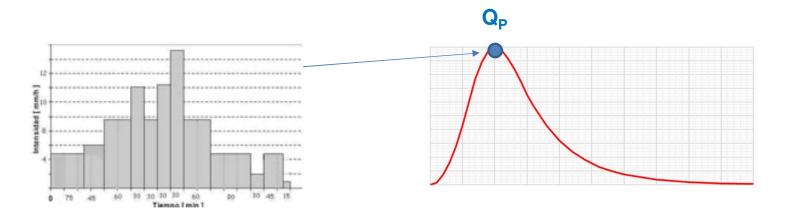

HIDROLOGIA

6. Determinação do caudal de ponta de cheia

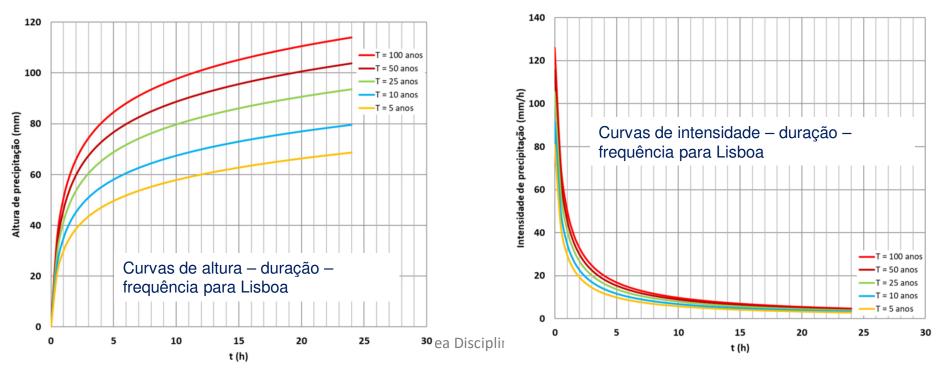
- 6.4 Tempos Característicos das Relações Precipitação Escoamento
- 6.5 Estimativa de Caudais de Ponta de Cheia
 - Formula racional
 - Método do SCS
 - Fórmula de Myer

Área Disciplinar de Engª Rural


Área Disciplinar de Engª Rural

6.5 Estimativa de Caudais de Ponta de Cheia

Recorre-se a um modelo de precipitação-escoamento, de acontecimento, que transforma um hietograma de projeto a que esteja associado o tempo de retorno T, num caudal de ponta **de cheia**, Q_p , que se admite ter o mesmo tempo de retorno que o hietograma.


Hietograma de projeto ⇔ ⇔ associado a um período de retorno *T*

 Q_p com período de retorno T idêntico

Previamente à aplicação dos métodos, é necessário determinar a precipitação de projeto com o período de retorno (T) pretendido (ver aula teórica da precipitação como selecionar T)

É necessário recorrer a curvas que já foram caracterizadas estatisticamente a partir dos dados observados num posto meteorológico da região, que relacionam a duração e a intensidade de uma chuvada com a sua maior ou menor frequência, ou seja, com o tempo de retorno. São designadas de curvas de intensidade-duração-frequência (IDF) ou altura-duração-frequência (ADF).

De entre os diversos modelos existentes, apresentam-se três:

- 1. Fórmula Racional, apropriada para pequenas bacias, de preferência com área inferior a 1 km²;
- 2. Método do SCS, apropriado para bacias de média dimensão, até cerca de 500 km²;
- 3. Fórmula de Myer, um modelo empírico mais grosseiro, parametrizado para Portugal continental

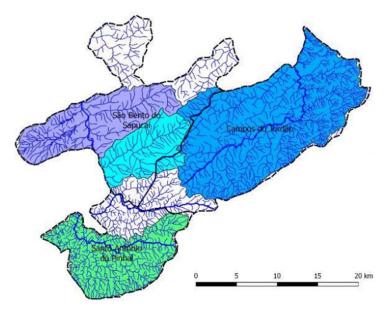
1. Fórmula racional – para bacias de pequena dimensão

- > A sua aplicação está restringida a bacias de pequena dimensão pois assume os seguintes pressupostos:
 - a precipitação ocorre uniformemente em toda a área da bacia;
 - a intensidade de precipitação é constante ao longo de todo o evento, que tem uma duração igual ao tempo de concentração, ou seja $t_d = t_{c}$
- > Aplica-se de preferência a bacias com área inferior a 1 km² ou tempo de concentração inferior a 1 h, sendo possível aplicá-la, com algumas modificações, em áreas até 1.3 a 2.5 km²

fórmula racional – fórmula empírica cinemática

$$Q_P = 0.278 C_T p_T A$$

O tempo de concentração intervém no cálculo do caudal de ponta

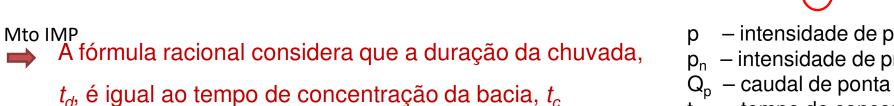

 Q_p (m³ s⁻¹) é o caudal de ponta para o período de retorno T

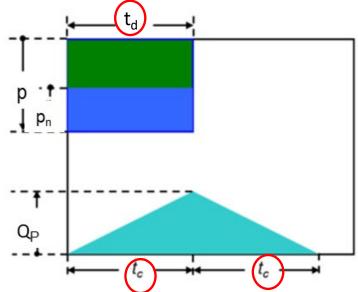
 C_T é o coeficiente de escoamento para T, função do tipo e uso do solo,

p_T (mm h⁻¹) é a <u>intensidade de precipitação</u> com o tempo de retorno *T* e <u>duração igual ao tempo</u> de concentração da bacia, t_c, obtida a partir da curva de intensidade-duração-frequência para a região,

A (km²) é a área da bacia.

Em bacias com *i* manchas homogéneas com diferentes solos ou uso, com coeficientes de escoamento C_{Ti} , ocupando as áreas A_i , deve obter-se um coeficiente de escoamento médio ponderado pelas áreas.

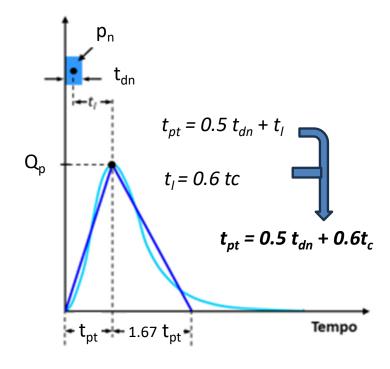

Área Disciplinar de


Quadro 4 Coeficientes de escoamento C_T para utilização da Fórmula Racional (Fonte: Cidade de Austin, Texas, em Chow, et al., 1988)

	Tempo de Retorno (anos)						
Características da Superfície	2	5	10	25	50	100	150
Zonas urbanas							
Asfalto	0.73	0.77	0.81	0.86	0.90	0.95	1.00
Betão/Telhados	0.75	0.80	0.83	0.88	0.92	0.97	1.00
Àreas relvadas (relvados,							
parques, etc.)							
Más condições (cobertura do							
Plano, 0-2%	0.32	0.34	0.37	0.40	0.44	0.47	0.58
Médio, 2-7%	0.37	0.40	0.43	0.46	0.49	0.53	0.61
Inclinado, acima de 7%	0.40	0.43	0.45	0.49	0.52	0.55	0.62
Condições intermédias (cobe	rtura do so	olo entre 50	0% e 75%	da área)			
Plano, 0-2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53
Médio, 2-7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58
Inclinado, acima de 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60
Boas condições (cobertura do	solo acin	na de 75%	da área)				
Plano, 0-2%	0.21	0.23	0.25	0.29	0.32	0.36	0.49
Médio, 2-7%	0.29	0.32	0.35	0.39	0.42	0.46	0.56
Inclinado, acima de 7%	0.34	0.37	0.40	0.44	0.47	0.51	0.58
Zonas rurais							
Culturas							
Plano, 0-2%	0.31	0.34	0.36	0.40	0.43	0.47	0.57
Médio, 2-7%	0.35	0.38	0.41	0.44	0.48	0.51	0.60
Inclinado, acima de 7%	0.39	0.42	0.44	0.48	0.51	0.54	0.61
Pastagem/Matos							
Plano, 0-2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53
Médio, 2-7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58
Inclinado, acima de 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60
Floresta							
Plano, 0-2%	0.22	0.25	0.28	0.31	0.35	0.39	0.48
Médio, 2-7%	0.31	0.34	0.36	0.40	0.43	0.47	0.56
Inclinado, acima de 7%	0.35	0.39	0.41	0.45	0.48	0.52	0.58

Hidrograma correspondente ao método da fórmula racional

Escolhida a duração da chuvada, t_d, obtém-se a **altura** de precipitação correspondente, P_T , para o tempo de retorno pretendido, T, a partir da curva de alturaduração-frequência da região (ver aula sobre precipitação) $P(t,T) = a_T t^{b(T)}$



- intensidade de precipitação total p_n – intensidade de precipitação eficaz
- tempo de concentração
- Com a altura de precipitação calculada determina-se a intensidade de precipitação, p, para o tempo de retorno T pretendido $Q_P = 0.278 C_T p_T A$

2. Bacias de média dimensão – método do SCS

O hidrograma de escoamento direto pode ser aproximado por um hidrograma triangular, com o mesmo volume de escoamento total, como representado ao lado.

Escolhida a duração da chuvada, obtém-se a altura de precipitação correspondente, P_{τ} , para o tempo de retorno pretendido, T, a partir da curva de alturaduração-frequência da região.

t_{pt} é o tempo para a ponta, t_{dn} é a duração da precipitação eficaz é o tempo de atraso

Mto IMP

ao contrário da fórmula racional, o SCS ${
m N ilde{AO}}$ considera que a duração da chuvada, t_d , é igual ao tempo de concentração da bacia, t_c

Relembrando da aula "Infiltração", a precipitação eficaz, P_n , é dada por:

$$P_n = \frac{(P - I_a)^2}{(P + S_d - I_a)}$$
 para P > 0.2 Sd

em que a capacidade de armazenamento da bacia, S_d , deverá ser calculada para a situação AMC III (solo perto da saturação)

A expressão de cálculo do **caudal de ponta de cheia**, Q_p , para um determinado T, segundo o método SCS é:

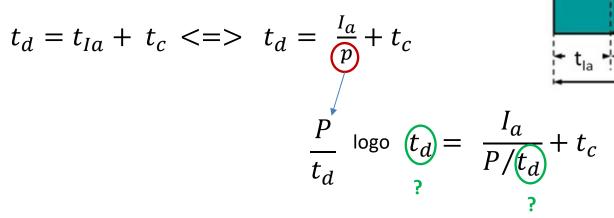
$$Q_p = \frac{0.208 \, P_n \, A}{t_{pt}} = \frac{0.208 \, P_n \, A}{0.5 \, t_{dn} + t_l}$$

 t_{pt} é o tempo para a ponta, t_{dn} é a duração da <u>precipitação eficaz</u> t_{l} é o tempo de atraso

com P_n em mm, A em km², os tempos em h e Q_p em m³ s⁻¹.

Fórmula do SCS, em que $t_c = t_1/0.6$

$$t_l = \frac{2.587 (L_c + I)^{0.8} (1000/CN - 9)^{0.7}}{19000 \sqrt{S_b}}$$


 t_i = tempo de atraso (h),

 L_c = comprimento do curso de água principal (m),

 I = comprimento desde a nascente do curso de água até à linha de cumeada (m),

 S_b = declive médio da bacia (-)

Escolha da duração de precipitação total, t_d, com intensidade p, que conduz a um tempo t_{la} para satisfação das perdas iniciais la, e uma duração da precipitação eficaz igual ao tempo de <u>concentração da bacia, $t_{dn} = t_c$.</u> Mto IMP

A equação não tem resolução analítica, resolvendo-se por iterações, com inicio em $t_d = t_c$

Ia

Restantes perdas

3. Fórmula de Myer – fórmula empírica não cinemática

$$Q_P = C_T A^{\alpha}$$

A fórmula de Myer é um modelo empírico mais grosseiro, mas apresenta a vantagem de ter sido parametrizada para a totalidade de Portugal Continental.

Dentro de cada zona o expoente α é constante e o coeficiente C é função do tempo de retorno.

Deve usar-se apenas quando não for possível recorrer ao modelo SCS

Quadro 5 Definição de zonas para aplicação da fórmula de Myer (Loureiro, et al., 1980 e 1984, em Quintela, 1996).

Localização geral	Definição de zonas
A N orte da bacia do Tejo	 N1 – Bacias superiores do Cávado, Tâmega e Tua. N2 – Bacias do Lima, bacia intermédia do Cávado, bacia superior do Ave, bacias inferiores do Tâmega e do Tua e bacia superior do Sabor. N3 – Bacias inferiores do Cávado, Ave, Douro, Vouga e Mondego. N4 – Bacia inferior do Sabor, margem esquerda da bacia do Douro a montante da confluência do Paiva, bacias superiores do Vouga e Mondego.
Bacia do T ejo	 T1 – Bacias superiores do Zêzere e bacias do Ponsul, Ocreza, Aravil e Erges (válidos somente onde R < 1400 mm). T2 – Bacias inferiores do Zêzere e bacias do Nabão, Alviela, Maior, Alenquer, Grande da Pipa, Trancão; bacias inferiores do Sorraia e bacia da ribeira de Muge. Na área compreendida entre a serra de Candeeiros, serra de Montejunto e o litoral e na bacia do rio Lis, os valores deverão ser tomados com reserva. T3 – Bacia superior do Sorraia, bacias da ribeira de Nisa e dos rios Sever e Caia.
A S ul da bacia do Tejo	S1 – Baixo Sado. S2 – Alto Sado, bacias superiores do Xarrama, Degebe e Baixo Mira. S3 – Bacia do Guadiana, entre as zonas S2 e S4. S4 – Ribeiras do Algarve, Baixo Guadiana e Alto Mira (válidos somente onde 500 mm < $\overline{R} < 1000$ mm).

Legenda: \overline{R} = Precipitação média anual.

Quadro 6 Parâmetros $C_{\rm T}$ e α da fórmula de Myer: $q_T = C_T A^{\alpha}$, com q_T em m³ s-1 e A em km², válida para A > 50 km², para Portugal Continental (Loureiro, et al., 1980 e 1984, em Quintela, 1996).

	α	С							
Zona		Tempo de retorno, T (anos)							
		5	10	25	50	100	500	1000	
N1	0,807	2,85	3,72	4,53	5,27	6,10	7,6	8,57	
N2	0,694	5,44	6,97	8,58	9,67	10,98	13,9	15,63	
N3	0,510	24,93	30,50	39,14	43,49	49,50	57,1	64,83	
N4	0,489	11,68	16,78	19,19	22,31	26,20	33,1	38,52	
T1	0,375	31,29	40,07	50,24	58,06	66,90	80,50	94,40	
T2	0,466	19,17	26,3	34,70	42,20	48,30	66,20	72,30	
T3	0,761	3,66	4,49	5,58	6,02	8,45	9,60	11,00	
S1	0,816	1,66	2,09	2,58	2,98	3,37	4,27	4,75	
S2	0,738	3,39	4,28	5,54	6,44	7,40	9,50	10,68	
S 3	0,745	2,38	3,06	3,68	4,12	4,94	6,23	7,27	
S4	0,784	3,45	4,40	5,40	6,24	7,09	8,97	9,88	