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Definition of clustering 72

Given a collection of N objects, X = {x1, . . . , xN}, one seeks a
partition of X into K nonempty disjoint sets (the clusters),

X = C1 ∪ · · · ∪ CK

such that, given the notion of resemblance considered, it

maximizes the internal homogeneity or cluster cohesion, or
equivalently, it minimizes the intra-cluster variability - objects
belonging to the same cluster should share the similar features

it maximizes the external heterogeneity or cluster separation,
i.e., it maximizes the inter-cluster separability - objects
belonging to distinct clusters should be very dissimilar and
have clear distinguished features
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Examples 73

clear clustering structure artificial clustering structure

weak internal cohesion

strong separationstrong separation

strong internal cohesion strong internal cohesion

weak separation
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Clustering 74

Clustering always imposes some kind structure on the data,
even when no special structure or discontinuities are present!

For instance, many clustering techniques tend to form
globular clusters, e.g., with elliptical or spherical shapes

How to choose the best partition ?
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Huge solution space... 75

The number of distinct partitions of N elements into K clusters
(1 ≤ K ≤ N) equals

ξ(N,K ) =
1

K !

K∑

j=1

(
K

j

)
(−1)K−j jN ,

which is a huge number, known as Stirling number of second kind,
even for relatively small values of N and K , making impossible to
to find the best partition by exhaustive search.

For instance, the number of partitions of a set with 25 elements
into 8 clusters equals

ξ(25, 8) = 69022372111836858

For N large and K fixed, ξ(N,K ) ≈ KN

K !

In the previous example, one gets ξ(25, 8) ≈ 825

8! = 9.369775e+17
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Common steps in a cluster analysis 76

Variables/features selection

Which variables (continuous, categorical, ordinal, binary, . . . ),
encode as much as possible the information concerning the
task, avoiding redundancy (i.e., highly correlated variables) ?
Standardize/normalize the variables to balance their
importance ?

Clustering model

Which combination of a clustering method with a
distance/dissimilarity is more appropriate?

Cluster validation

Internal: How many groups and how to assess the quality of
the clusters ?
External: How the clustering results compare with the
outcomes obtained using different clustering models or how
they compare with known information ?

Interpretation of the results

Are the outcomes interpretable in the context of the problem ?
Which variables/features (active/supplementary) are more
important to characterize the clusters ?
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Cluster model 77

A cluster model is build upon two concepts:

the notion of distance/dissimilarity between individuals and clusters
should be adequate to the type of variables involved and to the type
of results sought

the clustering method should take into account the type of
structure/shape of the clusters sought (rounded shape/arbitrary
shape/. . . ) and characteristics of the method itself (sensitivity to
outliers/noise/ldots), computational issues (scalability for large
datasets), etc. . .

When several cluster models are appropriate one should compare the
outputs of such models to seek for common patterns that emerge from
these clustering models - robust solutions
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Example of numerical dataset - iris flower dataset 78

The well known iris flower dataset contains the sepal and petal lengths
and widths (in cm) of 150 iris flowers

How to measure the distance between each pair of iris flowers ?

Standardize (z-score normalization) or normalize (min-max scaling)
the variables in order that the differences between all variables
contribute equally ?
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Example - a freshwater fish dataset in West Africa 79

In the biogeography it is common to use biological markers (e.g., river
fish species) to distinguish between sites (e.g., river basins)

Which type of variable/feature is more appropriate to encode this
type data ?

How to assess the similarity between river basins given the
distribution of fish species ?

How to assess the similarity between fish species given their
distribution by the sites ?
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Example categorical dataset 80

The following two-way contingency table encodes the country of residence and
language spoken by 1000 inhabitants in 5 countries

English French Spanish German Italian Total
Canada 688 280 10 11 11 1000

USA 730 31 190 8 41 1000
England 798 74 38 31 59 1000

Italy 17 13 11 15 944 1000
Switzer. 15 222 20 648 95 1000

Total 2248 620 269 713 1150 5000

({\bf source}: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718710/)

How to assess the similarity between countries given the languages
spoken in these countries ?

How to assess the similarity between the spoken languages given
their distribution by the countries ?
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Properties of a dissimilarity measure / distance 81

In order to tackle the previous questions we first need to establish
which properties a dissimilarity/distance notion should have.

A dissimilarity measure on a set X is a real function

d : X × X → R,

such that, for all x , y ∈ X , we have

d(x , y) ≥ 0

d(x , y) = 0 if and only if x = y

d(x , y) = d(y , x)

We call d a distance if moreover d verifies the triangle inequality

d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z ∈ X ,
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Three important distances 82

Consider x = (x1, . . . , xN) and y = (y1, . . . , yN) of Rn

The usual euclidean distance:

d(x , y) =

√√√√
N∑

i=1

|xi − yi |2

The Manhattan distance (also called city block or taxicab
distance):

d1(x , y) =
∑

i

|xi − yi |.

The so-called maximum distance (also called Chebyshev
distance):

dmax(x , y) = max
i

|xi − yi |
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Relation among the 3 distances

x1 y1

x

y2

x2

y

d1(x , y )

dmax(x , y )

d(x ,
y )

For all x , y ∈ RN we have d1(x , y) ≥ d(x , y) ≥ dmax(x , y)

For the taxi-cab and euclidean distances all differences |xi − yi |,
i = 1, . . . ,N , have approximately the same relative weight in the
computation of the overall distance

For the maximum distance only the variable(s) i yielding the largest
difference |xi − yi | accounts for the overall distance
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The Canberra distance 84

If x, y are N-dimensional vectors with positive components, one can
define the so-called Canberra distance

d(x, y) =
N∑

i=1

|xi − yi |
xi + yi

This distance is a weighted version of the Manhattan distance that
is sensitive to differences between values xi and yi of small
amplitudes.

It is invariant under differentiated changes of scale in each variable
but not under variables centering. Only the relative proportion
between the differences of the coordinates and their sum are
importante.
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When to standardize the data ? 85

Usually, the euclidean distance between original numerical
variables is employed if all variables are expressed in the same
units and similar scales of measurement. Otherwise, it is
usually better to standardize the data to give the same weight
to all variables.

It could also be interesting to explore if other types of
dissimilarities (for instance, the Canberra or Mahalanobis
distance), could be more appropriate. . .
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Dissimilarity measures for binary data 86

Consider binary vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) and define

a: nr components where both variables take value 1 (positive agreement)

b: nr of components where x take value 1 and y value 0 (disagreement)

c : nr of components where x take value 0 and y value 1 (disagreement)

d : nr components where both variables take value 0 (negative agreement)

Simple matching (counts double-zeroes, is suitable if 0-1 represent
equally valued attributes like male-female):

S(x, y) =
a+ d

a+ b + c + d
=⇒ D(x, x) = 1−S(x, x) =

b + c

a+ b + c + d

Jaccard coefficient (does not count double zeroes. Suitable if 0-1
represent unequal valued attributes, like species presences-absences):

J(x, ) =
a

a+ b + c
=⇒ D(x, y) = 1− J(x, y) =

b + c

a+ b + c
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Example 87

Assume that we have two binary variables x and y representing presences (1) and
absences (0) of two species at 16 spots:

x = (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), y = (0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1)

We want to determine how similar are the two species with regard to their distribution
in the 16 spots. Computing the positive and negative agreements/disagreements, we
get a = 1, b = 3, c = 3 and d = 9 (a+ b + c + d = 16). Therefore we have.

Simple matching: a+d
a+b+c+d = 10/16

Jaccard coefficient: a
a+b+c = 1/7

The asymmetrical character of Jaccard’s coefficient seems to the be a more suitable
similarity to create homogeneous groups of species with respect to their distribution in
the spots

R

# The R function dist with the method ‘‘binary’’ computes the
dissimilarity as d(x , y) = 1− S(x , y), where S is the Jaccard coefficient

d = dist(cbind(x,y),method=‘‘binary’’,diag=FALSE,upper=FALSE,p=2)

Several other dissimilarity measures well suited for binary data in the
framework of ecology and community composition data are available via
the function dist.ldc from the adespatial package
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χ2-distance for nominal data 88

Let X = [xij ] be a contingency table, where xij is the observed frequency in
category Ai of a nominal variable A and category Bj of a nominal variable B
(assuming nonzero row and column sums). Let I and J be the number of
categories of A and B and N =

∑
i,j xij the total number of observations.

Dividing each row i by the corresponding row total, xi· =
∑

j xij , we obtain the

so-called ith row-profile,
(

xi1
xi·

, . . . , xiJ
xi·

)
, which corresponds to the conditional

distribution of variable B assuming category ai of A.
The set of the I row-profiles defines a cloud of I points in RJ and the centroid

of this cloud, 1
I

∑
i

(
xi1
xi·

, . . . , xiJ
xi·

)
∈ RJ , is called is the mean row-profile.

If variables A and B are independent, i.e., xij =
xi·x·j
N ∀i , j , ith row-profile verifies

( xi1
xi·

, . . . ,
xiJ
xi·

)
=
( x·1
N

, . . . ,
x·J
N

)
= (f·1, . . . , f·J),

where f·j =
∑

i fij are the column marginals of the relative frequencies fij =
xij
N .

In particular, all row-profiles are equal to the mean row-profile. If A and B are
not independent, the row-profiles spread away from the mean row-profile.
The squared χ2-distance between the ith and "th row-profiles is defined as,

d2
χ2 (i , ") =

J∑

j=1

1

f·j

( xij
xi·

−
x"j
x"·

)2
=

J∑

j=1

1

f·j

( fij
fi·

−
f"j
f"·

)2

(the weights in the inverse proportion of the column marginal frequencies f·j
increase the importance of the small differences between rare categories).
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Example 89

Consider again the two-way contingency table containing the distribution
by country of residence of the primary language spoken of 5000
inhabitants (see slide 13)

English French Spanish German Italian Total
Canada 688 280 10 11 11 1000

USA 730 31 190 8 41 1000
England 798 74 38 31 59 1000
Italy 17 13 11 15 944 1000
Switz. 15 222 20 648 95 1000

Total 2248 620 269 713 1150 5000

(source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718710/)
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χ2-distance between the row-profiles

The corresponding 5 row-profiles and mean row-profile are given below
English French Spanish German Italian| Totals

Canada 0.688 0.280 0.010 0.011 0.011 | 1.000
USA 0.730 0.031 0.190 0.008 0.041 | 1.000

England 0.798 0.074 0.038 0.031 0.059 | 1.000
Italy 0.017 0.013 0.011 0.015 0.944 | 1.000

Switz. 0.015 0.222 0.020 0.648 0.095 | 1.000
__________________________________________________

mean 0.4496 0.124 0.0538 0.1426 0.230 | 1.000 (verify)
f.j 0.4496 0.124 0.0538 0.1426 0.230 | 1.000 (verify)

The 5 row-profiles define a a cloud of I = 5 points in RJ , with J = 5 (number of
columns) with centroid given by the mean row-profile
The squared χ2-distance between the row profiles of Canada and Switzerland is

d2
χ2 (1, 5) =

(0.688 − 0.015)2

0.4496
+

(0.280 − 0.222)2

0.124
+

(0.010 − 0.020)2

0.0538
+

(0.011 − 0.648)2

0.1426
+

(0.011 − 0.095)2

0.230
= 3.912575

We define similarly the set of 5 column-profiles, which can be regarded as a
cloud of J = 5 points in RI , with I = 5 and the corresponding pairwise squared
χ2-distances (left as an exercise).
The correspondence analysis (CA) allows to study and visualize the relationships
of a contingency table when the number of categories is high.
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The corresponding R code 91

The R function dist.ldc from the package adespatial computes the
χ2-distance matrix between every pair of row-profiles

R

library(adespatial)
tab<-matrix(c( 688, 280, 10 , 11 , 11, 730, 31, 190, 8 , 41, 798, 74,
38, 31, 59, 17, 13, 11, 15, 944, 15, 222, 20, 648, 95),
nrow=5, byrow = TRUE)
colnames(tab)<-c("English", "French", "Spanish", "German", "Italian")
rownames(tab)<-c("Canada","USA","England","Italy","Switz.")
tab
d.chisqr<-dist.ldc(tab,method="chisquare")
d.chisqr

We obtain the following distance matrix (dχ2) between row-profiles

Countries Canada USA England Italy

USA 1.0536310
England 0.6297091 0.6780536
Italy 2.3154271 2.2966246 2.1925680

Switzerland 1.9780231 2.2030640 2.0546442 2.5094977

For instance, d2
χ2 (r1, r5) = (1.9780231)2 = 3.912575, as computed in the

previous slide
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Dissimilarity measures for variables 92

An usual similarity notion between two variables x and y is
Pearson’s correlation coefficient

r =
s2xy
sx sy

This similarity can be transformed into a dissimilarity using the
transformation d =

√
1− r2, which take values in the interval [0, 1]

Highly linearly correlated variables (positively or negatively) will
have d ≈ 0 while for uncorrelated variables d ≈ 1

Alternatively, we can define d = (1− r)/2. In this case d take
values in [−1, 1] and both the strength of the linear relationship and
its direction are accounted

We can use the above dissimilarity measures to cluster variables.
Each cluster will consist of a set of variables highly correlated. This
can be useful to detect redundancies and can give an idea of the
number of principal dimensions of data
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Clustering methods 93

Distance-based models rely only on pairwise dissimilarities between
individuals

Density-based clustering seeks for high density regions of points
(clusters) separated by low density of points (noise)

Model-based clustering assumes that the data in each cluster is
drawn from some probabilistic distribution (the standard model is a
finite mixture of multivariate gaussians) and assign a degree of
membership (probability) to each element to belong to a cluster.
Can be considered as generalizations of some distance-based
clustering methods

Constrained-clustering methods, are clustering methods that also
account for other type of information, like spatial relationships
between observations (for instance, contiguity relationships between
cells in a map)

. . .
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Two important types of clustering

Hierarchical clustering - produces a nested structure of partitions
and do not requires that the number of clusters is known a priori:

Hierarchical agglomerative (or ascending) clustering algorithm
(HAC) - starts from the partition consisting of N clusters with
one individual per cluster (singletons) and proceeds until a
unique group is obtained.
Divisive clustering algorithm - proceeds in the opposite way
and are usually more computacional demanding, being more
seldom used (not considered in this course)

Partitional clustering - produces flat (non-nested) partition and
requires that the number of clusters is known a priori. Usually seeks
to maximize some criterion like the intra-cluster homogeneity or
the inter-cluster heterogeneity.
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Hierarchical ascending clustering algorithm 95

Algorithm

Input: the proximity matrix containing the pairwise dissimilarities
between N individuals x1, . . . , xN

Starts with N clusters containing a single object each (singletons);

Merges the least dissimilar pair of clusters into a new cluster,
according to the given definition of distance between clusters, and
updates the proximity matrix (reducing its order by one);

Repeats step-2 N − 1 times, until only one cluster containing all
individuals is obtained.

Output: the sequence (of length N − 1) of the clusters aggregated during
the clustering algorithm along with pairwise distances between these
merged clusters

Once two individuals are grouped together they cannot be separate at a
posterior stage.
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Dissimilarity between clusters 96

The dissimilarity di,j = D(Ci , Cj ), between clusters Ci and Cj with ni and nj elements,
respectively, depends on the aggregation method:

Single-linkage or nearest-neighbor:

di,j = min
x∈Ci ,y∈Cj

d(x , y)

Complete-linkage or furthest-neighbor:

di,j = max
x∈Ci ,y∈Cj

d(x , y)

Average:

di,j =
1

ni nj

∑

x∈Ci

∑

y∈Cj

d(x , y)

Centroid

Median

Ward or minimum-variance clustering

. . .
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Updating formula for HAC 97

For all aggregation methods that we are going to consider, the
dissimilarity between two merged clusters, say Ci ∪ Cj , and each one
of the remaining clusters Ck ,

dij,k = D(Ci ∪ Cj , Ck),

can be determined in terms of the pairwise dissimilarities,

di ,j = D(Ci , Cj), di ,k = D(Ci , Ck), dj,k = D(Cj , Ck)

In other words, the proximity matrix containing the pairwise
distances between the clusters at a given step "+ 1 can be
determined in terms of the proximity matrix containing the pairwise
distances between the clusters at the previous step ", via a
convenient updating formula

Therefore and unlike many other statistical methods like PCA, the
HAC algorithm does not require the knowledge of the original data
matrix X, but only the knowledge of the proximity matrix containing
the pairwise distances between the elements of X.
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Examples of updating formulas 98

Single-linkage or nearest-neighbor:

dij,k = min{di ,k, dj,k}

Complete-linkage or furthest-neighbor

dij,k = max{di ,k , dj,k}

Average

dij,k =
nidi ,k + njdj,k

ni + nj
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Dendrogram 99

The sequence of length N − 1 of the merged clusters and the
corresponding fusion costs (i.e., the distance between the merged
clusters) can be graphically represented by a special tree graph
called dendrogram

Dendrograms are tree-like diagrams made of branches that
join terminal nodes (leaves)

The branches represent clusters and the heights at which the
branches are connected represent fusion costs. The leaves
represent the objects

The lifetime of a branch is the difference of fusion costs
between the step in which it appears and the step in which it
is aggregated
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Example: step -1 (initial step) 100

As an example we are going to apply the single-linkage clustering
algorithm to a set of 6 points

.5

PROXIMITY MATRIX

a b

0.7

X = {a, b, c, d , e, f }

c

b

1.0 0.3

b

d

fe

c

a

3.4 2.8

e

f

2.9

ed

1.3

c

d 1.8 .1.3

2.4

0.9

1.9

2.4 1.7Next step merges the clusters {b} and {c}

with fusion cost 0.3 (the least dissimilar pair) and in each dashed box

At the initial step all clusters are singletons

and defining the dissimilarities between each one of the singletons and the new formed cluster {b, c}

the minimum value is chosen, reducing the proximity matrix order by one,
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Step -2

fusion cost DENDROGRAM

1.7

b

d

fe

c

a

X = {a, b, c, d , e, f }

1.3

a b c d e f
objects

0.3

PROXIMITY MATRIX

a {b, c} d e

e

f

0.7

1.9

d

{b, c}

1.8

2.9

3.4

0.9

2.4 0.5

Next step merges the singletons {e} and {f }

with fusion cost 0.5
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Step - 3

fusion cost DENDROGRAM

0.5

b

d

fe

c

a

PROXIMITY MATRIX

a {b, c} d

0.7{b, c}

d

{e, f }

1.8 0.9

2.9 1.31.9

0.3

a b c d e f
objects

Next step merges the pair of clusters {a} and {b, c}

with fusion cost 0.7
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Step - 4

fusion cost DENDROGRAM
with fusion cost 0.91

b

d

fe

c

a

PROXIMITY MATRIX

{a, b, c}

d

{e, f }

d

0.9

1.9 1.3

a b c d e f objects

0.7

Next step merges the clusters {a, b, c} and {d}
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Step - 5

DENDROGRAM

fusion cost

{a, b, c, d} and {e, f } with fusion cost 1.3

b

d

fe

c

a

a b c d e f object

0.9

PROXIMITY MATRIX

{a, b, c, d}

1.3{e, f }

Next step is the final one and merges the clusters
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step - 6 (final step)

The final structure of nested clusters and the dendrogram encoding
the clustering procedure are the following
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step - 6 (final step)

The final structure of nested clusters and the dendrogram encoding
the clustering procedure are the following
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The R function hclust 106

It performs hierarchical agglomerative clustering using several
aggregation criterion methods and it admits an arbitrary
dissimilarity matrix as input

input: a dissimilarity matrix d and the clustering method among
the options, “ward”, “single”, “complete” (default), “average”,
“mcquitty”, “median” or “centroid”.

value: the function returns an object of the class hclust, which
consists of a list including, among others, the following elements:
merge - a (n − 1)× 2 matrix indicating the clusters being merged
heigth - the list of fusion costs

R (hclust function)

hc<-hclust(d, method=‘‘complete’’, members=NULL)

plot(hc) or plot(hc, hang=-1) to plot the dendrogram with all
leaves at the same height
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Example 107

R (single-linkage example with output)

X<-matrix(c(0,0,0.5,0.5,0.85,0.5,1.75,0.25,2.75,1,3.25,1),
nrow=6,byrow=TRUE) # the set of 6 points {a, b, c, d, e, f } in two variables

[,1] [,2]
[1,] 0.00 0.00 point "a"
[2,] 0.50 0.50 point "b"
[3,] 0.85 0.50 point "c"
[4,] 1.75 0.25 point "d"
[5,] 2.75 1.00 point "e"
[6,] 3.25 1.00 point "f"
d<-dist(X) # by default uses the euclidean distance
SL<-hclust(d, method="single")
SL$height
[1] 0.375 0.5 0.707 0.91 1.25
SL$merge
[,1] [,2]
[1,] -2 -3 (merges singletons {b} and {c})
[2,] -5 -6 (merges singletons {e} and {f })
[3,] -1 1 (merges singleton {a} with cluster {b, c})
[4,] -4 3 (merges singleton {d} with cluster {a, b, c})
[5,] 2 4 (merges cluster {e, f } with cluster {a, b, c, d})
# The number with minus sign refers to a singleton ID,
# otherwise refers to the step number where the cluster was aggregated

plot(SL, hang=-1) # plot the dendrogramPedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Where to cut the dendrogram? 108

A cut in a dendrogram at a given height τ produces the (flat) partition
into the clusters whose fusion cost is smaller than τ

Usually one seeks cuts in the dendrogram such that:

split high height branches (high lifetimes) to get high inter-cluster
heterogeneity

as close as possible to the leaves to get high intra-class homogeneity

Some caution has to be applied regarding the decision where to cut the
dendrogram (and what is the “best” number of clusters). With some
methods (for instance, the Ward method), the dendrogram lifetimes tend
to increase when the larger clusters are merged, due to the way the
fusion costs are defined

Several internal validity indices can be used to estimate the optimal
number of clusters
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Example 109

For instance, to obtain a partition into 2 clusters we have to cut
the dendrogram at some height in the interval ]0.9, 1.3[, yielding
the clusters C = {a, b, c , d} and C′ = {e, f }

cutoff

a b c d e f

CUTTING THE DENDROGRAM

1.3

objects

fusion cost

0.9

The cluster {e, f } is relatively well separate from the cluster
{a, b, c , d} since the fusion cost (1.3) between these groups is
relatively high

But cluster {a, b, c , d} is not very homogeneous since the
fusion cost (0.9) of aggregating all of its elements is also
relatively high
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Cutting the dendrogram in R 110

The resulting partition into two clusters {a, b, c , d} and {e, f }
(depicted using distinct colors)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0
.5

0.
5

1.
0

1.
5

X[,1]

X[
,2
]

R (cutree function)

SL<-hclust(X,method="single")
part<-cutree(SL,2) # 2 clusters
# # or
part<-cutree(SL,h=1.1) # h is the height
part

plot(X,type="p",cex=0.8,pch=16, col=part,asp=TRUE)
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Chaining effect 111

In single-linkage if two clusters are merged at a fusion cost τ , every
pair of objects, one in each cluster, have pairwise distance greater
than or equal to τ .

As the clusters growth it becomes more and more easier to
incorporate new elements in the cluster since the distances between
these elements and the cluster is the distance to the nearest point in
the cluster

As a consequence, the singletons tend to aggregate to the larger
clusters, often producing elongated clusters (chain effect) and/or
very unbalanced partitions
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Chaining effect 112

The chaining effect is usually produced by the existence of
intermediate points between clusters, giving rise to elongated
clusters connecting distant points

0 1 2 3

−1
.0

0.
0

0.
5

1.
0

The chaining effect (single method)

X[,1]

X[
,2
]

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Single-linkage emphasizes clusters separation 113

The nearest neighbor distance can be used to measure of
separability between clusters. More precisely, we can measure the
separability of a partition X = C1 ∪ · · · ∪ Ck as the distance
between the closest pair of clusters for the nearest neighbor
criterion, i.e., as

min
i %=j

D(Ci ,Cj ) = min
i %=j

(
min

x∈Ci , y∈Cj

d(x , y)

)
.

In each step the single-linkage algorithm merges the pair of closest
clusters, which amounts to say that it merges the pair of clusters
that maximizes the separability of the resulting partition.

Therefore we have the following.

The single-linkage clustering algorithm tends to produce
well separate partitions but not necessarily homogeneous!
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Single-linkage and clusters separation 114

dij ,k

CjCk

Ci

dij

dj ,k

CjCk

Ci

djk,i

CjCk

Ci

di ,k

dik,j

The aggregation of the pair of closest clusters (top row, on the left) yield
the better separated 2-partition among the 3 possible 2-partitions:

{Cij ,Ck}, {Cjk ,Ci}, {Cik ,Cj}
Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Single-linkage clustering - summary 115

Pros

Can detect arbitrary cluster shapes

Can be applied to large datasets since it is computationally efficient,
i.e., there are polynomial-time clustering algorithms

Emphasizes clusters separation, i.e., tends to form well separated
clusters

It is invariant under monotonic transformations of the proximity
matrix since it only depends on the rank orders of the pairwise
distances between the points of the dataset

Insensitive to ties in the proximity matrix

Cons

Suffers from the chaining effect - often produces elongated clusters
with very distinct sizes

Sensitive to observation errors and noise

The decision of aggregate two clusters relies only on a pair of
elements, one in each cluster
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Complete-linkage 116

The complete-linkage or furthest neighbor is the opposite of
nearest-neighbor clustering algorithm The fusion cost between two
clusters Ci and Cj in this method is defined as the distance between
the furthest pair of points, one in each cluster, that is,

di ,j = D(Ci , Cj) = max
x∈Ci ,y∈Cj

d(x , y)

CjCi

Updating formula for the complete-linkage:

dij ,k = max{di ,k , dj ,k}
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Complete-linkage method 117

In complete-linkage two clusters are merged at a height τ only if all
elements of one cluster are at a distance inferior than or equal to τ
with respect to the elements of the other cluster.

As the cluster growths it becomes more and more difficult to
incorporate new elements in a cluster. Therefore the aggregations
tend to occur between clusters with few elements.

The complete method tend to be sensitive to the presence of
outliers.
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Exercise 118

Perform a clustering analysis with the complete-linkage
method on the set of points of the real line
X = {0.2, 3, 4.2, 5, 5.9} and represent the respective
dendrogram.

Cut the dendrogram in order to obtain two clusters. What you
conclude?
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Complete-linkage emphasizes clusters homogeneity 119

The diameter of a set C is the largest dissimilarity between pairs
of elements of C , i.e.,

diam(C ) = max
x ,y∈C

d(x , y)

We can measure the cohesion of a partition X = C1 ∪ . . . ∪ Ck , as
the partition diameter, i.e., as the largest value among the
diameters of C1, . . . ,Ck :

max
i

diam(Ci ) = max
i

(
max
x ,y∈Ci

d(x , y)

)
.

In each step the complete-linkage (also called diameter clustering)
method, seeks to aggregate the clusters that produce the smallest
increase in the partition diameter, i.e., such that the resulting
partition has the smallest possible diameter. Hence we have

The complete-linkage clustering algorithm tends to produce
compact clusters (but not necessarily well separated!)
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Noise and outliers: single vs complete aggregation
methods 120

The following examples illustrates that the single clustering method is
more sensitive to noise than complete, whereas the opposite occurs with
outliers (the partitions on the top row have two clusters each and
partitions on bottom row 3 clusters)

method=single method=complete

method=single method=complete
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Complete-linkage clustering - summary 121

Pros

Emphasizes cluster compactness - tend to form tight spherical
clusters with small diameters, i.e., homogenous clusters

It is invariant under monotonic transformations of the
proximity matrix - only the ranks of the pairwise dissimilarities
are important.

Cons

Sensitive to outliers

Cannot detect arbitrary cluster shapes

The decision of aggregate two cluster only relies on a pair of
individuals, one in each cluster
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Average clustering method 122

In-between the single-linkage and the complete-linkage clustering methods, we have
the average method, also known as unweighted pair group method average (UPGMA)
The merging cost between two clusters Ci and Cj is defined as the arithmetic mean of
the distances between every point of Ci and eevery point of Cj , i.e., equals

di,j =

∑
x∈Ci

∑
y∈Cj

d(x , y)

ni nj
,

where ni = |Ci | and nj = |Cj |.
Ci Cj

The updating formula is given by (left as an exercise),

dij,k =
ni di,k + nj dj,k

ni + nj

This method often outperforms single-linkage and complete linkage but it is not
invariant under monotonic transformations of the proximity matrix
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Centroid clustering model 123

This method, also known as UPGMC (unweighted pair group method centroid)
implements the very natural idea that the clusters are represented by their centroids
and thus define distance di,j between two clusters Ci and Cj as the distance between
the respective centroids mi and mj :

di,j =

∥∥∥∥∥∥
1

|Ci |
∑

xi∈Ci

xi −
1

|Cj |
∑

xj∈Cj

xj

∥∥∥∥∥∥
= ‖mi −mj‖

C C′

The centroid of the group obtained by merging the clusters Ci and Cj is given by

mij =
nimi + njmj

ni + nj

The updating formula is more complicated in this case. We shall resort to a general
procedure to define the updating formula for the centroid method.
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Exercise 124

Perform a clustering analysis using the centroid method on
the set of 3 points of R3, X = {(0, 0), (8, 0), (4, 7.5)} and
represent the respective dendrogram

What happened ?
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Centroid clustering model - inversions 125

In the centroid method the merging cost can be non-monotonic, giving
rise crossovers (also called inversions) in the dendrogram

All circles have radii equal to the distance between x and y , dx,y .

x y
c

d ′ d ′′

{x , y}

d

dx ,y

d

fusion costs

x y z

inversionz

objects

Since z (red point) lie in the grey area, ouside the black circles,
dx,y < d ′, d ′′. Hence x and y are the first pair of objects to be merged.
Since z lie inside the red circle centred at the centroid c of x and y ,

D({x , y}, z) = dc,z < dx,y = D({x}, {y})
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Lance-Williams general updating formula 126

Given clusters Ci , Cj , Ck and Cij = Ci ∪ Cj we will define updating
formulas for a family of clustering methods

dij,k = αi di,k + αj dj,k + βdi,j + γ|di,k − dj,k |

or

d2
ij,k = αi d

2
i,k + αj d

2
j,k + βd2

i,j + γ|d2
i,k − d2

j,k |

depending on the method considered, where αi , αj , β and γ are
convenient parameters that may depend only on the clusters
cardinality ni = |Ci |, nj = |Cj |, nk = |Ck | and ni + nj = |Cij |:

Ck
i

j

k

Ci ,j
Ci

Cj

di ,j
dij ,k

dj ,k

di ,k

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Lance-Williams updating formula - examples 127

Let us see how to obtain the updating formulas for the single-linkage and complete
linkage of slides 39 and 56 (verificar!)

dij,k = min(di,k , dj,k) (single-linkage),

dij,k = max(di,k , dj,k) (complete-linkage),

from the Lance-Williams table. We can assume di,k ≤ dj,k . Therefore

dij,k = min(di,k , dj,k) = di,k =
di,k + dj,k

2
−

1

2
|di,k − dj,k |

dij,k = max(di,k , dj,k) = dj,k =
di,k + dj,k

2
+

1

2
|di,k − dj,k |,

|di,k − dj,k |
2

0 di,k
di,k + dj,k

2
dj,k

|di,k − dj,k |
2

Hence the Lance-Williams coefficients for the single-linkage and complete-linkage, are:

αi = αj =
1

2
, γ = −

1

2
and β = 0 (single-linkage)

αi = αj =
1

2
, γ =

1

2
and β = 0 (complete-linkage)
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Lance-Williams chart 128

NO

αi αj β γ
matrix

1
2

1
2 −1

20

1
2

1
2 0 1

2 dij

ni
ni+nj

nj
ni+nj

0 0

1
2

1
2 0 0

dij

dij

dij

ni
ni+nj

nj
ni+nj

−ni nj
(ni+nj )2

0 d2
ij

1
2

1
2 −1

4 0 dij

ni+nk
ni+nj+nk

nj+nk
ni+nj+nk

− nk
ni+nj+nk

0 d2
ij

dissimilarity

single

complete

average

(UPGMA)

McQuitty

(WPGMA)

centroid

(UPGMC)

median

(WPGMC)

Ward

reversals

NO

NO

NO

NO

can

occur

can

occur
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Example: updating formula for the centroid method 129

Using the previous Lance-Williams table we obtain the following
updating formula for the centroid method:

d2
ij ,k = ni

ni+nj
d2
i ,k +

nj
nj+nj

d2
j ,k −

ni nj
(ni+nj )2

d2
i ,j

Note that the distances are squared!

Repeat the clustering performed on the set X of slide 124 and
using the update formula given here
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Monotonic condition and inversions 130

We say that a clustering method satisfies the monotonic condition if
whenever two clusters Ci and Cj are merged into a cluster Cij we have

dij,k ≥ di ,j ∀k ,= i , j , ij

This implies that the dendrogram cannot have inversions

Proposition

If in the Lance-Williams’s formula the parameters αi ,αj are nonnegative,
αi + αj + β ≥ 1, and either γ ≥ 0 or max{−αi ,−αj} ≤ γ ≤ 0, the
clustering method satisfies the monotonic condition (∗)

(∗) A stronger condition is given by Batagelj : the Lance-Williams clustering algorithm
is monotonic if and only if,

γ ≥ −min(α1,α2), α1 + α2 ≥ 0, α1 + α2 + β ≥ 1

From the Lance-Williams table we deduce immediately that the
clustering aggregation methods, single, complete, average, McQuitty and
Ward verify the conditions of the proposition above and therefore satisfy
the monotonic condition. In particular, their dendrograms cannot have
inversions.
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Ward’s method 131

Let X be a dataset with N individuals, x1, . . . , xN in p (observed)
variables with mean vector xG = (x̄1, . . . , x̄p). Given a partition of X into
K clusters

X = C1 ∪ · · · ∪ CK
we define,

SSQt =
N∑

i=1

‖xi − xG‖2 =
N∑

i=1

p∑

j=1

(xij − x̄j)
2 (total inertia)

SSQb =
K∑

k=1

nk‖mk − xG‖2 (between-clusters inertia)

SSQw =
K∑

k=1

∑

x∈Ck

‖x−mk‖2 (total within-clusters inertia),

where mk is the centroid of cluster Ck and nk the number of its elements
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Ward’s method 132

The between-clusters inertia SSQb represents the inertia of the
dataset assuming that each cluster Ck is represented by nk copies of
the cluster centroid mk .

The total within-clusters inertia SSQw represents the information
that is lost by replacing the nk elements of each cluster Ck by nk
copies of the cluster centroid.

By Huygens theorem, SSQt = SSQb + SSQw , which is a constant.

Ward’s clustering method, also called minumum variance criterion,
tries to minimize the total within-clusters inertia SSQw , i.e., the
clusters heterogeneity/variability, which, by Huygens theorem,
amounts to maximize the between-clusters inertia SSQb, i.e., the
clusters separation

Hence Ward’s method seeks to simultaneously optimize two criteria:
maximize the clusters separation and minimize the clusters
variability
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Increase in the sum of within-cluster inertia 133

At beginning all clusters have a unique element and therefore,

SSQt = SSQb , SSQw = 0

At each step, Ward’s method merges the pair of clusters Ci , Cj
yielding the smallest increase in the total within-cluster inertia SSQw

We shall write SSQw as

SSQw =
K∑

k=1

e2k ,

where e2k is the inertia of cluster k in, i.e.,

e2k =
∑

x∈Ck

‖x−mk‖2 =
∑

x,y∈Ck
‖x− y‖2

2nk

(note that the later expression only depends on the pairwise
distances between elements of Ck).
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Increase in the sum of within-cluster inertia 134

When two clusters Ci and Cj are merged into a cluster Cij , the
increase in the total within-cluster inertia SSQw reduces to the
following statistic,

∆ijSSQw = e2ij − e2i − e2j ,

since all other within-group inertias are not affected. After N − 1
aggregation steps (assuming |X | = N) the sum of the successive
increases ∆ij,k is equal to the total inertia SSQt .

It can be proved that

∆ijSSQw =
ninj

ni + nj
‖mi −mj‖2,

which represents a weighted distance between the cluster centroids
(cf. with centroid method).

In particular, ∆ijSSQw is always nonnegative (i.e., the SSQw is
increasing) and only depends on the squared distance between the
cluster centroids mi and mj and on the cluster sizes ni and nj .
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A better updating formula for Ward’s method using LW 135

The fusion cost between the clusters Cij = Ci ∪ Cj and Ck is

∆ij,kSSQw =
(ni + nj)nk
ni + nj + nk

‖mij −mk‖2,

which can be used as an updating formula for Ward’s clustering
method but has the disadvantage that it requires the knowledge of
the original dataset to compute the centroids.

Using the Lance-Williams table we can derive an alternative
updating formula for Ward’s method that only requires the
(squared) proximity matrix at previous step:

d2
ij,k =

(ni + nk)d2
i ,k + (nj + nk)d2

j,k − nkd2
i ,j

ni + nj + nk

The above expression actually returns twice the value of ∆ij,kSSQw

and corresponds to the square of the dendrogram height computed
with R function hclust and the ward.D2 method.
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Example 136

Consider the univariate dataset X = {a, b, c , d} = {1, 2, 4, 8}
The pairwise distances and squared pairwise distances between elements
of X are given, respectively, by





D a b c
b 1
c 3 2
d 7 6 4



 and





D2 a b c
b 1
c 9 4
d 49 36 16





The minimum of the squared distances is attained for D2(a, b) so the
first pair to be clustered will be a ∪ b with squared fusion cost equal to 1

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Example (cont.) 137

D2(a ∪ b, c) =
2D2(a, c) + 2D2(b, c)− D2(a, b)

3

=
2 · 9 + 2 · 4− 1

3
=

25

3

and

D2(a ∪ b, d) =
2D2(a, d) + 2D2(b, d)− D2(a, b)

3

=
2 · 49 + 2 · 36− 1

3
=

169

3

D2(c , d) is not affected. Thus the new squared dissimilarity matrix is




D2 a ∪ b c
c 25

3

d 169
3 16





The minimum of the squared distances is attained for D2(a ∪ b, c) so the
next pair to be clustered will be (a ∪ b) ∪ c with squared fusion cost 25

3
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Ward clustering using LW updating formula (concl.) 138

D2((a ∪ b) ∪ c , d) =
3D2(a ∪ b, d) + 2D2(c , d)− D2(a ∪ b, c)

4

=
3 · 169

3 + 2 · 16− 25
3

4
=

578

12

The dendrogram can be presented either using squared or not squared
fusion costs. Its topology however does not change

√
578
12

578
12

a b c da b c d

D2

1

25
3

D

5√
3

1
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Computing using the R function hclust 139

The previous dendrogram can also be computed using the R
software in the following way:

R (Ward’s method)

X<-c(1,2,4,8)

N<-length(X)

d<-dist(X) # (euclidean) distance matrix

h.ward<-hclust(d,method="ward.D2")

h.ward$height

sum(h.ward$height**2)/2

SSQt=var(X)*(N-1)

plot(h.ward, hang=-1)
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Ward’s clustering method - summary 140

Pros

Tend to form hyperspherical shape clusters, with
approximately the same number of elements each (balanced)

No crossovers

It is regarded by some authors as a natural hierarchical
method to be used with the factorial analysis, such as, PCA,
MCA (multiple correspondence analysis), etc, since it seeks to
optimize the same variance criterion

The sum of all dendrogram heights is equal to 2× SSQt .

Cons

Computationally intensive

Cannot detect arbitrary cluster shapes

Sensitive to outliers since it uses centroids

Pedro Cristiano Silva (ISA/UL) · Mathematical Models and Applications · 2023/2024

Cophenetic distances 141

The cophenetic distance between two individuals x and y with respect to
a given HAC is the merging cost at which x and y become members of
the same cluster, during the course of the hierarchical clustering.

Any dendrogram can be represented by its matrix of cophenetic distances
up to permutation of the order of the leaves. This matrix can be used to
compare distinct classifications

a b c d e f
objects

fusion cost

1.3

0.9
0.7

0.5

0.3





a b c d e
b 0.7 · · · ·
c 0.7 0.3 · · ·
d 0.9 0.9 0.9 · ·
e 1.3 1.3 1.3 1.3 ·
f 1.3 1.3 1.3 1.3 0.5





Two elements x, y belong to the same cluster of a partition obtained
cutting the dendrogram at height τ if and only if their cophenetic
distance is less than τ
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Distortion measures - Cophenetic Pearson’s Coefficient 142

The cophenetic Pearson’s correlation coefficient (CPCC) is Pearson’s
correlation between the original distances (dij), i < j , and the cophenetic
distances (cij), i < j , (using half of the proximity matrix), i.e.,

CPCC =
cov(D,C )

sDsC
=

∑
i<j(dij − d̄)(cij − c̄)

√∑
i<j(dij − d̄)2

√∑
i<j(cij − c̄)2

CPCC is considered an internal validation criterion for hierarchical
clustering that can be used to evaluate and compare different
hierarchical clustering methods, although should be used with
caution

A high value of the CPCC means that the cophenetic distances are
a good portray of the original distances

The cophenetic correlation usually ranges between 0.6 and 0.95.

Cophenetic correlations between 0.7 and 0.8 are considered
reasonable good, between 0.8 and 0.9 good and above 0.9 very
good.
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Distortion measures - Cophenetic Spearman’s Coefficient143

Another distortion measure is the cophenetic Spearman’s rank order
correlation coefficient (CSCC), which only depends on the ranks of the
variables and corresponds to Pearson’s correlation coefficient between the
respective ranked variables rk(C ) = (c ′ij) and rk(D) = (d ′

ij) defined by
the vectors of original and cophenetic distances,

CSCC =
cov(rk(D), rk(C ))

srk(D)srk(C)
=

∑
i<j(d

′
ij − d̄)(c ′ij − c̄ ′)

√∑
i<j(d

′
ij − d̄ ′)2

√∑
i<j(c

′
ij − c̄ ′)2

.

Unlike the Pearson correlation coefficient, Spearman’s rank order
correlation coefficient can be applied to compare original and
cophenetic dissimilarities even if no linear relation between both
dissimilarities exists

A Spearman’s rank order correlation close to 1 means that we have
a strong correlation between the ranks of original and the ranks of
the cophenetic distances, suggesting monotonic relationship between
the original distances and the corresponding cophenetic distances
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Cophenetic correlations of example of slide 100 144

The original dij distances of the example of slide 100 and the
corresponding cophenetic distances cij for the single, complete and
avarage methods are





dij a b c d e
b 0.7 · · · ·
c 1 0.3 · · ·
d 1.8 1.3 0.9 · ·
e 2.9 2.4 1.9 1.3 ·
f 3.4 2.8 2.4 1.7 5









csij a b c d e

b 0.7 · · · ·
c 0.7 0.3 · · ·
d 0.9 0.9 0.9 · ·
e 1.3 1.3 1.3 1.3 ·
f 1.3 1.3 1.3 1.3 0.5





Computing the cophenetic Pearson and Spearman correlation coefficients
we obtain,

CPCC = r(dij , cij) = 0.82, CSCC = r(rk(dij ), rk(cij)) = 0.84
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