Given a collection of N objects, $X=\left\{x_{1}, \ldots, x_{N}\right\}$, one seeks a partition of X into K nonempty disjoint sets (the clusters),

$$
X=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{K}
$$

such that, given the notion of resemblance considered, it

- maximizes the internal homogeneity or cluster cohesion, or equivalently, it minimizes the intra-cluster variability - objects belonging to the same cluster should share the similar features
- it maximizes the external heterogeneity or cluster separation, i.e., it maximizes the inter-cluster separability - objects belonging to distinct clusters should be very dissimilar and have clear distinguished features
- Clustering always imposes some kind structure on the data, even when no special structure or discontinuities are present!
For instance, many clustering techniques tend to form globular clusters, e.g., with elliptical or spherical shapes
- How to choose the best partition ?

The number of distinct partitions of N elements into K clusters $(1 \leq K \leq N)$ equals

$$
\xi(N, K)=\frac{1}{K!} \sum_{j=1}^{K}\binom{K}{j}(-1)^{K-j j_{j} N}
$$

which is a huge number, known as Stirling number of second kind, even for relatively small values of N and K, making impossible to to find the best partition by exhaustive search.
For instance, the number of partitions of a set with 25 elements into 8 clusters equals

$$
\xi(25,8)=69022372111836858
$$

For N large and K fixed, $\xi(N, K) \approx \frac{K^{N}}{K!}$
In the previous example, one gets $\xi(25,8) \approx \frac{8^{25}}{8!}=9.369775 e+17$
Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications • 2023/2024

Cluster model

- Variables/features selection
- Which variables (continuous, categorical, ordinal, binary, ...), encode as much as possible the information concerning the task, avoiding redundancy (i.e., highly correlated variables) ?
- Standardize/normalize the variables to balance their importance?
- Clustering model
- Which combination of a clustering method with a distance/dissimilarity is more appropriate?
- Cluster validation
- Internal: How many groups and how to assess the quality of the clusters ?
- External: How the clustering results compare with the outcomes obtained using different clustering models or how they compare with known information ?
- Interpretation of the results
- Are the outcomes interpretable in the context of the problem ?
- Which variables/features (active/supplementary) are more
important to ${ }^{\text {and }}$ characterize the clusters? \qquad

Example of numerical dataset - iris flower dataset

The well known iris flower dataset contains the sepal and petal lengths and widths (in cm) of 150 iris flowers

	Sepal.Length	Sepal.Width	Petal.length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4
7	4.6	3.4	1.4	0.3
8	5.0	3.4	1.5	0.2
9	4.4	2.9	1.4	0.2
10	4.9	3.1	1.5	0.1

- How to measure the distance between each pair of iris flowers ?
- Standardize (z-score normalization) or normalize (min-max scaling) the variables in order that the differences between all variables contribute equally?

In the biogeography it is common to use biological markers (e.g., river fish species) to distinguish between sites (e.g., river basins)

| | annectens | ansorgi | bichir | endlicheri |
| ---: | :--- | :--- | :--- | :--- | :--- |
| GAMBIE | 1 | 0 | 1 | |
| CEBA | 0 | 1 | 1 | 0 |
| CRUBAL | 0 | 1 | 0 | 1 |
| KONKOURE | 0 | 0 | 0 | 0 |
| KOLENTE | 0 | 0 | 0 | 0 |
| LSCARC | 0 | 0 | 0 | 0 |
| ROKEL | 0 | 0 | 0 | 0 |

- Which type of variable/feature is more appropriate to encode this type data?
- How to assess the similarity between river basins given the distribution of fish species?
- How to assess the similarity between fish species given their distribution by the sites? language spoken by 1000 inhabitants in 5 countries

| | English | French | Spanish | German | Italian | Total |
| :---: | :---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Canada | 688 | 280 | 10 | 11 | 11 | 1000 |
| USA | 730 | 31 | 190 | 8 | 41 | 1000 |
| England | 798 | 74 | 38 | 31 | 59 | 1000 |
| Italy | 17 | 13 | 11 | 15 | 944 | 1000 |
| Switzer. | 15 | 222 | 20 | 648 | 95 | 1000 |
| | | | | | | |
| Total | 2248 | 620 | 269 | 713 | 1150 | 5000 |

(\{\bf source\}: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718710/)

- How to assess the similarity between countries given the languages spoken in these countries ?
- How to assess the similarity between the spoken languages given their distribution by the countries ?
Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications • 2023/2024

Consider $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ of \mathbf{R}^{n}

- The usual euclidean distance:

$$
d(x, y)=\sqrt{\sum_{i=1}^{N}\left|x_{i}-y_{i}\right|^{2}}
$$

- The Manhattan distance (also called city block or taxicab distance):

$$
d_{1}(x, y)=\sum_{i}\left|x_{i}-y_{i}\right|
$$

- The so-called maximum distance (also called Chebyshev distance):

$$
d_{\max }(x, y)=\max _{i}\left|x_{i}-y_{i}\right|
$$

For all $x, y \in \mathbb{R}^{N}$ we have $d_{1}(x, y) \geq d(x, y) \geq d_{\max }(x, y)$

- For the taxi-cab and euclidean distances all differences $\left|x_{i}-y_{i}\right|$, $i=1, \ldots, N$, have approximately the same relative weight in the computation of the overall distance
- For the maximum distance only the variable(s) i yielding the largest difference $\left|x_{i}-y_{i}\right|$ accounts for the overall distance

If \mathbf{x}, \mathbf{y} are N -dimensional vectors with positive components, one can define the so-called Canberra distance

$$
d(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{N} \frac{\left|x_{i}-y_{i}\right|}{x_{i}+y_{i}}
$$

- This distance is a weighted version of the Manhattan distance that is sensitive to differences between values x_{i} and y_{i} of small amplitudes.
- It is invariant under differentiated changes of scale in each variable but not under variables centering. Only the relative proportion between the differences of the coordinates and their sum are importante.
- Usually, the euclidean distance between original numerical variables is employed if all variables are expressed in the same units and similar scales of measurement. Otherwise, it is usually better to standardize the data to give the same weight to all variables.
- It could also be interesting to explore if other types of dissimilarities (for instance, the Canberra or Mahalanobis distance), could be more appropriate...

Pedro Cristiano Silva (ISA/UL) - Mathematical Models and Applications - 2023/2024

Dissimilarity measures for binary data

Consider binary vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ and define
a: nr components where both variables take value 1 (positive agreement)
b : nr of components where \mathbf{x} take value 1 and \mathbf{y} value 0 (disagreement)
c: nr of components where \mathbf{x} take value 0 and \mathbf{y} value 1 (disagreement)
d : nr components where both variables take value 0 (negative agreement)

- Simple matching (counts double-zeroes, is suitable if 0-1 represent equally valued attributes like male-female):

$$
S(\mathbf{x}, \mathbf{y})=\frac{a+d}{a+b+c+d} \Longrightarrow D(\mathbf{x}, \mathbf{x})=1-S(\mathbf{x}, \mathbf{x})=\frac{b+c}{a+b+c+d}
$$

- Jaccard coefficient (does not count double zeroes. Suitable if 0-1 represent unequal valued attributes, like species presences-absences):

$$
J(\mathbf{x},)=\frac{a}{a+b+c} \Longrightarrow D(\mathbf{x}, \mathbf{y})=1-J(\mathbf{x}, \mathbf{y})=\frac{b+c}{a+b+c}
$$

Assume that we have two binary variables \mathbf{x} and \mathbf{y} representing presences (1) and absences (0) of two species at 16 spots:
$\mathbf{x}=(0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0), \quad y=(0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1)$
We want to determine how similar are the two species with regard to their distribution in the 16 spots. Computing the positive and negative agreements/disagreements, we get $a=1, b=3, c=3$ and $d=9(a+b+c+d=16)$. Therefore we have.

- Simple matching: $\frac{a+d}{a+b+c+d}=10 / 16$
- Jaccard coefficient: $\frac{a}{a+b+c}=1 / 7$

The asymmetrical character of Jaccard's coefficient seems to the be a more suitable similarity to create homogeneous groups of species with respect to their distribution in the spots

R

\# The R function dist with the method ''binary', computes the dissimilarity as $d(x, y)=1-S(x, y)$, where S is the Jaccard coefficient $\mathrm{d}=$ dist (cbind (x, y), method=' 'binary' ', diag=FALSE, upper=FALSE, $\mathrm{p}=2$) Several other dissimilarity measures well suited for binary data in the framework of ecology and community composition data are available via the function dist.ldc from the ADESPATIAL package

Pedro Cristiano Silva (ISA/UL) - Mathematical Models and Applications - 2023/2024

- Let $\mathbf{X}=\left[x_{i j}\right]$ be a contingency table, where $x_{i j}$ is the observed frequency in category A_{i} of a nominal variable A and category B_{j} of a nominal variable B (assuming nonzero row and column sums). Let I and J be the number of categories of A and B and $N=\sum_{i, j} x_{i j}$ the total number of observations.
- Dividing each row i by the corresponding row total, $x_{i}=\sum_{j} x_{i j}$, we obtain the so-called i th row-profile, $\left(\frac{x_{i 1}}{x_{i}}, \ldots, \frac{x_{i j}}{x_{i}}\right)$, which corresponds to the conditional distribution of variable B assuming category a_{i} of A.
- The set of the I row-profiles defines a cloud of I points in \mathbb{R}^{J} and the centroid of this cloud, $\frac{1}{l} \sum_{i}\left(\frac{x_{i 1}}{x_{i}}, \ldots, \frac{x_{i J}}{x_{i} .}\right) \in \mathbb{R}^{J}$, is called is the mean row-profile.
- If variables A and B are independent, i.e., $x_{i j}=\frac{x_{i} . x_{. j}}{N} \forall i, j, i$ th row-profile verifies

$$
\left(\frac{x_{i 1}}{x_{i} .}, \ldots, \frac{x_{i J}}{x_{i \cdot}}\right)=\left(\frac{x_{\cdot 1}}{N}, \ldots, \frac{x_{\cdot J}}{N}\right)=\left(f_{\cdot 1}, \ldots, f_{. J}\right)
$$

where $f_{. j}=\sum_{i} f_{i j}$ are the column marginals of the relative frequencies $f_{i j}=\frac{x_{i j}}{N}$. In particular, all row-profiles are equal to the mean row-profile. If A and B are not independent, the row-profiles spread away from the mean row-profile.

- The squared χ^{2}-distance between the i th and ℓ th row-profiles is defined as,

$$
d_{\chi^{2}}^{2}(i, \ell)=\sum_{j=1}^{J} \frac{1}{f_{. j}}\left(\frac{x_{i j}}{x_{i} .}-\frac{x_{\ell j}}{x_{\ell .}}\right)^{2}=\sum_{j=1}^{J} \frac{1}{f_{. j}}\left(\frac{f_{i j}}{f_{i .}}-\frac{f_{\ell j}}{f_{\ell .}}\right)^{2}
$$

(the weights in the inverse proportion of the column marginal frequencies f. increase the importance of the small differences between rare categories).

Pedro Cristiano Silva (ISA/UL) - Mathematical Models and Applications - 2023/2024

χ^{2}-distance between the row-profiles

- The corresponding 5 row-profiles and mean row-profile are given below English French Spanish German Italian I Totals $\begin{array}{llllllll}\text { Canada } & 0.688 & 0.280 & 0.010 & 0.011 & 0.011 & 1.000\end{array}$ \begin{tabular}{llllll|l}
USA \& 0.730 \& 0.031 \& 0.190 \& 0.008 \& 0.041 \& 1.000

 $\begin{array}{llllllll}\text { England } & 0.798 & 0.074 & 0.038 & 0.031 & 0.059 & 1.000\end{array}$

ngland \& 0.798 \& 0.074 \& 0.038 \& 0.031 \& 0.059 \& 1.000

Italy \& 0.017 \& 0.013 \& 0.011 \& 0.015 \& 0.944 \& 1.000
\end{tabular} $\begin{array}{clllllll}\text { Italy } & 0.017 & 0.013 & 0.011 & 0.015 & 0.944 & 1.000 \\ \text { Switz. } & 0.015 & 0.222 & 0.020 & 0.648 & 0.095 & 1.000\end{array}$

$\begin{array}{ccccccc}\text { mean } & 0.4496 & 0.124 & 0.0538 & 0.1426 & 0.230 & 1.000\end{array}$ (verify) $\begin{array}{llllllll}f . j & 0.4496 & 0.124 & 0.0538 & 0.1426 & 0.230 & 1.000 \text { (verify) }\end{array}$

- The 5 row-profiles define a a cloud of $I=5$ points in \mathbb{R}^{J}, with $J=5$ (number of columns) with centroid given by the mean row-profile
- The squared χ^{2}-distance between the row profiles of Canada and Switzerland is

$$
\begin{aligned}
d_{\chi^{2}}^{2}(1,5)= & \frac{(0.688-0.015)^{2}}{0.4496}+\frac{(0.280-0.222)^{2}}{0.124}+\frac{(0.010-0.020)^{2}}{0.0538}+ \\
& \frac{(0.011-0.648)^{2}}{0.1426}+\frac{(0.011-0.095)^{2}}{0.230}=3.912575
\end{aligned}
$$

- We define similarly the set of 5 column-profiles, which can be regarded as a cloud of $J=5$ points in \mathbb{R}^{I}, with $I=5$ and the corresponding pairwise squared χ^{2}-distances (left as an exercise)
- The correspondence analysis (CA) allows to study and visualize the relationships of a contingency table when the number of categories is high.

The R function dist.ldc from the package ADESPATIAL computes the χ^{2}-distance matrix between every pair of row-profiles

R library (adespatial)

tab<-matrix (c (688, 280, $10,11,11,730,31,190,8,41,798,74$, $38,31,59,17,13,11,15,944,15,222,20,648,95)$, nrow=5, byrow = TRUE)
colnames(tab)<-c("English", "French", "Spanish", "German", "Italian") rownames(tab)<-c("Canada", "USA", "England", "Italy", "Switz.")
tab
d.chisqr<-dist.ldc(tab,method="chisquare")
d. chisqr

We obtain the following distance matrix $\left(d_{\chi^{2}}\right)$ between row-profiles

Countries	Canada	USA	England	Italy
USA	1.0536310			
England	0.6297091	0.6780536		
Italy	2.3154271	2.2966246	2.1925680	
Switzerland	1.9780231	2.2030640	2.0546442	2.5094977

For instance, $d_{\chi^{2}}^{2}\left(r_{1}, r_{5}\right)=(1.9780231)^{2}=3.912575$, as computed in the previous slide

Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications - 2023/2024

- An usual similarity notion between two variables x and y is Pearson's correlation coefficient

$$
r=\frac{s_{x y}^{2}}{s_{x} s_{y}}
$$

This similarity can be transformed into a dissimilarity using the transformation $d=\sqrt{1-r^{2}}$, which take values in the interval $[0,1]$

- Highly linearly correlated variables (positively or negatively) will have $d \approx 0$ while for uncorrelated variables $d \approx 1$
- Alternatively, we can define $d=(1-r) / 2$. In this case d take values in $[-1,1]$ and both the strength of the linear relationship and its direction are accounted
- We can use the above dissimilarity measures to cluster variables. Each cluster will consist of a set of variables highly correlated. This can be useful to detect redundancies and can give an idea of the number of principal dimensions of data

```
Pedro Cristiano Silva (ISA/UL) . Mathematical Models and Applications · 2023/2024
```

- Distance-based models rely only on pairwise dissimilarities between individuals
- Density-based clustering seeks for high density regions of points (clusters) separated by low density of points (noise)
- Model-based clustering assumes that the data in each cluster is drawn from some probabilistic distribution (the standard model is a finite mixture of multivariate gaussians) and assign a degree of membership (probability) to each element to belong to a cluster. Can be considered as generalizations of some distance-based clustering methods
- Constrained-clustering methods, are clustering methods that also account for other type of information, like spatial relationships between observations (for instance, contiguity relationships between cells in a map)
- Hierarchical clustering - produces a nested structure of partitions and do not requires that the number of clusters is known a priori:
- Hierarchical agglomerative (or ascending) clustering algorithm (HAC) - starts from the partition consisting of N clusters with one individual per cluster (singletons) and proceeds until a unique group is obtained.
- Divisive clustering algorithm - proceeds in the opposite way and are usually more computacional demanding, being more seldom used (not considered in this course)
- Partitional clustering - produces flat (non-nested) partition and requires that the number of clusters is known a priori. Usually seeks to maximize some criterion like the intra-cluster homogeneity or the inter-cluster heterogeneity.

Algorithm

Input: the proximity matrix containing the pairwise dissimilarities between N individuals x_{1}, \ldots, x_{N}

- Starts with N clusters containing a single object each (singletons);
- Merges the least dissimilar pair of clusters into a new cluster, according to the given definition of distance between clusters, and updates the proximity matrix (reducing its order by one);
- Repeats step-2 N-1 times, until only one cluster containing all individuals is obtained.

Output: the sequence (of length $N-1$) of the clusters aggregated during the clustering algorithm along with pairwise distances between these merged clusters

Once two individuals are grouped together they cannot be separate at a posterior stage.

Updating formula for HAC

The dissimilarity $d_{i, j}=D\left(\mathcal{C}_{i}, \mathcal{C}_{j}\right)$, between clusters C_{i} and C_{j} with n_{i} and n_{j} elements, respectively, depends on the aggregation method:

- Single-linkage or nearest-neighbor:

$$
d_{i, j}=\min _{x \in \mathcal{C}_{i}, y \in \mathcal{C}_{j}} d(x, y)
$$

- Complete-linkage or furthest-neighbor:

$$
d_{i, j}=\max _{x \in \mathcal{C}_{i}, y \in \mathcal{C}_{j}} d(x, y)
$$

- Average:

$$
d_{i, j}=\frac{1}{n_{i} n_{j}} \sum_{x \in C_{i}} \sum_{y \in C_{j}} d(x, y)
$$

- Centroid
- Median
- Ward or minimum-variance clustering
- .

Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications • 2023/2024

- For all aggregation methods that we are going to consider, the dissimilarity between two merged clusters, say $\mathcal{C}_{i} \cup \mathcal{C}_{j}$, and each one of the remaining clusters \mathcal{C}_{k}

$$
d_{i j, k}=D\left(\mathcal{C}_{i} \cup \mathcal{C}_{j}, \mathcal{C}_{k}\right)
$$

can be determined in terms of the pairwise dissimilarities,

$$
d_{i, j}=D\left(\mathcal{C}_{i}, \mathcal{C}_{j}\right), \quad d_{i, k}=D\left(\mathcal{C}_{i}, \mathcal{C}_{k}\right), \quad d_{j, k}=D\left(\mathcal{C}_{j}, \mathcal{C}_{k}\right)
$$

- In other words, the proximity matrix containing the pairwise distances between the clusters at a given step $\ell+1$ can be determined in terms of the proximity matrix containing the pairwise distances between the clusters at the previous step ℓ, via a convenient updating formula
- Therefore and unlike many other statistical methods like PCA, the HAC algorithm does not require the knowledge of the original data matrix \mathbf{X}, but only the knowledge of the proximity matrix containing the pairwise distances between the elements of \mathbf{X}.
- Single-linkage or nearest-neighbor:

$$
d_{i j, k}=\min \left\{d_{i, k}, d_{j, k}\right\}
$$

- Complete-linkage or furthest-neighbor

$$
d_{i j, k}=\max \left\{d_{i, k}, d_{j, k}\right\}
$$

- Average

$$
d_{i j, k}=\frac{n_{i} d_{i, k}+n_{j} d_{j, k}}{n_{i}+n j}
$$

The sequence of length $N-1$ of the merged clusters and the corresponding fusion costs (i.e., the distance between the merged clusters) can be graphically represented by a special tree graph called dendrogram

- Dendrograms are tree-like diagrams made of branches that join terminal nodes (leaves)
- The branches represent clusters and the heights at which the branches are connected represent fusion costs. The leaves represent the objects
- The lifetime of a branch is the difference of fusion costs between the step in which it appears and the step in which it is aggregated

Step -2

As an example we are going to apply the single-linkage clustering algorithm to a set of 6 points

Pedro Cristiano Silva (ISA/UL) . Mathematical Models and Applications - 2023/2024

Step - 3

PROXIMITY MATRIX

PROXIMITY MATRIX

Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications - 2023/2024

step - 6 (final step)

The final structure of nested clusters and the dendrogram encoding the clustering procedure are the following

> PROXIMITY MATRIX

$$
\begin{array}{c|c}
& \{a, b, c, d\} \\
\cline { 2 - 3 } & 1.3
\end{array}
$$

dendrogram

Next step is the final one and merges the clusters $\{a, b, c, d\}$ and $\{e, f\}$ with fusion cost 1.3

step - 6 (final step)

The final structure of nested clusters and the dendrogram encoding the clustering procedure are the following

It performs hierarchical agglomerative clustering using several aggregation criterion methods and it admits an arbitrary dissimilarity matrix as input
input: a dissimilarity matrix d and the clustering method among the options, "ward", "single", "complete" (default), "average", "mcquitty", "median" or "centroid".
value: the function returns an object of the class hclust, which consists of a list including, among others, the following elements: merge - a $(n-1) \times 2$ matrix indicating the clusters being merged heigth - the list of fusion costs

R (hclust function)

hc<-hclust(d, method='‘complete'', members=NULL) plot(hc) or plot(hc, hang=-1) to plot the dendrogram with all leaves at the same height

Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications - 2023/2024

X<-matrix (c ($0,0,0.5,0.5,0.85,0.5,1.75,0.25,2.75,1,3.25,1$),
nrow=6,byrow=TRUE) \# the set of 6 points $\{a, b, c, d, e, f\}$ in two variables [,1] [,2]
[1,] 0.000 .00 point "a"
[2,] 0.500 .50 point "b"
[3,] 0.850 .50 point "c"
[4,] 1.750 .25 point "d"
$[5]$,2.751 .00 point "e"
[6,] 3.251 .00 point " f "
d<-dist(X) \# by default uses the euclidean distance
SL<-hclust(d, method="single")

SL\$height

$\begin{array}{llllllll}\text { [1] } & 0.375 & 0.5 & 0.707 & 0.91 & 1.25\end{array}$
SL\$merge
[,1] [,2]
[1,] -2 -3 (merges singletons $\{b\}$ and $\{c\}$)
[2,] -5 -6 (merges singletons $\{e\}$ and $\{f\}$
[3,] -1 1 (merges singleton $\{a\}$ with cluster $\{b, c\}$)
[4,] -4 3 (merges singleton $\{d\}$ with cluster $\{a, b, c\}$)
$[5]$,24 (merges cluster $\{e, f\}$ with cluster $\{a, b, c, d\}$)
\# The number with minus sign refers to a singleton ID
\# otherwise refers to the step number where the cluster was aggregated
plot (SL, phang=isthoniplot the dendrogram Models and Applications - 2023/2024

Example

A cut in a dendrogram at a given height τ produces the (flat) partition into the clusters whose fusion cost is smaller than τ

Usually one seeks cuts in the dendrogram such that:

- split high height branches (high lifetimes) to get high inter-cluster heterogeneity
- as close as possible to the leaves to get high intra-class homogeneity

Some caution has to be applied regarding the decision where to cut the dendrogram (and what is the "best" number of clusters). With some methods (for instance, the Ward method), the dendrogram lifetimes tend to increase when the larger clusters are merged, due to the way the fusion costs are defined

Several internal validity indices can be used to estimate the optimal number of clusters

For instance, to obtain a partition into 2 clusters we have to cut the dendrogram at some height in the interval]0.9, 1.3[, yielding the clusters $\mathcal{C}=\{a, b, c, d\}$ and $\mathcal{C}^{\prime}=\{e, f\}$

- The cluster $\{e, f\}$ is relatively well separate from the cluster $\{a, b, c, d\}$ since the fusion cost (1.3) between these groups is relatively high
- But cluster $\{a, b, c, d\}$ is not very homogeneous since the fusion cost (0.9) of aggregating all of its elements is also relatively high

[^0]The resulting partition into two clusters $\{a, b, c, d\}$ and $\{e, f\}$ (depicted using distinct colors)

R (cutree function)

SL<-hclust(X,method="single")
part<-cutree(SL,2) \# 2 clusters
\# \# or
part<-cutree(SL, $\mathrm{h}=1.1$) \# h is the height
part
plot (X, type="p", cex=0.8, pch=16, col=part, asp=TRUE)
Pedro Cristiano Silva (ISA/UL) - Mathematical Models and Applications - 2023/2024

Chaining effect

The chaining effect is usually produced by the existence of intermediate points between clusters, giving rise to elongated clusters connecting distant points

Single-linkage emphasizes clusters separation

The nearest neighbor distance can be used to measure of separability between clusters. More precisely, we can measure the separability of a partition $X=C_{1} \cup \cdots \cup C_{k}$ as the distance between the closest pair of clusters for the nearest neighbor criterion, i.e., as

$$
\min _{i \neq j} D\left(C_{i}, C_{j}\right)=\min _{i \neq j}\left(\min _{x \in C_{i}, y \in C_{j}} d(x, y)\right)
$$

In each step the single-linkage algorithm merges the pair of closest clusters, which amounts to say that it merges the pair of clusters that maximizes the separability of the resulting partition.
Therefore we have the following.
The single-linkage clustering algorithm tends to produce well separate partitions but not necessarily homogeneous!

Pros

- Can detect arbitrary cluster shapes
- Can be applied to large datasets since it is computationally efficient, i.e., there are polynomial-time clustering algorithms
- Emphasizes clusters separation, i.e., tends to form well separated clusters
- It is invariant under monotonic transformations of the proximity matrix since it only depends on the rank orders of the pairwise distances between the points of the dataset
- Insensitive to ties in the proximity matrix

Cons

- Suffers from the chaining effect - often produces elongated clusters with very distinct sizes
- Sensitive to observation errors and noise
- The decision of aggregate two clusters relies only on a pair of elements, one in each cluster
Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications - 2023/2024

Complete-linkage method

- In complete-linkage two clusters are merged at a height τ only if all elements of one cluster are at a distance inferior than or equal to τ with respect to the elements of the other cluster.
- As the cluster growths it becomes more and more difficult to incorporate new elements in a cluster. Therefore the aggregations tend to occur between clusters with few elements.
- The complete method tend to be sensitive to the presence of outliers.

Updating formula for the complete-linkage:

$$
d_{i j, k}=\max \left\{d_{i, k}, d_{j, k}\right\}
$$

- Perform a clustering analysis with the complete-linkage method on the set of points of the real line $X=\{0.2,3,4.2,5,5.9\}$ and represent the respective dendrogram.
- Cut the dendrogram in order to obtain two clusters. What you conclude?

Noise and outliers: single vs complete aggregation

methods

The following examples illustrates that the single clustering method is more sensitive to noise than complete, whereas the opposite occurs with outliers (the partitions on the top row have two clusters each and partitions on bottom row 3 clusters)

method=single

method=complete

Pedro Cristiano Silva (ISA/UL) \qquad 2023/2024

The diameter of a set C is the largest dissimilarity between pairs of elements of C, i.e.,

$$
\operatorname{diam}(C)=\max _{x, y \in C} d(x, y)
$$

We can measure the cohesion of a partition $X=C_{1} \cup \ldots \cup C_{k}$, as the partition diameter, i.e., as the largest value among the diameters of C_{1}, \ldots, C_{k} :

$$
\max _{i} \operatorname{diam}\left(C_{i}\right)=\max _{i}\left(\max _{x, y \in C_{i}} d(x, y)\right) .
$$

In each step the complete-linkage (also called diameter clustering) method, seeks to aggregate the clusters that produce the smallest increase in the partition diameter, i.e., such that the resulting partition has the smallest possible diameter. Hence we have

The complete--linkage clustering algorithm tends to produce compact clusters (but not necessarily well separated!)

Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications - 2023/2024

Complete-linkage clustering - summary

Pros

- Emphasizes cluster compactness - tend to form tight spherical clusters with small diameters, i.e., homogenous clusters
- It is invariant under monotonic transformations of the proximity matrix - only the ranks of the pairwise dissimilarities are important.

Cons

- Sensitive to outliers
- Cannot detect arbitrary cluster shapes
- The decision of aggregate two cluster only relies on a pair of individuals, one in each cluster

In-between the single-linkage and the complete-linkage clustering methods, we have the average method, also known as unweighted pair group method average (UPGMA) The merging cost between two clusters \mathcal{C}_{i} and \mathcal{C}_{j} is defined as the arithmetic mean of the distances between every point of \mathcal{C}_{i} and eevery point of \mathcal{C}_{j}, i.e., equals

$$
d_{i, j}=\frac{\sum_{x \in \mathcal{C}_{i}} \sum_{y \in \mathcal{C}_{j}} d(x, y)}{n_{i} n_{j}}
$$

where $n_{i}=\left|C_{i}\right|$ and $n_{j}=\left|C_{j}\right|$.

The updating formula is given by (left as an exercise),

$$
d_{i j, k}=\frac{n_{i} d_{i, k}+n_{j} d_{j, k}}{n_{i}+n_{j}}
$$

This method often outperforms single-linkage and complete linkage but it is not invariant under monotonic transformations of the proximity matrix
Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications • 2023/2024

This method, also known as UPGMC (unweighted pair group method centroid) implements the very natural idea that the clusters are represented by their centroids and thus define distance $d_{i, j}$ between two clusters \mathcal{C}_{i} and \mathcal{C}_{j} as the distance between the respective centroids m_{i} and m_{j} :

$$
d_{i, j}=\left\|\frac{1}{\left|\mathcal{C}_{i}\right|} \sum_{x_{i} \in \mathcal{C}_{i}} x_{i}-\frac{1}{\left|\mathcal{C}_{j}\right|} \sum_{x_{j} \in \mathcal{C}_{j}} x_{j}\right\|=\left\|m_{i}-m_{j}\right\|
$$

The centroid of the group obtained by merging the clusters C_{i} and C_{j} is given by

$$
m_{i j}=\frac{n_{i} m_{i}+n_{j} m_{j}}{n_{i}+n_{j}}
$$

The updating formula is more complicated in this case. We shall resort to a general procedure to define the updating formula for the centroid method.
Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications • 2023/2024

Centroid clustering model - inversions

In the centroid method the merging cost can be non-monotonic, giving rise crossovers (also called inversions) in the dendrogram

All circles have radii equal to the distance between x and $y, d_{x, y}$.

Since z (red point) lie in the grey area, ouside the black circles, $d_{x, y}<d^{\prime}, d^{\prime \prime}$. Hence x and y are the first pair of objects to be merged. Since z lie inside the red circle centred at the centroid c of x and y,

$$
D(\{x, y\}, z)=d_{c, z}<d_{x, y}=D(\{x\},\{y\})
$$

Given clusters $\mathcal{C}_{i}, \mathcal{C}_{j}, \mathcal{C}_{k}$ and $\mathcal{C}_{i j}=\mathcal{C}_{i} \cup \mathcal{C}_{j}$ we will define updating formulas for a family of clustering methods

$$
d_{i j, k}=\alpha_{i} d_{i, k}+\alpha_{j} d_{j, k}+\beta d_{i, j}+\gamma\left|d_{i, k}-d_{j, k}\right|
$$

or

$$
d_{i j, k}^{2}=\alpha_{i} d_{i, k}^{2}+\alpha_{j} d_{j, k}^{2}+\beta d_{i, j}^{2}+\gamma\left|d_{i, k}^{2}-d_{j, k}^{2}\right|
$$

depending on the method considered, where $\alpha_{i}, \alpha_{j}, \beta$ and γ are convenient parameters that may depend only on the clusters cardinality $n_{i}=\left|C_{i}\right|, n_{j}=\left|C_{j}\right|, n_{k}=\left|C_{k}\right|$ and $n_{i}+n_{j}=\left|C_{i j}\right|$:

Using the previous Lance-Williams table we obtain the following updating formula for the centroid method:

$$
d_{i j, k}^{2}=\frac{n_{i}}{n_{i}+n_{j}} d_{i, k}^{2}+\frac{n_{j}}{n_{j}+n_{j}} d_{j, k}^{2}-\frac{n_{i} n_{j}}{\left(n_{i}+n_{j}\right)^{2}} d_{i, j}^{2}
$$

Note that the distances are squared!
Repeat the clustering performed on the set \mathbf{X} of slide 124 and using the update formula given here

We say that a clustering method satisfies the monotonic condition if whenever two clusters \mathcal{C}_{i} and \mathcal{C}_{j} are merged into a cluster $\mathcal{C}_{i j}$ we have

$$
d_{i j, k} \geq d_{i, j} \quad \forall k \neq i, j, i j
$$

This implies that the dendrogram cannot have inversions

Proposition

If in the Lance-Williams's formula the parameters α_{i}, α_{j} are nonnegative, $\alpha_{i}+\alpha_{j}+\beta \geq 1$, and either $\gamma \geq 0$ or $\max \left\{-\alpha_{i},-\alpha_{j}\right\} \leq \gamma \leq 0$, the clustering method satisfies the monotonic condition (*)
$\left.{ }^{*}\right)$ A stronger condition is given by Batagelj: the Lance-Williams clustering algorithm is monotonic if and only if,

$$
\gamma \geq-\min \left(\alpha_{1}, \alpha_{2}\right), \quad \alpha_{1}+\alpha_{2} \geq 0, \quad \alpha_{1}+\alpha_{2}+\beta \geq 1
$$

From the Lance-Williams table we deduce immediately that the clustering aggregation methods, single, complete, average, McQuitty and Ward verify the conditions of the proposition above and therefore satisfy the monotonic condition. In particular, their dendrograms cannot have inversions.

Pedro Cristiano Silva (ISA/UL) - Mathematical Models and Applications - 2023/2024

Let \mathbf{X} be a dataset with N individuals, $\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}$ in p (observed) variables with mean vector $\mathbf{x}^{G}=\left(\bar{x}_{1}, \ldots, \bar{x}_{p}\right)$. Given a partition of \mathbf{X} into K clusters

$$
\mathbf{X}=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{K}
$$

we define,

$$
\begin{aligned}
& \text {-SSQ } Q_{t}=\sum_{i=1}^{N}\left\|\mathbf{x}^{i}-\mathbf{x}^{G}\right\|^{2}=\sum_{i=1}^{N} \sum_{j=1}^{p}\left(x_{i j}-\bar{x}_{j}\right)^{2} \text { (total inertia) } \\
& \text {-SSQ }=\sum_{k=1}^{K} n_{k}\left\|\mathbf{m}_{k}-\mathbf{x}^{G}\right\|^{2} \text { (between-clusters inertia) } \\
& \text {-SSQ }=\sum_{k=1}^{K} \sum_{\mathbf{x} \in \mathcal{C}_{k}}\left\|\mathbf{x}-\mathbf{m}_{k}\right\|^{2} \text { (total within-clusters inertia) }
\end{aligned}
$$

where \mathbf{m}_{k} is the centroid of cluster \mathcal{C}_{k} and n_{k} the number of its elements
Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications • 2023/2024

- At beginning all clusters have a unique element and therefore,

$$
S S Q_{t}=S S Q_{b}, \quad S S Q_{w}=0
$$

- At each step, Ward's method merges the pair of clusters $\mathcal{C}_{i}, \mathcal{C}_{j}$ yielding the smallest increase in the total within-cluster inertia $S S Q_{w}$
- We shall write $S S Q_{w}$ as

$$
S S Q_{w}=\sum_{k=1}^{K} \mathbf{e}_{k}^{2}
$$

where \mathbf{e}_{k}^{2} is the inertia of cluster k in, i.e.,

$$
\mathbf{e}_{k}^{2}=\sum_{\mathbf{x} \in \mathcal{C}_{k}}\left\|\mathbf{x}-\mathbf{m}_{k}\right\|^{2}=\frac{\sum_{\mathbf{x}, \mathbf{y} \in \mathcal{C}_{k}}\|\mathbf{x}-\mathbf{y}\|^{2}}{2 n_{k}}
$$

(note that the later expression only depends on the pairwise distances between elements of C_{k}).

A better updating formula for Ward's method using LW 135

- When two clusters \mathcal{C}_{i} and \mathcal{C}_{j} are merged into a cluster $\mathcal{C}_{i j}$, the increase in the total within-cluster inertia $S S Q_{w}$ reduces to the following statistic,

$$
\Delta_{i j} S S Q_{w}=\mathbf{e}_{i j}^{2}-\mathbf{e}_{i}^{2}-\mathbf{e}_{j}^{2}
$$

since all other within-group inertias are not affected. After $N-1$ aggregation steps (assuming $|X|=N$) the sum of the successive increases $\Delta_{i j, k}$ is equal to the total inertia $S S Q_{t}$.

- It can be proved that

$$
\Delta_{i j} S S Q_{w}=\frac{n_{i} n_{j}}{n_{i}+n_{j}}\left\|\mathbf{m}_{i}-\mathbf{m}_{j}\right\|^{2}
$$

which represents a weighted distance between the cluster centroids (cf. with centroid method).

- In particular, $\Delta_{i j} S S Q_{w}$ is always nonnegative (i.e., the $S S Q_{w}$ is increasing) and only depends on the squared distance between the cluster centroids \mathbf{m}_{i} and \mathbf{m}_{j} and on the cluster sizes n_{i} and n_{j}.
Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications • 2023/2024

Example

Consider the univariate dataset $X=\{a, b, c, d\}=\{1,2,4,8\}$
The pairwise distances and squared pairwise distances between elements of X are given, respectively, by
$\left[\begin{array}{c|ccc}D & a & b & c \\ \hline b & 1 & & \\ c & 3 & 2 & \\ d & 7 & 6 & 4\end{array}\right] \quad$ and $\quad\left[\begin{array}{c|ccc}D^{2} & a & b & c \\ \hline b & 1 & & \\ c & 9 & 4 & \\ d & 49 & 36 & 16\end{array}\right]$

The minimum of the squared distances is attained for $D^{2}(a, b)$ so the first pair to be clustered will be $a \cup b$ with squared fusion cost equal to 1

- The fusion cost between the clusters $\mathcal{C}_{i j}=\mathcal{C}_{i} \cup \mathcal{C}_{j}$ and \mathcal{C}_{k} is

$$
\Delta_{i j, k} S S Q_{w}=\frac{\left(n_{i}+n_{j}\right) n_{k}}{n_{i}+n_{j}+n_{k}}\left\|m_{i j}-m_{k}\right\|^{2}
$$

which can be used as an updating formula for Ward's clustering method but has the disadvantage that it requires the knowledge of the original dataset to compute the centroids.

- Using the Lance-Williams table we can derive an alternative updating formula for Ward's method that only requires the (squared) proximity matrix at previous step:

$$
d_{i j, k}^{2}=\frac{\left(n_{i}+n_{k}\right) d_{i, k}^{2}+\left(n_{j}+n_{k}\right) d_{j, k}^{2}-n_{k} d_{i, j}^{2}}{n_{i}+n_{j}+n_{k}}
$$

- The above expression actually returns twice the value of $\Delta_{i j, k} S S Q_{w}$ and corresponds to the square of the dendrogram height computed with R function hclust and the ward.D2 method.
Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications • 2023/2024

Example (cont.)

and

$$
\begin{aligned}
D^{2}(a \cup b, d) & =\frac{2 D^{2}(a, d)+2 D^{2}(b, d)-D^{2}(a, b)}{3} \\
& =\frac{2 \cdot 49+2 \cdot 36-1}{3}=\frac{169}{3}
\end{aligned}
$$

$D^{2}(c, d)$ is not affected. Thus the new squared dissimilarity matrix is
$\left[\begin{array}{c|cc}D^{2} & a \cup b & c \\ \hline c & \frac{25}{3} & \\ d & \frac{169}{3} & 16\end{array}\right]$

The minimum of the squared distances is attained for $D^{2}(a \cup b, c)$ so the next pair to be clustered will be $(a \cup b) \cup c$ with squared fusion cost $\frac{25}{3}$

$$
\begin{aligned}
D^{2}((a \cup b) \cup c, d) & =\frac{3 D^{2}(a \cup b, d)+2 D^{2}(c, d)-D^{2}(a \cup b, c)}{4} \\
& =\frac{3 \cdot \frac{169}{3}+2 \cdot 16-\frac{25}{3}}{4}=\frac{578}{12}
\end{aligned}
$$

The dendrogram can be presented either using squared or not squared fusion costs. Its topology however does not change

Pedro Cristiano Silva (ISA/UL) • Mathematical Models and Applications - 2023/2024

The previous dendrogram can also be computed using the R software in the following way:

```
R (Ward's method)
X<-c(1,2,4,8)
N<-length(X)
d<-dist(X) # (euclidean) distance matrix
h.ward<-hclust(d,method="ward.D2")
h.ward$height
sum(h.ward$height**2)/2
SSQt=var(X)*(N-1)
plot(h.ward, hang=-1)
```

Pedro Cristiano Silva (ISA/UL) . Mathematical Models and Applications • 2023/2024

Cophenetic distances

The cophenetic distance between two individuals x and y with respect to a given HAC is the merging cost at which x and y become members of the same cluster, during the course of the hierarchical clustering.

Any dendrogram can be represented by its matrix of cophenetic distances up to permutation of the order of the leaves. This matrix can be used to compare distinct classifications

Two elements x, y belong to the same cluster of a partition obtained cutting the dendrogram at height τ if and only if their cophenetic distance is less than τ

The cophenetic Pearson's correlation coefficient (CPCC) is Pearson's correlation between the original distances $\left(d_{i j}\right), i<j$, and the cophenetic distances ($c_{i j}$), $i<j$, (using half of the proximity matrix), i.e.,

$$
C P C C=\frac{\operatorname{cov}(D, C)}{s_{D} S_{C}}=\frac{\sum_{i<j}\left(d_{i j}-\bar{d}\right)\left(c_{i j}-\bar{c}\right)}{\sqrt{\sum_{i<j}\left(d_{i j}-\bar{d}\right)^{2}} \sqrt{\sum_{i<j}\left(c_{i j}-\bar{c}\right)^{2}}}
$$

- CPCC is considered an internal validation criterion for hierarchical clustering that can be used to evaluate and compare different hierarchical clustering methods, although should be used with caution
- A high value of the CPCC means that the cophenetic distances are a good portray of the original distances
- The cophenetic correlation usually ranges between 0.6 and 0.95 .
- Cophenetic correlations between 0.7 and 0.8 are considered reasonable good, between 0.8 and 0.9 good and above 0.9 very good.

Pedro Cristiano Silva (ISA/UL) - Mathematical Models and Applications - 2023/2024

Cophenetic correlations of example of slide 100

The original $d_{i j}$ distances of the example of slide 100 and the corresponding cophenetic distances $c_{i j}$ for the single, complete and avarage methods are

Computing the cophenetic Pearson and Spearman correlation coefficients we obtain,

$$
C P C C=r\left(d_{i j}, c_{i j}\right)=0.82, \quad C S C C=r\left(r k\left(d_{i j}\right), r k\left(c_{i j}\right)\right)=0.84
$$

Another distortion measure is the cophenetic Spearman's rank order correlation coefficient (CSCC), which only depends on the ranks of the variables and corresponds to Pearson's correlation coefficient between the respective ranked variables $r k(C)=\left(c_{i j}^{\prime}\right)$ and $r k(D)=\left(d_{i j}^{\prime}\right)$ defined by the vectors of original and cophenetic distances,

$$
\operatorname{CSCC}=\frac{\operatorname{cov}(r k(D), r k(C))}{s_{r k(D)} s_{r k}(C)}=\frac{\sum_{i<j}\left(d_{i j}^{\prime}-\bar{d}\right)\left(c_{i j}^{\prime}-\bar{c}^{\prime}\right)}{\sqrt{\sum_{i<j}\left(d_{i j}^{\prime}-\bar{d}^{\prime}\right)^{2}} \sqrt{\sum_{i<j}\left(c_{i j}^{\prime}-\bar{c}^{\prime}\right)^{2}}} .
$$

- Unlike the Pearson correlation coefficient, Spearman's rank order correlation coefficient can be applied to compare original and cophenetic dissimilarities even if no linear relation between both dissimilarities exists
- A Spearman's rank order correlation close to 1 means that we have a strong correlation between the ranks of original and the ranks of the cophenetic distances, suggesting monotonic relationship between the original distances and the corresponding cophenetic distances

[^0]: Pedro Cristiano Silva (ISA/UL) . Mathematical Models and Applications . 2023/2024

