

HIDROLOGIA

6. Relações Precipitação-Escoamento

- 6.1 Factores que influenciam o escoamento
- 6.2 Modelação das relações Precipitação Escoamento
- 6.3 Tempos característicos das relações Precipitação-Escoamento
- 6.4 Estimativa dos caudais de ponta de cheia

6.1 FATORES QUE INFLUENCIAM O ESCOAMENTO

A relação entre a precipitação e o escoamento numa bacia hidrográfica reflete a interação entre os diferentes processos hidrológicos, os quais dependem de factores

- climáticos
- fisiográficos
- ❖ físicos
- antrópicos

6.1. Introdução

A. Factores climáticos:

- ligados à precipitação
 - Forma: chuva/neve: escoamento imediato/ desfasamento no tempo;
 - Intensidade: só haverá escoamento superficial se a intensidade da precipitação exceder a capacidade de infiltração;
 - Duração: capacidade de infiltração diminui ao longo do tempo;
 - Distribuição temporal: a época de ocorrência e o intervalo entre fenómenos de precipitação condicionam o teor de água do solo e a disponibilidade de água para a evaporação e transpiração.

relativos à evapotranspiração

A evapotranspiração é uma perda de água para o escoamento e é condicionada pela temperatura, radiação solar, vento, humidade do ar, pressão atmosférica, natureza da superfície evaporante, teor de água no solo e espécie e distribuição da vegetação.

Secção de Engª Rural

B. Os **factores fisiográficos** resultam das características da bacia hidrográfica:

1) Geométricos

Área de drenagem da bacia Forma da bacia

2) Sistema de Drenagem superficial (linhas de água)

Ordem dos cursos de água

Densidade de drenagem

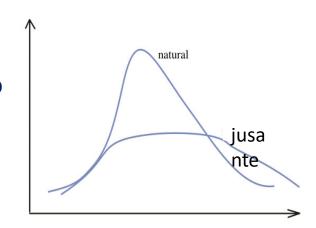
Percurso médio do escoamento superficial

3) Relevo

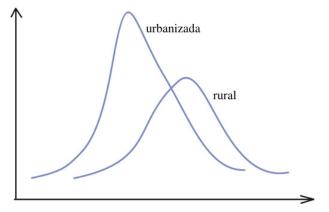
Declive

Altitude

Orientação das encostas


C. Factores físicos:

- Do *tipo de solo* depende a **capacidade de infiltração**, que é função da dimensão e distribuição dos poros do solo e da sua estabilidade (textura e estrutura).
- A vegetação tem como efeito interceptar parte da água precipitada, retardar o escoamento superficial, dando à água mais tempo para se infiltrar, e proteger o solo da erosão hídrica. As raízes tornam o solo mais permeável à infiltração da água.
- As *condições geológicas* influenciam a estrutura do solo, a possibilidade de infiltração de água no solo e a constituição das reservas subterrâneas que alimentam os cursos de água nos períodos sem precipitação.


D. Factores antrópicos:

a canalização e a regularização dos cursos de água aumenta a velocidade → maior pico;

a construção de barragens ou diques vai influenciar o hidrograma a jusante, atenuando o pico

a impermeabilização de solos nas zonas urbanas vai aumentar simultaneamente a quantidade de escoamento e o pico de cheia

6.2. Modelação das Relações Precipitação - Escoamento

Ideal: Ter um modelo de base física, que

- simulasse todos os processos hidrológicos encontrados numa bacia hidrográfica,
- poderia ser utilizado quase como modelo único, para qualquer tipo de bacia.

Esta abordagem não é normalmente considerada porque:

- Um modelo desse tipo exige uma enorme quantidade de dados e de parâmetros, normalmente não disponível,
- em muitas situações, por exemplo num modelo de acontecimento, há processos hidrológicos cuja modelação é desnecessária, sendo preferível usar modelos mais simples.

6.2. Modelação das Relações Precipitação - Escoamento

Podem considerar-se diferentes estratégias de modelação, selecionando diferentes modelos, considerando, por exemplo:

- o intervalo de discretização temporal a utilizar (ou disponível),
- a dimensão da bacia hidrográfica a modelar.

6.2.1 Discretização Temporal

$\Delta t = ano$

A utilização do ano hidrológico pode eliminar a necessidade de modelar a evolução do armazenamento de água no solo.

Como vimos na aula referente ao Balanço Hidrológico, a equação referente a valores médios anuais é simplificada: $\overline{Q} = \overline{P} - \overline{ET}$

$$\overline{E} = \frac{\overline{P}}{\sqrt{0.9 + \frac{\overline{P}^2}{\overline{E}_p^2}}}$$
 para $\frac{\overline{P}^2}{\overline{E}_p^2} > 0.1$

$$\overline{E} = \overline{P}$$
 para $\frac{\overline{P}^2}{\overline{E}_p^2} < 0.1$

$$\overline{E}_p = 300 + 25\overline{T} + 0.05\overline{T}^3$$

A evapotranspiração anual média, pode ser estimada com a fórmula empírica de Turc Com:

 \overline{E} = evapotranspiração média anual (mm)

 \overline{P} = precipitação média anual (mm)

= evapotranspiração média potencial anual, correspondent temperatura média anual do ar (mm)

 \overline{T} = temperatura média anual (°C)

Relações precipitação-escoamento anual para Portugal Continental – Regionalização de Loureiro

Loureiro (1986) obteve um conjunto de relações lineares entre o escoamento anual, Q (mm), e a precipitação anual, P (mm):

$$Q = a + bP$$

repartidas por 11 regiões de Portugal Continental.

Dada a densidade de postos udométricos em Portugal, é fácil obter uma estimativa da precipitação média anual.

Quadro 1 Valores dos parâmetros a e b da fórmula regional de Loureiro para a estimativa do escoamento anual (mm) em Portugal Continental (Loureiro, 1986)

Região	а	ь	r ²	Dimensão da amostra
Minho	- 454	0,89	0,90	72
Tâmega	- 239	0,69	0,92	130
Tua/Sabor	- 325	0,80	0,87	170
Coa	- 319	0,72	0,87	66
Paiva	- 413	0,83	0,89	47
Alto Mondego e Alto Tejo	- 152	0,70	0,88	136
Tejo Margem Esquerda	- 329	0,81	0,79	65
Vouga, Baixo Mondego, Baixo Tejo e Zona Oeste	- 291	0,73	0,70	61
Guadiana	- 360	0,88	0,84	41
Sado e Mira	- 304	0,75	0,76	94
Algarve	- 308	0,75	0,80	79

$\Delta t = \text{mes}$

A nível mensal existem diversos modelos simples:

- que usam como base a equação do balanço hidrológico;
- a bacia é representada de uma forma muito simplificada;
- uma forte base empírica, embora considerem a equação de conservação da massa;
- A variação do armazenamento não pode ser desprezada, logo, necessitam de uma forma simplificada de <u>acompanhamento do teor em água no solo</u>, o que permite <u>calcular a</u> evapotranspiração real, e forma simplificada de simular os escoamentos superficial e subterrâneo.

Os dois modelos mais utilizados em Portugal são:

- o modelo de *Thornthwaite-Mather*,
- o modelo de *Témez*.

$\Delta t = dia$

A nível diário há ainda alguns processos hidrológicos que não se conseguem modelar com base física, como é o caso da infiltração.

A esta escala, o método mais utilizado é o do *Soil Conservation Service*, já apresentado no contexto da modelação da infiltração, que tem de ser combinado como outros modelos para a redistribuição de água no solo, recarga do aquífero, etc., se quisermos fazer um modelação contínua, no tempo.

Δt < dia

Para este intervalo de tempo já é possível modelar, como base física, a totalidade dos processos <u>hidrológicos</u>. Contudo, essa abordagem não é sempre aconselhável, como já indicado.

O tipo de modelo a utilizar, assim como os processos hidrológicos a considerar, vai depender do facto de se pretender usar o modelo em contínuo ou como um modelo de acontecimento, bem como da dimensão da bacia hidrográfica.

6.4 Tempos Característicos das Relações Precipitação - Escoamento

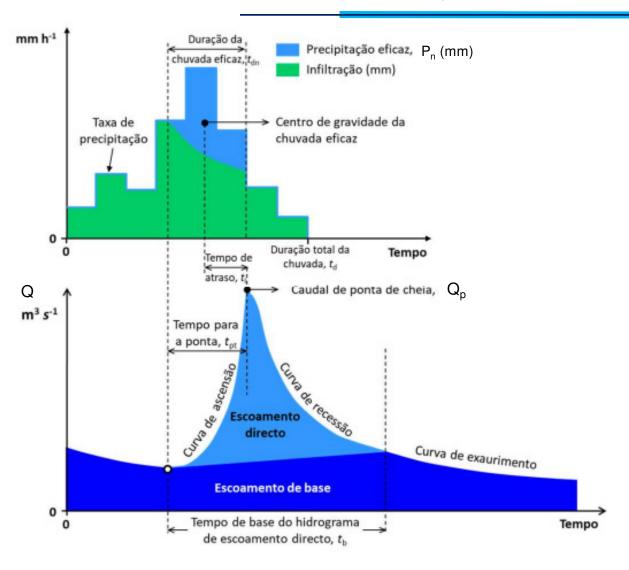
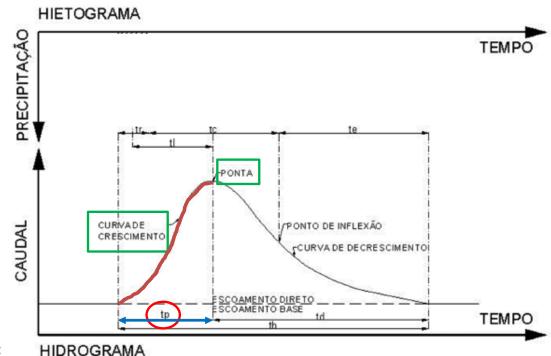
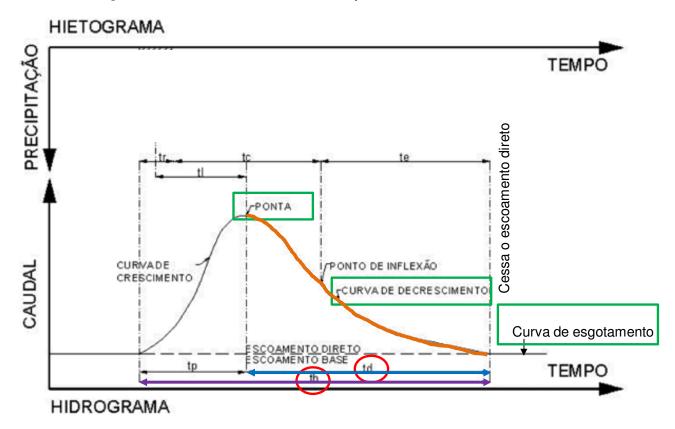
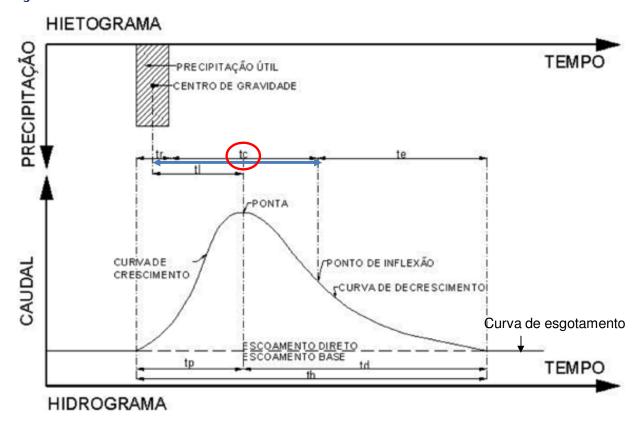



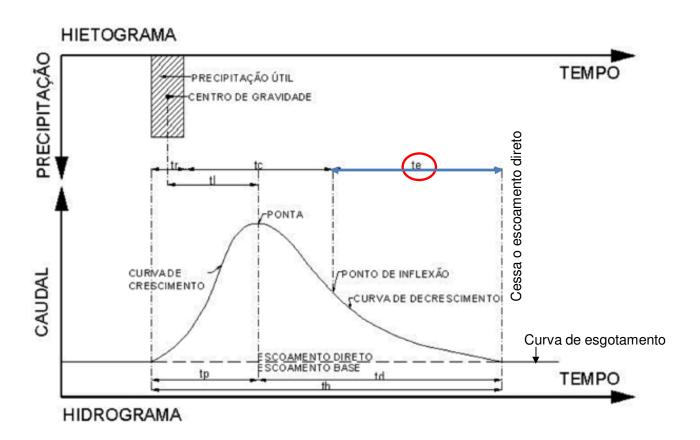
Figura 6 Tempos característicos das relações precipitação-escoamento

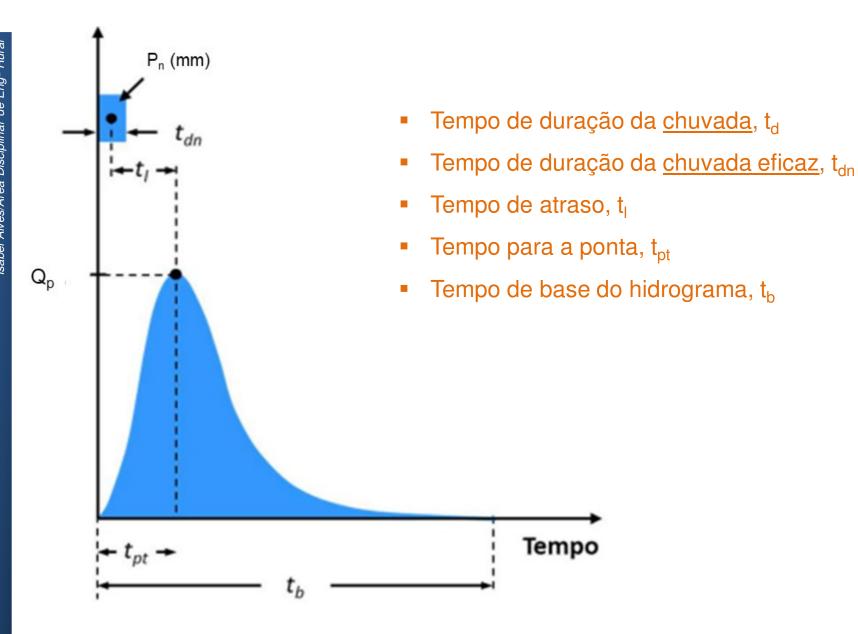

Um hidrograma tipo apresenta quatro fases:

- curva de crescimento
- ponta
- curva de decrescimento
- curva de esgotamento
- curva de crescimento, corresponde ao aumento de caudal motivada pelo incremento do escoamento, e ocorre durante o tempo de crescimento ou tempo para a ponta, t_p ;

ponta do hidrograma, é o respetivo valor máximo;


- curva de decrescimento, diminuição progressiva do escoamento direto; ocorre durante o tempo de decrescimento, t_d. A soma dos tempos de crescimento e decrescimento corresponde ao tempo de base do hidrograma, t_b ;
- curva de esgotamento, corresponde ao escoamento de base ou subterrâneo, depois de terem cessado as contribuições das restantes componentes.


Tempo de concentração de uma bacia, t_c, é o tempo necessário para que toda a sua área contribua para o escoamento superficial na secção de saída;


OU

é o tempo necessário para que uma gota de água caída no ponto hidraulicamente mais afastado da bacia chegue à secção de saída.

tempo de esvaziamento da rede hidrográfica, te, entre a ocorrência do ponto de inflexão na curva de decrescimento e a cessação do escoamento direto.

Secção de Engª Rural

Tempo de concentração de uma bacia, t_c

- tempo correspondente ao trajeto da água desde o ponto mais remoto da bacia até à secção de jusante
- só ao fim do tempo de concentração, toda a bacia contribui com escoamento superficial para a secção de jusante.

Perímetro da bacia Isócrona, to Isócrona, t₁ Secção de jusante, to superficial, q

a) Fórmula empírica

$$t_c = 0.02 L_c^{0.77} S_c^{-0.385} + \left(\frac{2.2 n_M L_s}{\sqrt{S_b}}\right)^{0.467}$$

 t_c = tempo de concentração (min),

L_c = comprimento do curso de água principal (m),

 S_c = declive do curso de água principal (-),

 n_M = número de Manning para as encostas da bacia (m^{-1/3} s),

L_e = comprimento médio de escoamento superficial (m), com um limite máximo de 150 m,

 S_h = declive médio da bacia (-)

b) Fórmula recomendada pelo SCS, em que $t_c = t_l/0.6$

$$t_l = \frac{2.587 (L_c + I)^{0.8} (1000/CN - 9)^{0.7}}{19000 \sqrt{S_b}}$$

 t_i = tempo de atraso (h),

 L_c = comprimento do curso de água principal (m),

I = comprimento desde a nascente do curso de água até à linha de cumeada (m),

 S_h = declive médio da bacia (-)

22

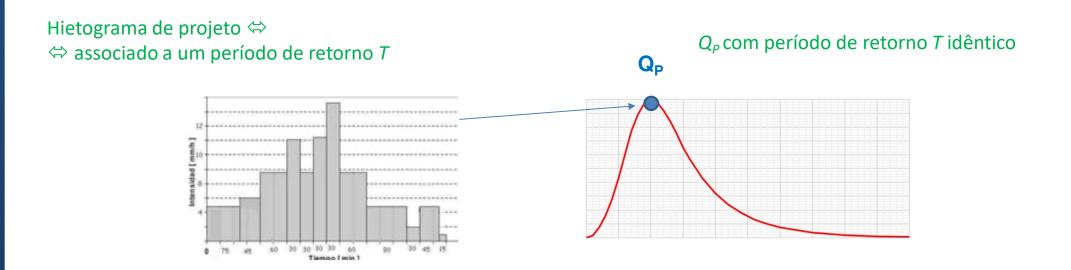
Q

c) Outras fórmulas

Nome	Equação	Comentários	
Giandotti	$T_c = \frac{4\sqrt{A} + 1,5L}{0,80\sqrt{\overline{H}}} $ (2.13)	Deduzida utilizando dados de bacias naturais do norte e centro de Itália com áreas entre 170 – 70.000 km². Quando aplicado a bacias pequenas o tempo de concentração é sobrestimado.	
Temez	$T_c = 0.3 \left(\frac{L}{D_m^{0.25}}\right)^{0.76} \tag{2.14}$	Deduzida utilizando dados de bacias naturais de Espanha com áreas até 3000 km².	
Kirpich	$T_c = 0.0663 \frac{L^{0.77}}{D_m^{0.385}} $ (2.15)	Deduzida utilizando dados de 7 bacias rurais do Tennessee (EUA) com áreas entre 0,005 – 0,453 km² e com declives médios entre 3 – 10%.	
Ven Te Chow	$T_c = 0.1602 \frac{L^{0.64}}{D_m^{0.32}} $ (2.16)	Deduzida utilizando dados de 20 bacias rurais dos Estados Unidos da América com áreas entre 0,01 – 18,5 km² e com declives médios entre 0,5 – 9%.	

Nota: T_c é o tempo de concentração (h), A é a área da bacia (km²), L é o comprimento da bacia (km), \overline{H} é a altura média da bacia (m) e D_m é o declive médio do curso de água principal (mm-1).

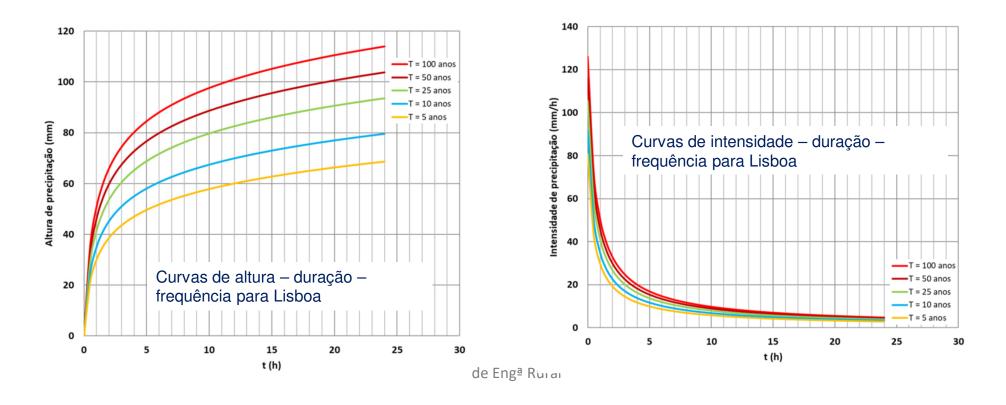
6.5 Estimativa de Caudais de Ponta de Cheia


A adaptação do homem ao meio ambiente depende da sua capacidade de reação relativamente às variações ambientais. De modo a poder defender-se destas é importante que seja capaz de as prever.

Em hidrologia, como em outras ciências (meteorologia, economia, medicina ou política), a capacidade de **previsão** é uma necessidade.

Na perspetiva da previsão para planeamento surge a noção de tempo de retorno e da sua relação com as probabilidades de acontecimento (ver aula teórica da precipitação com definição de tempo de retorno e indicação dos tempos de retorno utilizados para diferentes tipos de projetos)

Apresenta-se aqui apenas uma forma de estimar o caudal de ponta de cheia associado a um determinado período de retorno, Q_P , que corresponde à situação mais frequente, mas menos rigorosa, em que <u>não se dispõe de registos de caudal na secção do curso de água, nem em cursos de água próximos</u>.


Recorre-se a um modelo de precipitação-escoamento, de acontecimento, que transforma um hietograma de projeto a que esteja associado o tempo de retorno T, num caudal de ponta **de cheia**, Q_p , que se admite ter o mesmo tempo de retorno que o hietograma.

26

Previamente à aplicação dos métodos, é necessário determinar a precipitação de projeto com o período de retorno (T) pretendido (ver aula teórica da precipitação como selecionar T)

E necessário recorrer a curvas que já foram caracterizadas estatisticamente a partir dos dados observados num posto meteorológico da região, que relacionam a duração e a intensidade de uma chuvada com a sua maior ou menor frequência, ou seja, com o tempo de retorno. São designadas de curvas de intensidade-duração-frequência (IDF) ou altura-duração-frequência (ADF).

De entre os diversos modelos existentes, apresentam-se três:

- 1. Fórmula Racional, apropriada para pequenas bacias, de preferência com área inferior a 1 km²;
- Método do SCS, apropriado para bacias de média dimensão, até cerca de 500 km²;
- 3. Fórmula de Myer, um modelo empírico mais grosseiro, parametrizado para Portugal continental

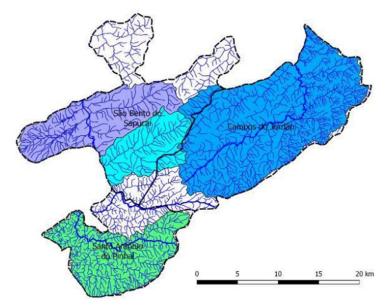
1. Fórmula racional – para bacias de pequena dimensão

- > A sua aplicação está restringida a bacias de pequena dimensão pois assume os seguintes pressupostos:
 - a precipitação ocorre uniformemente em toda a área da bacia;
 - a intensidade de precipitação é constante ao longo de todo o evento, que tem uma duração igual ao tempo de concentração, ou seja $t_d = t_{c}$
- > Aplica-se de preferência a bacias com área inferior a 1 km² ou tempo de concentração inferior a 1 h, sendo possível aplicá-la, com algumas modificações, em áreas até 1.3 a 2.5 km²

fórmula racional – fórmula empírica cinemática

$$Q_P = 0.278 C_T p_T A$$

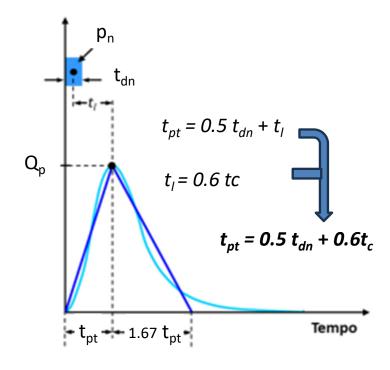
O tempo de concentração intervém no cálculo do caudal de ponta


 Q_p (m³ s⁻¹) é o caudal de ponta para o período de retorno T

 C_T é o coeficiente de escoamento para T, função do tipo e uso do solo,

p_T (mm h⁻¹) é a <u>intensidade de precipitação</u> com o tempo de retorno *T* e <u>duração igual ao tempo</u> de concentração da bacia, t_c, obtida a partir da curva de intensidade-duração-frequência para a região,

A (km²) é a área da bacia.


Em bacias com *i* manchas homogéneas com diferentes solos ou uso, com coeficientes de escoamento C_{Ti} , ocupando as áreas A_i , deve obter-se um coeficiente de escoamento médio ponderado pelas áreas.

2. Bacias de média dimensão - método do SCS

O hidrograma de escoamento direto pode ser aproximado por um hidrograma triangular, com o mesmo volume de escoamento total, como representado ao lado.

Escolhida a duração da chuvada, obtém-se a **altura de precipitação** correspondente, P_T , para o tempo de retorno pretendido, T, a partir da curva de altura-duração-frequência da região.

t_{pt} é o tempo para a ponta,
t_{dn} é a duração da precipitação eficaz
t_l é o tempo de atraso

Mto IMP

ao contrário da fórmula racional, o SCS <u>NÃO</u> considera que a duração da chuvada, t_d , é igual ao tempo de concentração da bacia, t_c

Relembrando da aula "Infiltração", a precipitação eficaz, P_n , é dada por:

$$P_n = \frac{(P - I_a)^2}{(P + S_d - I_a)}$$
 para P > 0.2 Sd

em que a capacidade de armazenamento da bacia, S_d , deverá ser calculada para a situação AMC III (solo perto da saturação)

A expressão de cálculo do **caudal de ponta de cheia**, Q_p , para um determinado T, segundo o método SCS é:

$$Q_p = \frac{0.208 \, P_n \, A}{t_{pt}} = \frac{0.208 \, P_n \, A}{0.5 \, t_{dn} + t_l}$$

 t_{pt} é o tempo para a ponta, t_{dn} é a duração da <u>precipitação eficaz</u> t_{l} é o tempo de atraso

com P_n em mm, A em km², os tempos em h e Q_p em m³ s⁻¹.

3. Fórmula de Myer – fórmula empírica não cinemática

A fórmula de Myer é um modelo empírico mais grosseiro, mas apresenta a vantagem de ter sido parametrizada para Portugal Continental.

$$Q_P = C_T A^{\alpha}$$

em que o parâmetro regional C depende das características da bacia e do tempo de retorno e o parâmetro regional α, em média igual a 0.5, varia geralmente entre 0.4 e 0.8 (Quintela, 1996).

Loureiro e Costa (1980), Loureiro e Pinto (1980) e Loureiro e Macedo (1984) (em Quintela, 1996) determinaram os valores dos parâmetros C e α para regiões que cobrem a totalidade de Portugal Continental. Dentro de cada zona o expoente α é constante e o coeficiente C é função do tempo de retorno.

Deve usar-se apenas quando não for possível recorrer ao modelo SCS