SVD in R 57

R

# EVD APPROACH TO PCA
X<-iris[-5] # can be replaced by your own dataset or standardized
X.pca <- prcomp(X) # computes the PCA of X
loadings <- X.pca$rotation # eigenvectors of S=cov(X) (loadings)

sdev <- X.pca$sdev
# standard deviations of the PCs (square roots of the eigenvalues of S)

scores <- X.pca$x # scores (coordinates of the individuals w.r.t PCs)

# SVD APPROACH TO PCA
Xc <- scale(X,scale=FALSE) # Xc = centered X ou t(t(X)-colMeans(X))
X.svd<-svd(Xc) # computes the SVD of Xc
left.sing <- X.svd$u # left singular vectors of Xc
singvalues <- X.svd$d # singular values of Xc
right.sing <- X.svd$v # right singular vectors of Xc

# EQUIVALENCE BETWEEN EVD AND SVD APPROACHES

sdev; singvalues/sqrt(N-1)
# eigenvalues of S = square of sing values of Xc (divided by N-1)

head(loadings); head(right.sing) # loadings = right sing vectors

head(scores) ; head(left.sing%*%diag(singvalues))
# scores = normalized left sing vectors
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A very useful decomposition. . . 58

Any matrix CN×p of rank r can be decomposed as a

C = ABT =
r∑

i=1

aib
T
i ,

where A = [ a1 · · · ar ] and B = [ b1 · · · br ], with ai ∈ RN and bi ∈ Rp

In particular, any matrix C of rank one, i.e., with proportional rows and proportional
columns, can be decomposed as:

C = a bT =





a1
...
aN




[

b1 · · · bp
]
, with

a =





a1
...
aN



 = (a1, . . . , aN) ∈ RN , b =





b1
...
bp



 = (b1, . . . , bN ) ∈ Rp

The decomposition is not unique. For instance,

C =

[
2 4 6
4 8 12

]
=

[
2
4

] [
1 2 3

]
=

[
1
2

] [
2 4 6

]

In the general case the decomposition can be obtained using the SVD. . .
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Biplots 59

The biplots provide simultaneous representations of the individuals and
variables of a data matrix in a low dimension space (usually of dimension
two or three), using the SVD applied to the centered data matrix in order
to obtain a decomposition of the type described in the previous slide

Let X∗ be the matrix obtained by centering the p observed variables of a
data matrix XN×p (i.e., column centering the matrix). We will assume
X∗ has rank p. Applying the SVD we can write,

X∗ = U∆VT (14)

where,

UN×p verifies UTU = Ip is the matrix of left singular vectors of X∗

Vp×p verifies VTV = Ip is the matrix of right singular vectors of
X∗, i.e., the matrix of loadings of X

∆p×p = diag(δ1, . . . , δp) is a diagonal matrix containing the singular
values of X∗
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Biplots (cont.) 60

Using the decomposition (14) of the previous slide we can decompose
X∗ = GHT in many different ways. We will refer here two of them:

G = U∆ and H = V - focuses on distances between individuals

G = U and H = V∆ - focuses on covariances/correlations between
variables

In the first case, G = U∆ contains the left singular vectors scaled by the
respective singular values which gives the factor scores (coordinates) of
the individuals. Actually, the right singular vectors of X∗ are eigenvectors
of the covariance matrix S, i.e, vectors of loadings of X and therefore the
scores matrix is given

Y∗ = X∗V = U∆VTV = U∆

The matrix H = V,corresponds to the matrix of right singular vectors,
i.e. to the matrix of the vectors of loadings
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Biplots (cont.) 61

Consider now the second case, GN×p = U and Hp×p = V∆ and denote

GT = [ g1 · · · gN ],

where gj ∈ Rp is the j-th row of G. Similarly denote

HT = [ h1 · · · hp ],

where hk ∈ Rp is the k-th row of H The rows of G and H are called,
respectively, markers of individuals and variables. We have,

(N − 1)S = (X∗)TX∗ = (GHT )TGHT

= HGTGHT = HUTUHT = HHT

Hence
(hj)Thk = (N − 1)s2jk ,

that is, the inner product between the markers hj and hk is proportional
to the covariance between the observed variables xj and xk . In particular,
the length of each variable marker is proportional to the standard
deviation of the corresponding variable and we get, denoting θjk the angle
between the variable markers hj and hk ,

cos(θjk ) = rjk
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Euclidean and Mahalanobis distances 62

The usual squared (euclidean) distance between the individuals xi , x! ∈ Rp is

d2
i! = ‖xi − x!‖2 = (xi − x!)T (xi − x!)

The (squared) Mahalanobis distance accounts for the dataset variability and
generalizes the euclidean distance. Assuming the covariance matrix S invertible, the
Mahalanobis distance between the individuals xi , x! ∈ Rp is defined as

δ2i! = (xi − x!)TS−1(xi − x!)

The Mahalanobis distance between the individuals xi = Hgi and x! = Hg! is
proportional to the (squared) euclidean distance between the corresponding markers gi

and g!. Actually, from relation (13) of slide 56, we obtain

(N − 1)V∆−2VT = (N − 1) ((X∗)TX∗))−1 = S−1

and therefore

(N − 1)(gi − g!)T (gi − g!) = (N − 1)(gi − g!)T∆∆−2∆(gi − g!)

= (N − 1)(gi − g!)T∆(VTV)∆−2(VTV)∆(gi − g!)

= (gi − g!)T (V∆)TS−1(V∆)(gi − g!)

= (gi − g!)THTS−1H(gi − g!)

= (H(gi − g!))TS−1H(gi − g!)

= (xi − x!)TS−1(xi − x!) = δ2i!, (UFF!)
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“Exact” interpretation of a biplot 63

Summarizing, we have the following “exact interpretations”:

The cosine of the angle between two variable markers is the
correlation coefficient between these variables

The length of a variable marker is proportional to the standard
deviation of the variable

The euclidean distance between individual markers is proportional to
the Mahalanobis distance between the corresponding individuals

The coordinate of the orthogonal projection of an individual marker
gi onto the line defined by a variable marker hj equals value of the
individual on that variable divided by the standard deviation of the
variable

The last property follows directly from relation X∗ = GHT , which implies
that x∗ij = (gi )Thj and therefore,

projhj (g
i ) =

(gi )Thj

‖hj‖2 hj =
x∗ij

‖hj‖2h
j

Note that ‖projhj (gi )‖ =
|x∗ij |
‖hj‖
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“Approximated interpretations” of a biplot 64

Let GT (m) = U(m)T and HT (m) = ∆(m)V(m)T , 1 ≤ m ≤ p be the submatrices
containing the first m rows of GT and HT , resp. Denote

(G(m))T = [ g1m · · · gNm ], (H(m))T = [ h1m · · · hpm ]

The rows of G(m) and H(m) give approximations to the markers of the individuals
and variables. We have:

The cosines of the angles between variable markers are approximately equal to
the correlation coefficients between these variables

The length of a variable marker is approximately proportional to the standard
deviation of the variable

The (euclidean) distances between individual markers are approximately
proportional to the Mahalanobis distance between these individuals

The coordinate of the orthogonal projection of an individual marker gi onto the
line defined by a variable marker hj is approximately equal to the value of the
individual on that variable divided by the standard deviation of the variable

The higher the proportion of the explained variance by the first m PCs, the better the
approximations in the previous points
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Displaying a biplot using in R software 65

We can display the biplot of the iris flowers data set in two distinct ways, with the
biplot function:

R

Xc <- scale(iris[-5],scale=FALSE) #centred iris flower dataset

iris.svd <- svd(Xc) # compute the svd UDVT̂ of the centred iris dataset

U <- iris.svd$u

V <- iris.svd$v

Delta <- diag(iris.svd$d) # creates a diagonal matrix with diagonal with
the singular values

par(mfrow=c(2,2)) # 4 simultaneous windows

plot(iris.pca$x[,1:2],asp=TRUE,pch=16) # plot

biplot(U % * % Delta, V, asp=TRUE,cex=.5) # G=U Delta; H=V

biplot(U, V% * %Delta, asp=TRUE,cex=.5) # G=U; H=V Delta

biplot(iris.acp, asp=TRUE,cex=.5) # computes the second species
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Iris flower biplots 66

The output obtained by the script of the previous slide
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Some notes on generalized euclidean distances 67

If S is a symmetric positive definite (hence invertible) matrix of order p, we define the
(squared) generalized euclidean distance between the vectors x, y ∈ Rp as

d2
S(x, y) = (x− y)TS−1(x − y)

If S = Ip , d2
S(x, y) = (x− y)T (x− y) = ‖x− y‖2 is the usual (squared)

Euclidean distance between x and y

If S = cov(X), d2
S(x, y) is the (squared) Mahalanobis distance between x and y

When the variables are uncorrelated, the covariance matrix S is a diagonal
matrix containing the variances of the p variables and d2

S(x, y) equals the
(squared) euclidean distance between the corresponding standardized variables

The Mahalanobis distance of between an individual and the cloud’s center of
gravity is ‘smaller’ along the directions of X of greater variability and generalizes
to the multivariate case the idea of how many standard deviations each observed
vector x is far away from the mean. This can be useful, for instance, to detect
outliers. . .
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Mahalanobis distances for the iris flower data set 68

The variance-covariance matrices of the sepal and the petal widths are, respectively:

[
0.6856935 −0.0424340
−0.0424340 0.1899794

]
,

[
3.116278 1.2956094
1.295609 0.5810063

]

The iris flowers at Mahalanobis distances from the mean less than or equal to 1 are
displayed in red and the iris flowers at mahalanobis distances greater than 1 and
smaller than or equal to 2 displayed in blue color
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Contribution and square cosine 69

Recall that the contribution of individual i to a PCk is the part of the variance
of PCk that is due to individual i (in %):

ctri,k =
(y∗

i,k)
2

∑N
j=1(y

∗
j,k)

2
× 100

Individuals with contributions above the average are usually more important to
interpret the PC

A related notion is the square cosine of a PC k with an individual i , which gives
the contribution of the PC to the squared distance of the individual to the origin:

cos2i,k =
(y∗

i,k)
2

∑p
j=1(y

∗
i,j)

2

Square cosines can be added together to assess the quality of representation of
an individual i by its projection on the space defined by several PCs. For
instance, the quality of representation of individual i in the PFP is given by,

cos2i,1 + cos2i,2 =
(y∗

i,1)
2 + (y∗

i,2)
2

∑p
j=1(y

∗
i,j)

2

Only well represented individuals should be interpreted!
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PCA interpretation - summary 70

Proportion of the variance explained by a PC

Correlation between a variable and a PC

Contribution of an individual to a PC

Square cosine of a PC with an individual

Biplot
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