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Programme

@ Matrix Theory concepts

@ Principal Component Analysis (PCA)
@ Linear Discriminant Analysis (LDA)
@ Cluster Analysis (Prof. Pedro Silva)
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Raw material for PCA and LDA

Data matrix X,., , with sets of observations:
@ on p numerical variables (columns);
@ for nindividuals, or experimental units (rows).

Note: Unlike in modelling, here all variables are on an equal footing.

We will consider a descriptive (geometric) approach, both to PCA and
to LDA, although in both methods probabilistic/inferential notions and
approaches may be used.
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Goal in PCA and LDA

We seek new variables, defined from the p observed variables which
highlight:

@ in PCA: the variability between individuals;
@ in LDA: the separation between known subgroups of individuals.

In both cases, the new variables are linear combinations of the p
observed variables.
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A motivation of PCA

In the traditional representation, the data matrix X,., corresponds to a
scatterplot of n points in RP:

paxes <—  pvariables
npoints <+— nindividuals

This scatterplot cannot be visualised for p > 3.

PCA can be seen as an “optimal” dimensionality reduction technique: we
seek subspaces of dimension k < p where the orthogonal projection of the
scatterplot preserves a maximum of variability (equivalently, looses the least
variability).

With a reduction to k=2 or k=3 dimensions, we have a visualisable
approximation of the scatterplot.
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An example: Somers’ crayfish data

Data: p=13 morphometric variables with n=63 crayfish

> lavagantes

x1 x2 x3 x4
29.42 21.43 14.91 12.58
30.06 22.05 14.81 12.54
30.30 21.95 15.10 12.97

31.27 24.04 17.45 14.49
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56 33.44 24.72 17.06 14.25
57 33.48 25.32 17.50 14.15
58 33.57 25.00 16.74 14.10
59 33.74 25.30 17.11 14.26
60 34.37 25.35 17.98 14.49
61 34.66 25.32 18.50 14.16
62 34.93 26.77 18.00 14.13
63 35.73 25.79 18.35 15.06
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x7 x8 x9 x10 xii x12  x13

76 6.45 6.67 9.14 24.54 10.38 15.37
73 6.11 7.04 8.76 26.21 11.00 11.92
05 6.46 7.14 9.35 26.55 11.84 16.50
71 6.62 6.84 9.53 25.35 11.60 15.47
15 5.96 7.09 9.15 26.88 11.92 17.24
06 6.59 7.43 10.75 31.60 14.32 18.95
03 6.40 6.89 9.82 28.16 12.53 16.90
94 6.26 6.81 9.36 26.09 11.15 15.48
02 6.47 7.00 9.70 27.01 11.22 16.65
03 6.14 7.27 9.53 29.34 12.59 17.90
04 6.52 7.25 10.21 26.92 11.40 16.23
17 6.94 7.54 10.37 26.85 11.40 16.34
95 7.27 7.37 10.15 25.13 11.23 14.98
26 6.82 7.41 11.14 26.43 10.91 16.02
02 7.04 7.35 10.33 27.97 11.75 17.19
32 6.88 7.59 11.00 27.76 11.87 17.58
04 7.14 7.79 10.36 26.98 11.55 17.20
15 7.09 7.83 10.59 28.29 12.30 17.45

These 13 x 63=819 values define a 63-point scatterplot in R'3.
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Somers’ crayfish (cont.)

Dataset 1avagantes: full variable names

x1
x2
545
x4
x5
x6
x7
x8
x9
x10
x11
x12
seil 3

Thoma, Roger F., A Field Guide to the Crayfishes
of Obed Wild and Scenic River, waw .nps . gov.

carapace_1
tail_1
carapace_w
carapace_d
tail_w
areola_1
areola_w
rostrum_1
rostrum_w
postorbital_w
propodus_1
propodus_w
dactyl_1

carapace length
tail length
carapace width
carapace depth
tail width

areola length
areola width
rostrum length
rostrum width
post-orbital width
propodus length
propodus width
dactyl length
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Graphical representation of multivariate data

For p=3 the usual representation of the data is possible, with the help of
software such as the rggobi package, which accesses the software Ggobi
from within R'.

> library(rggobi)
> ggobi(lavagantes)

T

But for p > 3 we continue to have only partial visions, resulting from
orthogonal projections of the n= 63 point scatterplot in R'3 onto
3-dimensional spaces.

GGobi is a separate, free and open source software (www.ggobi . org)
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Orthogonal projections

Any projection impoverishes the representation: only partial visions are
provided. Distances are distorted.

But,

@ Why project only onto coordinate (hyper)planes (defined by the variable
axes)? Why not other (hyper)planes?

@ What is the (hyper)plane where the projection is most faithful?

@ What does a “faithful projection” mean (which crietrion)?

Intuitive idea: the subspace where we project should preserve as much
variability of the scatterplot as possible. This is the approach that leads to
Principal Component Analysis.
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Motivation: Linear Discriminant Analysis (LDA)

PCA treats all individuals on the same footing. But the first 42 crayfish are males (21
reproducing and 21 non-reproducing males) and the last 21 are females. A scatterplot
of the first two variables suggests that the separation of these subgroups may be
visible on the morphometric variables.

LDA: identify linear combinations of variables that best separate the subgroups.
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Concepts: Types of square matrices
A matrix is square if it has the same number of rows and columns.

Here are some important types of square matrices, Ap.p:

A Diagonal a; =0 if i#j (ifthereis an i such that a; # 0)
. o J 0 fori#j
Ip Identity A=, = ag;= { 1 fori=]

ATinverseof A| A-TA=AA"T =1,

(may not exist, if it exists it is unique)
A Symmetric Al=A — gagj=a; Vij

A Idempotent A>=AA=A

A Orthogonal A T=A" —= AA=AA'=I,

Both the columns and the rows of an orthogonal matrix are orthonormal sets
of vectors: vectors &; with norm one (||a;|| = \/ala;=1) and mutually
orthogonal (afa; =0, if i # ).
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Matrices of (co-)variances
Symmetric matrices are important in Statistics: (co)variance and correlation
matrices are symmetric matrices.
(Co-)variance matrices of n x p datasets are of the form
S— % chxc ’

where X°© is the n x p matrix whose columns are the p centred vectors of
observations, X?, i.e., the matrix with generic element x; —x ;:

™=

(xj =X j)(Xik =X k) = Covg.
1 %k

1
k=1
The eigenvalues of (co-)variance matrices are always non-negative and, if

there is no multicollinearity of the centred variables, they are positive.
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Eigenvalues/vectors (Valores e vectores proprios)

Definition: Eigenvalues/eigenvectors

Given a square real matrix Apxp, @ Non-zero vector X € CP is called an
eigenvector of A, and A € C is its eigenvalue, if:

AX =X .

Eigenvalues and eigenvectors of symmetric matrices
If Apxp is @ symmetric matrix, its eigenvalues/vectors have good properties:
@ lts eigenvalues and eigenvectors are always real.

@ Eigenvectors corresponding to different eigenvalues are orthogonal to
each other.

@ Even if there are repeated eigenvalues, it is possible to determine an
orthonormal set of p eigenvectors (and p corresponding eigenvalues).
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The Spectral Decomposition of a symmetric matrix

Spectral Decomposition Theorem
Let Apxp be a symmetric matrix. Let:

o {\7,-}{-’:1 be an orthonormal set of eigenvectors; and
@ {1}, their corresponding p eigenvalues.
Define:
@ the diagonal matrix Ap.p whose diagonal elements are 4;; and
@ a (necessarily orthogonal) matrix Vp.p, with columns v;;

Then: )
A = VAV! <~ A = Z)L,V,Vf

The eigenvalues and eigenvectors are the essence of a symmetric matrix A.
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Remarks about spectral decompositions

A = VAV! — A= Y aupnt.

o

Il
N

@ If all eigenvalues are different, the eigenvectors V; are unique, except for
sign-switching (both V; and —V; are eigenvalues).

@ Ordering the diagonal elements of A (A1 > A, > ... > Ap), the
decomposition A=VAV! is unique (except for a change of sign in any
column of V).

@ If there are equal eigenvalues, the decomposition is not unique.

In fact, let X4 and X, be eigenvectors of A sharing a common eigenvalue A.
Since AXq{ =AX; e AX,=AX, , we have:

A(ai1 +ﬁi2) = OCAY(1 +ﬁAf(2 = (X~li1 +B~7LY(2 = /’L(ai1 —i—ﬁiz) ,

hence ax4 + BX» is also an eigenvector of A, with the same eigenvalue 1. All
vectors of the subspace spanned by X4 and X, are eigenvectors with the same
eigenvalue 1.
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Traces (of square matrices)
Let A be a square matrix:

@ The trace of A is defined as the sum of its diagonal elements:

p
tr(A) = Z ajj.
i=1

@ The trace is a linear operator, that is,

tr(cA+pB) = otr(A)+pu(B)

The inner product of two matrices of the same size, Apxp and Bpxp, is usually
defined as:

p n p
<AB>=u(AB) = Y (A'B); = Y ) ajb; .

j=1 i=1j=1
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Circularity of the trace
Product of two matrices: Apxp, Bpxn = tr(AB) = tr(BA).

n p
(Even when AB # BA: both traces are Y, Y. ajib;)
i=1j=1

Product of 3 matrices: Apyk,Bkxp:Cpxm = tr(ABC)=tr(BCA).
(Apply the previous result to the two matrices A and BC)

Product of n matrices: If Ay,As,As,...,A, are matrices of size (py x p1),
(P1 % P2), (P2 X P3), -5 (Pn—1 % Po), then,

tr(A1 A2A3 e An) = tr(A2A3 e AnA1) .
(Apply the first result to matrices A and AxAs3---Ap)

From the Spectral Decomposition, it is easy to see that the trace of a
symmetric matrix A is also the sum of its eigenvalues:
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PCA: a statistical approach

A frequent way of introducing PCA uses statistical concepts.

Given the data matrix X,., (each column associated with a variable, and
each row with an observed individual), we seek the linear combination of the
p variables with maximum variance.

That is, we seek the vector V.= (v4, vz, ..., Vp) € RP such that
XV = viX1+ VoXo+ VaX3+...+ VpXp

has maximum variance (with X; € R" the vector of observations of variable j,
i.e., the j-th column of X).

The variance of XV is given by VSV, where S is the dataset’s (co)variance
matrix. Thus, we seek the vector V that maximises V/Sv.
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Variance of linear combinations of variables
Let S be the matrix of (co)variances defined by a data matrix X.

The variance of a linear combination of the columns of X, y = Xa, is the
quadratic form of S defined by a:

var(y) = var(Xa) = a'sa.

Infact, a/Sd = 17 a'X'Xd = —1o |XG|2 , and

X‘a = (In— Pin)Xa = Xa— PinXa =y-)1n
is the centred vector for the linear combination y = Xa, with generic element yf =yi-Yy.
Thus, a!Sa is the sample variance of y = Xa:

n
a'sa = oty XE° = oty Y09 = varty).

i

The covariance between different linear combinations, Xa and XB, is:

Cov[Xa,Xb]=a'Sh .
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Statistical approach (cont.)

Without additional restrictions, the problem of maximising v!Sv cannot be
solved: we could choose arbitrarily large elements in vector v.

Impose the restriction of considering only unit-norm vectors (sum of squared

vector coefficients equal to 1), that is, vectors of the form ﬁ (with V £ 0).

Hence, the problem is to maximise the so-called Rayleigh-Ritz ratio of S:

s sV V'S
K I

maXx
VERP\ {0}

=

maxﬁ TQ = maxﬂ I
vere\ (0} V]| vere\ {6y VIV

The solution is given by the eigenvector V4 (of norm 1), associated with the
largest eigenvalue of S, 1.
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Rayleigh-Ritz Theorem
Let Ap.p be a symmetric matrix, with eigenvalues in decreasing order:
lmax:l1 ZAQ EXTT le—1 le:lmin-
@ The largest eigenvalue of A verifies: Amax = max XAX,
%40
when X = V4, the eigenvector associated with Aax.

SIAD

@ The smallest eigenvalue of A verifies: Amiy = min A%,
%40

when X = V), the eigenvector associated with Ay

@ The remaining eigenvalues (1;)/eigenvectors(v,) of A which can also be
characterised from the Rayleigh-Ritz ratio of A:

@8, 8 = - LAy XIx
(X LVjq,Vipa,..Vp )A(X7#0) X°X

with the equalities associated with X = V;.
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The first Principal Component

The first Principal Component is the linear combination y; = XV, with v the

eigenvector associated with the largest eigenvalue of S.

Note: If V is an eigenvector, so is —V. The solutions define straight lines, but do not
define specific directions on those lines. Just as the eigenvector V4, so too the first

PC, XV, is defined up to a multiplication by —1.

The vector of coefficients V4 defines the line in RP of maximum variance for

the n-point scatterplot defined by the data.

Eigenvalue 14 is the variance of the first PC:

VEHF(§?1 ) = V@if()(‘;1) = i;q E;i;1 = i;1 -;L1i;1 = ;L1 -i;q‘;1 = ;L1 .

The larger A4, the more elongated is the RP scatterplot in the direction
defined by the first PC.
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PCA: statistical approach (cont.)

Having defined the first PC, we seek a new linear combination y = XV (with
V!V = 1) of maximum variance, uncorrelated with PC 1.

Zero correlation means zero covariance. The covariance of two linear combinations of
the columns of matrix X, Xv4 and Xv, is given by Vv!Svy, where S is the covariance
matrix for the data in X.

But v, is an eigenvector of S, with eigenvalue 1. Hence:

cov (XV,XV1) = VISV1 =0 < 11 Vt\_h =0 & V.l \71 .

Thus, maximising the variance of Xv, given uncorrelatedness of XV with XV,

is equivalent to maximising Véﬁf’, subject to V being orthogonal with V.

The problem is again associated with Rayleigh-Ritz ratios.
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PCA: statistical approach (cont.)

Maximising the variance of XV subject to uncorrelatedness of Xv and Xv

means taking V = +V», the eigenvector of S associated with its second
largest eigenvalue, A,.

y> = +XV, is the second principal component, with variance A5.

PCs are solutions to the problem of finding successive uncorrelated linear
combinations of maximum variance.

The j-th principal component is given by y; = £Xv;, where V; is the
eigenvector of S associated with the j-th largest eigenvalue ;.

The variance of the j-th PC is given by the corresponding eigenvalue:
var(Vj) = )vj.
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PCA in @®

The usual command to perform a PCA in R is the command prcomp.

Command prcomp has a single compulsory argument: the name of the
data.frame Or matrix with the data (each column corresponding to a
variable).

As with other R commands, the result is an object of class 1ist, containing
different information regarding the results of the analysis.

Note: There is an alternative princomp command. But for various reasons,
including numerical accuracy in the case of nearly singular (almost
non-invertible) covariance matrices the command prcomp is preferable.
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The command prcomp
PCA - Crayfish data

> lav.acp <- prcomp(lavagantes)

> lav.acp

Standard deviations (1, .., p=13):
[1] 4.4171243 2.1583124 0.9617894 0.7071970 0.6163559 0.4992560 0.4639879 <- standard deviation
[8] 0.3848417 0.3362918 0.2500701 0.2060563 0.1770375 0.1405790 of each PC
Rotation (n x k) = (13 x 13):

PC1 PC2 PC3 PC4 PC5
carapace_1 0.28762060 0.36935786 0.08475822 -0.31404094 -0.454639049 <- each column is an
tail_l 0.10615292 0.61487598 -0.01728674 0.46421995 0.550775374 eigenvector v_j
carapace_w 0.19089393 0.22112280 0.09978650 -0.10987953 -0.186701149 of the data’s
carapace_d 0.13951311 0.14784642 0.13138041 0.01598041 0.105009202 (co)variance
tail_w 0.04682070 0.49290700 -0.05172379 0.06592005 -0.405755003 matrix. These
areola_l 0.13858508 0.15588574 -0.03136931 -0.78849399 0.514893584 vectors contain the
areola_w 0.02862658 0.02088959 -0.05104427 -0.01123927 -0.005062728 coefficients of the
rostrum_1 0.04321132 0.10238463 -0.00534869 0.10538116 -0.015312405 linear combinations
rostrum_w 0.06381638 0.06445436 0.05636521 -0.02008425 -0.071806372 defining the PCs.
postorbital_w 0.08947075 0.12850014 0.07576734 -0.01777992 0.021872310
propodus_1 0.70705994 -0.28621233 0.04885310 0.16407517 0.077728529
propodus_w 0.31334632 -0.14849063 0.69820134 0.07580938 0.026674997
dactyl_1l 0.46456390 -0.10926197 -0.67839228 0.05350023 -0.040805783
[...] <- the remaining vectors of coefficients were omitted, for reasons of space.

The coefficients of each linear combination (columns of the Rotation object) are
called the PC loadings.

atematica/ISA)
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Properties of PCs

@ The sum of variances (inertia) of the p principal components is equal to
the sum of variances of the p original variables:

o

Il
N

p
s? = tr(S) = tr((VAV!) = tr(AV'V) = Z

@ Thus, we can say that the j-th PC accounts for a proportion of the total
variability (inertia) equal to 7; = ):p—/l
i=1 7

@ This measure can be extended to subsets of principal components. The
first g PCs account for

Z

/:1 /I

q
Y 7 x 100% = x 100%
i=1

of the total variability (inertia) of the dataset.
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The command summary
PCA - Crayfish data

> summary(lav.acp)

Importance of components:

PC1  PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13
Std. Dev. 4.417 2.158 0.9618 0.7072 0.6164 0.49926 0.46399 0.38484 0.33629 0.25007 0.20606 0.17704 0.14058
Prop.Var. 0.727 0.173 0.0344 0.0186 0.0141 0.00928 0.00802 0.00551 0.00421 0.00233 0.00158 0.00117 0.00074
Cum.Prop. 0.727 0.900 0.9344 0.9530 0.9672 0.97645 0.98446 0.98998 0.99419 0.99652 0.99810 0.99926 1.00000

On the line associated with the first principal component we preserve 72.7%
of the dataset’s total variability.

On the plane associated with the first two principal components we preserve
90.0% of the dataset’s total variability.

The three-dimensional subspace defined by the first three PCs preserves
93.4% of the total variability.

With a 3-dimensional representation, only some 6.6% of the total variability is
not visualised.
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Vectors of scores

By default, prcomp does not show the scores of each individual on a given
PC, i.e., the value of each individual on the linear combination y; = Xv;.

The scores are stored in the list created when invoking the prcomp command,
in an object called x:

> names(lav.acp)

[1] "sdev" "rotation" "center" "scale" X
> lav.acp$x
PC1 PC2 PC3 PC4 PCS5 PC6

1 -5.0216041 -3.09975004 -0.93638716 0.590170762 0.34242883 -0.311295721
2 -5.0199046 -2.68138921 1.93090666 0.652936303 0.71306147 2.411219117
3 -2.0772687 -3.02373521 -0.44934354 0.613510708 0.54941375 -0.365822245
[Ce < el

62 1.5767872 4.68339718 -0.49231884 0.246787192 -0.11313707 0.138658304
63 3.2782407 4.30830749 0.15373020 -0.562657698 -0.73379507 0.200035217
[Ce<ad

These are the coordinates used in the low-dimensional scatterplots that best
preserve the dataset’s variability.
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The best 2-dimensional representation

First principal plane for the crayfish data

> plot(lav.acp$x[,1:2],col="blue", pch=16, cex=0.8)
> text(lav.acp$x[,1:2]+0.2, label=rownames(lavagantes), col="red")
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Individuals 43 to 63 are females, the others males. PCA did not use that information,
but is reflecting its effect on the morphometric characteristics.
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The best 3-dimensional representation

Package pca3d creates and enables us to rotate a 3-D scatterplot defined by
the scores for the first 3 PCs:

> library(pca3d)
> pca3d(lav.acp, show.labels=TRUE)

We can see that the third PC separates an outlying observation 28 from the others.
So outliers may be identifiable on some PCs.

v
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The best 3-D representation (cont.)

Package pca3d allows us to use different colours for individuals:

> pca3d(lav.acp, col=rep(c("blue","red"),c(42,21)))

The fact that the first two PCs separate males (blue) and females (red) is highlighted.
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Individual 28 and the third PC

Ouitlier in the crayfish data

> plot(lav.acp$x[,c(1,3)],col="red", pch=16, cex=0.8)
> text(lav.acp$x[,c(1,3)]-0.2, label=rownames(lavagantes), col="blue'")
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Individual 28 contributes heavily towards the third orthogonal direction of maximum
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variability. Why? What is different in individual 287
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Revisiting individual 28

Ouitlier in the crayfish data

> boxplot(lavagantes, col="yellow",6las=2)
> points(1:13,lavagantes([28,], pch=16, col="red")
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Individual 28 has unusual measurements in its claws.

v
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Eigenvalue decomposition

The information produced by the command prcomp could be obtained
with the spectral decomposition of the dataset’s covariance matrix,
using the command eigen:

> eigen(var (lavagantes))

$values <-- eigenvalues

[1] 19.51098705 4.65831240 0.92503887 0.50012760 0.37989465 0.24925657
[7]  0.21528474 0.14810313 0.11309220 0.06253506 0.04245919 0.03134228
[13] 0.01976246

$vectors <-- eigenvectors

[,11 [,2] [,3] [,41 [,51 L,61
[1,] -0.28762060 -0.36935786 -0.08475822 0.31404094 -0.454639049 0.272071976
[2,] -0.10615292 -0.61487598 0.01728674 -0.46421995 0.550775374 0.088028646

[3,1 -0.19089393 -0.22112280 -0.09978650 -10987953 -0.186701149 -0.178125878
[4,] -0.13951311 -0.14784642 -0.13138041 -0.01598041 .105009202 -0.171612241
[5,1 -0.04682070 -0.49290700 -05172379 -0.06592005 -0.405755003 -0.046182873
[6,]1 -0.13858508 -0.15588574 0.03136931 . 78849399 .514893584 -0.004876079
[7,] -0.02862658 -0.02088959 0.05104427 .01123927 -0.005062728 .026873555
[8,]1 -0.04321132 -0.10238463 .00534869 -0.10538116 -0.015312405 -0.029408152
[9,1 -0.06381638 -0.06445436 -0.05636521 .02008425 -0.071806372 .007891374
[10,]1 -0.08947075 -0.12850014 -0.07576734 .01777992 .021872310 -0.276900583
[11,]1 -0.70705994 .28621233 -0.04885310 -0.16407517 .077728529 .541197594
[12,]1 -0.31334632 .14849063 -0.69820134 -0.07580938 .026674997 -0.476061633
[13,]1 -0.46456390 .10926197 0.67839228 -0.05350023 -0.040805783 -0.506989966
[Ce<ad
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Eigenvalue decomposition (cont.)

> sqrt(eigen(var (lavagantes))$val)

[1] 4.4171243 2.1583124 0.9617894 0.7071970 0.6163559 0.4992560 0.
[8] 0.3848417 0.3362918 0.2500701 0.2060563 0.1770375 0.1405790

> lav.acp$sdev

[1] 4.4171243 2.1583124 0.9617894 0.7071970 0.6163559 0.4992560 O.
[8] 0.3848417 0.3362918 0.2500701 0.2060563 0.1770375 0.1405790

> eigen(var (lavagantes)) $vec

[,11 [,2]

[,31 [,4] [,51

[1,] -0.28762060 -0.36935786 -0.08475822 -0.31404094 -0.454639049
[2,] -0.10615292 -0.61487598 0.01728674 0.46421995 0.550775374
[3,] -0.19089393 -0.22112280 -0.09978650 -0.10987953 -0.186701149

[...]

> lav.acp$rot

PC1

PC2 PC3 PC4

4639879

4639879

L,61
-0.272071976
-0.088028646

0.178125878

PC5

carapace_1 0.28762060 0.36935786 0.08475822 -0.31404094 -0.454639049
tail_1 0.10615292 0.61487598 -0.01728674 0.46421995 0.550775374
carapace_w 0.19089393 0.22112280 0.09978650 -0.10987953 -0.186701149

[Ce < el

Note: Notice how some eigenvectors differ by a factor —1.
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More properties of PCs

Correlations between PCs and variables
The correlation between the i-th variable X; and the j-th PC XV; is:

. . Vii
corr(X;,XV;) = /% ?”
1

s; — standard deviation of variable X;
v; — coefficient (loading) of X; in PC j
VA — standard deviation of the j-th PC

X; = Xé;, where €; is the vector whose only non-zero element is a 1 in position i (i-th vector in the canonical base for RP).
The covariance between the linear combinations XV; and X; = Xé is éfSV/, where S is the dataset's covariance matrix. Hence,

cov(X&;,XV; 8lsv; 281V, vji
cor(%;, Xv;) = (XE;. XV)) = =1 = J \//T] ”.

\/var(ii) -var(Xv)) Si - \/JTJ Sj- \f
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Interpretation of PCs

Correlations between PCs and variables (Crayfish)

The correlations between original variables and PCs may be useful when

interpreting PCs. We can use the formula above or the command:

> round(cor (lavagantes, lav.acp$x),d=2)

PC1 PC2 PC3 PC4 PCB PC6 PC7 PC8 PC9 PC10 PCi1 PC12

carapace_1 0.81 0.51 0.05 -0.14 -0.18 0.09 -0.15 0.06 -0.03 0.02 -0.02 0.01
tail 1 0.31 0.89 -0.01 0.22 0.23 0.03 -0.04 0.06 0.02 -0.01 -0.01 0.00
carapace_w 0.83 0.47 0.09 -0.08 -0.11 -0.09 0.02 -0.02 0.09 -0.14 0.12 0.05
carapace_d 0.78 0.41 0.16 0.01 0.08 -0.11 -0.06 -0.25 -0.33 -0.03 0.03 -0.01
tail_w 0.18 0.91 -0.04 0.04 -0.21 -0.02 0.28 -0.04 0.00 0.02 -0.04 -0.01
areola_l 0.64 0.35 -0.03 -0.58 0.33 0.00 0.11 0.01 0.01 0.03 0.00 0.00
areola_w 0.60 0.21 -0.23 -0.04 -0.01 0.06 0.10 0.09 -0.03 -0.14 0.08 -0.37
rostrum_1 0.50 0.58 -0.01 0.20 -0.02 -0.04 0.03 0.03 0.01 0.49 0.35 0.04
rostrum_w 0.76 0.38 0.15 -0.04 -0.12 0.01 -0.13 -0.03 0.12 -0.02 0.12 -0.40
postorbital w 0.65 0.45 0.12 -0.02 0.02 -0.23 -0.23 -0.40 0.29 0.08 -0.09 0.01
propodus_1 0.98 -0.19 0.01 0.04 0.01 0.08 0.03 -0.03 0.01 0.00 0.00 0.00
propodus_w 0.87 -0.20 0.42 0.03 0.01 -0.15 0.03 0.08 0.00 0.01 -0.02 0.00
dactyl_1 0.94 -0.11 -0.30 0.02 -0.01 -0.12 -0.01 0.03 -0.01 0.00 -0.01 0.00

PC 1 is very strongly correlated with claw measurements, in particular propodus_1.
PC 2 is very strongly correlated with the tail measurements, in particular tail_w.
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Correlations between PCs and variables (cont.)

Correlations PCs/variables in crayfish data

> par(mfrow=c(1,2)) <- creates a ‘‘1x2 matrix of scatterplots’’
> plot(lavagantes[,11], lav.acp$x[,1], xlab="propodus_l1", ylab="CP 1", pch=16, col="darkgreen")
> plot(lavagantes[,5], lav.acp$x[,2], xlab="tail_w", ylab="CP 2", pch=16, col="darkgreen")

> par(mfrow=c(1,1)) <- recreates the original graphic window
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Correlations between PCs and variables (cont.)
Again the crayfish

The strong correlations suggest a scatterplot of two original variables:

> plot(lav.acp$x[,1:2], xlab="CP 1", ylab="CP 2", pch=16, col="darkgreen")

> text(lav.acp$x[,1:2]1+0.2, label=rownames(lavagantes), col="red", cex=0.7)

> plot(lavagantes[,c(11,5)], xlab="propodus_l", ylab="tail w", pch=16, col="darkgreen")
> text(lavagantes[,c(11,5)]+0.1, label=rownames(lavagantes), col='"red", cex=0.7)
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Correlation matrix PCA

An inconvenient characteristic of PCA is that (unlike, for example, linear regression)
PCA results change if there are different changes of scale in different variables.

This sensitivity of PCA is natural, given the nature of the criterion which PCA
optimizes: variance.

To overcome this problem, and since most changes of scale are linear
transformations, it is common to standardise the data before carrying out a PCA:

X,']'*X.j

X,']' — Z,']' = s
J

where
@ x; is the observation for individual / on variable j;
@ x; is the mean of the n observations on variable j;
@ s; is the standard deviation of the n observations on variable j;
@ z; is the standardised observation for individual / on variable j.
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Centring, in the traditional representation in RP

What is the effect of centring a data matrix X on the scatterplot associated
with the traditional representations of the data, in RP?

Transforming X into X¢ just changes the mean of each variable, which
becomes zero. Geometrically, the centre of gravity of the n-point scatterplot in
RP becomes the origin, i.e., there is a translation of the centre of gravity:

(X_17X_27"'7X_,D) — (0,0,,0) .

It is common to represent PCs in RP with centring (that is, the scatterplot of
the scores has centre of gravity at the origin).

It corresponds to considering the linear combinations of the centred variables
(with the usual vectors of loadings).
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Standardisation, in the representation in RP

What is the effect of standardising, i.e., both centring and dividing each
variable by its standard deviation? All variables will now have the same
variance (1). Hence, the scatterplot in RP becomes more spherical.

We illustrate with the (centred) crayfish data, using only two variables: those
with the largest, and the smallest, variance:

Dados centrados dos lavagantes

b= £ = 0.04409
] . 2, = 1024217

Changing the shape of the scatter-
plot also changes the directions of
main variability.
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Correlation matrix PCA (cont.)

Correlation matrices are the covariance matrices o;__gymatrix Z of centred and
standardised data, whose generic element is z;= %

R=_1% Z'z .
Thus, a PCA on standardised data is known as a Correlation Matrix PCA.

In a correlation matrix PCA,

@ Principal Components are linear combinations of the standardised data;

@ The loadings (coefficients) of those linear combinations are given by
successive eigenvectors of the correlation matrix R;

@ the variances of successive PCs are given by the eigenvalues of R,
whose sum is tr(R) = p.

There is no direct relation between the results of both variants of PCA.
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Correlation matrix PCA with R

With R, there are two alternative ways of performing a Correlation
Matrix PCA.

PCA on standardised data

> prcomp(scale(lavagantes)) % or
> prcomp(lavagantes,scale=TRUE)
Standard deviations:

[1] 2.8298571 1.4518966 0.8481395 0.7315674 0.6117634 0.5371346 0.5119344 0.4730480 0.4106900
[10] 0.3761469 0.3016251 0.2178130 0.1793918

Rotation:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
carapace_1 0.3336487 -0.051654918 0.002147496 -0.05337901 0.05903158 -0.25593010 0.13991163
tail 1 0.2328489 -0.455025510 -0.004432513 0.02919494 -0.06389168 0.06642917 -0.32471231
carapace_w 0.3399357 -0.026168964 0.042817387 -0.05649310 0.11876996 -0.18817081 0.02954496
carapace_d 0.3161771 -0.001543245 0.174339992 -0.06927295 -0.01269919 0.02103474 -0.65346959
tail_w 0.1963703 -0.522307992 -0.097172600 0.02943249 0.06817824 -0.29897195 -0.06638706
areola_l 0.2625765 0.014998718 -0.203444780 -0.78727388 -0.41920392 0.00605338 0.19498049
areola_w 0.2320279 0.063340777 -0.813027317 0.19646231 0.26234962 0.17992496 -0.10423247
rostrum_1 0.2559610 -0.260192772 0.122258123 0.50436942 -0.58565962 0.13677260 0.30765231
rostrum_w 0.3122279 0.011301755 0.084409773 0.06116672 0.43328915 -0.24980467 0.49425052
postorbital w 0.2883485 -0.080276403 0.361940139 -0.14548391 0.36223013 0.71927271 0.11234877
propodus_1 0.2741268 0.405235606 0.006549232 0.13377738 -0.13020525 -0.02606551 -0.05259459
propodus_w 0.2474141 0.398376708 0.281998129 0.09065523 0.00717611 -0.33417966 -0.19598386
dactyl_1 0.2740158 0.339649079 -0.152524450 0.15373369 -0.22361974 0.24824297 0.03271971
[Ce<ad
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The two variants of PCA

The results of both variants of PCA are not directly comparable.

The two variants of PCA - crayfish (1avagantes) data

> lav.acpR <- prcomp(lavagantes,scale=TRUE)
> summary(lav.acpR)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10  PCii PC12 PC13
Std.dev 2.830 1.4519 0.84814 0.73157 0.61176 0.53713 0.51193 0.47305 0.41069 0.37615 0.3016 0.21781 0.17939
Prp.Var 0.616 0.1621 0.05533 0.04117 0.02879 0.02219 0.02016 0.01721 0.01297 0.01088 0.0070 0.00365 0.00248
Cum.Prp 0.616 0.7782 0.83350 0.87466 0.90345 0.92565 0.94581 0.96302 0.97599 0.98688 0.9939 0.99752 1.00000

> summary(lav.acp)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12  PC13
Std.dev 4.4171 2.1583 0.96179 0.70720 0.61636 0.49926 0.46399 0.38484 0.33629 0.25007 0.20606 0.17704 0.1406
Prp.Var 0.7265 0.1734 0.03444 0.01862 0.01415 0.00928 0.00802 0.00551 0.00421 0.00233 0.00158 0.00117 0.0007
Cum.Prp 0.7265 0.9000 0.93440 0.95302 0.96716 0.97645 0.98446 0.98998 0.99419 0.99652 0.99810 0.99926 1.0000
y

In general, a Correlation Matrix PCA needs more PCs to account for any given
proportion of inertia.
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The two variants of PCA (cont.)

The loadings vectors also change (eigenvectors of S and R are different), as

do the vectors of scores which they produce.

Let us compute the correlations between PCs from each variant:

The two variants of PCA - 1lavagantes data (cont.)
> round(cor (lav.acp$x, lav.acpR$x), d=2)

PC1 PC2 PC3 PC4 PCE PC6 PC7 PC8 PC9 PC10 PCi1 PCi2 PC13

PC1 0.89 0.44 0.00 0.06 -0.07 -0.01 -0.02 -0.09 -0.04 0.04 0.01 0.04 0.03
PC2 0.44 -0.88 -0.03 -0.10 0.05 -0.05 -0.04 -0.01 -0.04 0.03 -0.05 -0.02 -0.04
PC3 0.05 0.05 0.53 -0.09 0.24 -0.42 -0.16 0.56 0.27 0.18 -0.13 0.07 0.07
PC4 -0.04 -0.10 0.19 0.79 0.09 0.11 -0.36 -0.05 -0.25 0.26 0.17 0.06 0.08
PC5 0.00 0.02 -0.03 -0.38 -0.37 0.34 -0.28 0.45 -0.42 0.31 0.21 -0.01 0.08
PC6 -0.05 -0.03 -0.21 0.02 -0.05 -0.26 0.11 0.01 -0.31 -0.05 -0.33 0.48 0.66
PC7 -0.02 -0.06 -0.26 -0.01 -0.26 -0.33 -0.12 -0.10 0.45 0.18 0.64 0.16 0.21
PC8 -0.05 0.04 -0.28 0.14 -0.27 -0.53 0.17 0.04 -0.22 0.45 -0.24 -0.15 -0.44
PC9 0.01 -0.02 0.10 -0.04 0.25 0.29 0.61 -0.08 0.10 0.64 0.08 -0.01 0.21
PC10 0.02 -0.10 0.22 0.27 -0.54 0.21 0.37 0.25 0.20 -0.17 -0.05 0.46 -0.24
PCi1 0.05 -0.04 -0.04 0.27 -0.24 -0.05 0.26 0.32 0.04 -0.23 0.03 -0.68 0.40
PC12 -0.07 -0.03 0.33 -0.11 -0.47 0.07 -0.27 -0.46 0.26 0.23 -0.42 -0.18 0.21
PC13 -0.03 -0.02 0.56 -0.16 -0.13 -0.32 0.25 -0.30 -0.46 -0.15 0.38 -0.03 0.00 y
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The two variants of PCA (cont.)
Correlations between the standardised data PCs and the original variables:

Correlation Matrix PCA - lavagantes data
> round(cor (lavagantes, lav.acpR$x), d=2)

PC1 PC2 PC3 PC4 PCB PC6 PC7 PC8 PC9 PC10 PCi1 PCi2 PC13

carapace_1l 0.94 -0.07 0.00 -0.04 0.04 -0.14 0.07 -0.11 -0.03 -0.06 -0.24 0.05 -0.04
tail 1 0.66 -0.66 0.00 0.02 -0.04 0.04 -0.17 0.05 -0.24 0.19 -0.01 0.00 0.00
carapace_w 0.96 -0.04 0.04 -0.04 0.07 -0.10 0.02 -0.10 0.08 0.07 -0.03 -0.16 0.06
carapace_d 0.89 0.00 0.15 -0.05 -0.01 0.01 -0.33 0.07 -0.02 -0.24 0.02 -0.02 0.00
tail_w 0.56 -0.76 -0.08 0.02 0.04 -0.16 -0.03 -0.18 0.17 0.00 0.12 0.07 -0.01
areola_l 0.74 0.02 -0.17 -0.58 -0.26 0.00 0.10 0.09 0.02 0.01 0.04 0.01 0.00
areola_w 0.66 0.09 -0.69 0.14 0.16 0.10 -0.05 0.14 0.08 0.01 -0.02 0.00 0.00
rostrum_1 0.72 -0.38 0.10 0.37 -0.36 0.07 0.16 0.14 0.07 -0.05 -0.01 -0.01 0.01
rostrum_w 0.88 0.02 0.07 0.04 0.27 -0.13 0.25 0.12 -0.16 -0.09 0.10 0.00 -0.01
postorbital w 0.82 -0.12 0.31 -0.11 0.22 0.39 0.06 -0.01 0.10 0.04 -0.01 0.03 0.00
propodus_1 0.78 0.59 0.01 0.10 -0.08 -0.01 -0.03 -0.08 -0.05 0.04 0.02 0.10 0.12
propodus_w 0.70 0.58 0.24 0.07 0.00 -0.18 -0.10 0.16 0.12 0.16 0.02 0.02 -0.07
dactyl_1l 0.78 0.49 -0.13 0.11 -0.14 0.13 0.02 -0.26 -0.09 -0.01 0.07 -0.03 -0.08

@ Compared with PCA on the original data, not only do the correlations between
PCs and variables change, so do possible interpretations.

@ PC1 is now essentially a measure of overall size of the animal.
@ PC2, is more difficult to interpret, but contrasts the size of tails and claws.
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First principal plane — standardised data

Correlation matrix PCA - lavagantes data (cont.)

> plot(lav.acpR$x[,1:2],col="blue", pch=16, cex=0.8)
> text(lav.acpR$x[,1:2]+0.1, label=rownames(lavagantes), col="red")
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Simplifying: PC 1 orders organisms by their overall size, and PC 2 separates
sex-related shape.

v
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Representation in R”, the space of variables
Recall: The alternative representation of a data matrix X, in the space of
variables.

@ each axis corresponds to an observed individual;

@ each vector corresponds to a variable.

Xp—1

Rn

4 N
Indn “Ind. 4
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Centred variables in the space of variables

The most interesting representation in the space of variables is for centred

variables, because geometric concepts induced by the usual inner product in
R have statistical interpretations.

Centring the columns of X makes the vectors that represent the centred

variables orthogonal to the vector 1, of n ones (the sum of any column of X¢
is zero):

Rn

v
Indn
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Geometry and statistics in the space of variables
The generic element of the centred data matrix, X¢, is:

C oy X
Xj = Xj—Xj,

where
@ x; denotes the observation for the /-th individual on variable j;
@ X denotes the mean of the n observations on variable j.
Thus,

@ the usual norm of a column Y(]C of X¢ is proportional to that variable’s standard

deviation: [ze|=,/ % (x-%,)2=vaTs;
i=1

@ the usual inner product of two different columns of X€ is proportional to the
. n n
covariance of those variables: <s¢,%¢ >= (¥¢)'%; = £ (=X ) 0 =X 4) = (- eovj e

@ the cosine of the angle between the vectors representing two different columns

of X¢is the coefficient of correlation of those variables:
C0597 <X Xk> C(!Vlk cov; k

RETIRGT ~ s srts, 5% K
@ Orthogonal centred vectors correspond to uncorrelated variables.

J. Cadima (DCEB-Matematica/ISA) MMA - Multivariate Statistics 2021-22 53/119



Intepretation of PCA in the space of variables

The representation in the space of variables (R") associates each variable to
a vector. Linear combinations of variables are linear combinations of vectors,
hence new vectors. PCs are also represented by vectors in R".

For centred vectors, the squared size of the vector is proportional to that
variable’s variance.

The PCA criterion (maximising variance) corresponds to seeking linear
combinations of the vectors of maximum length (with sum of squared
coefficients equal to 1).

It is geometrically intuitive that variables whose variance is much larger than
others have great influence upon the first PC (“dominate the first PC”).
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PCA is sensitive to (different) changes of scale

Any linear (affine) transformation of a variable (x — a+ b x), as are most
changes of units of measurement, re-scales the centred vector that
represents it in R”, but preserving the direction:

@ additive constants a disappear when centering, and therefore do not
change the corresponding centred vector in R”".

@ multiplicative constants b:

preserve the line spanned by the vector (X; — bX;);
change the direction if b < 0;

lengthen the vector if |b| > 1, because ||bX;|| = [b][|X]];
shorten the vector if |b| < 1.

v vV vV

Thus, the PCA criterion is sensitive to different changes of scale in the p
variables.
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Interpretation of PCA in R” (cont.)

What is the effect of standardising the variables on the representation in R"?

Standardising the data (as in a correlation matrix PCA) makes all vectors
representing the centred variables equal in size.

Thus,

@ there will not be vectors that are larger than others, unduly influencing
the first PCs;

@ what will essentially determine the direction of greatest length is the
pattern of correlations among the variables, i.e., their relative angular
position;

@ groups of strongly correlated variables tend to “attract” the first PC of the
standardised data.
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More on Correlation Matrix PCA

In geometric terms, standardising the variables:
@ In R", re-sizes each of the p vectors, to a common size (norm).

@ In RP, stretches or compresses each axis, with re-scaling factors that are
different for each axis. It changes the shape of the scatterplot.

Observations:

@ The total variability is tr(R) = p (the number of variables).
@ The correlation between variable X; and the j-th PC is now lﬁ vf.

@ Sometimes, the loadings in a correlation matrix PCA are rescaled so
that V{V; = 4;. In that case, the new loadings of the linear combination
are the correlations between the variable and the PC.
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Warnings about PCA (in general)

@ Reducing dimensionality with PCA does not mean reducing the number of
original variables: each PC is a linear combination of all the observed variables.

@ Each PC is often interpreted ignoring the variables whose loadings in the linear
combination defining the PC are “close to zero”. This may mislead, and
additional information should be used to validate loadings-based interpretations.

@ Another frequent, but debatable, practice in PCA is the rotation of PCs: loadings
are changed to make them closer to zero or one, with a view to “simplifying the
interpretation”. But this goal may be illusory (as we saw) and sacrifices the
optimality of the solutions.

@ Some authors also call the eigenvectors of S or R (loadings vectors) principal
components, sowing confusion.

@ It does not make sense to use factors (qualitative or categorical variables) in the
data.
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An alternative approach to PCA

Principal Component Analysis can also be introduced with the fundamental
result of Matrix Theory: the Singular Value Decomposition (SVD).

As with the Spectral Decomposition, the SVD involves the factorisation of a
matrix into the product of 3 matrices, with the central matrix being diagonal
and the two others having orthonormal columns. But:

@ While the Spectral Decomposition is only valid for symmetric matrices,
the SVD is valid for any matrix, including rectangular matrices.

@ The three matrices of an SVD are different and, in general, are of
different sizes.

@ The SVD and the Spectral Decomposition coincide in the case of
symmetric matrices with non-negative eigenvalues.
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Singular Value Decomposition

Singular Value Decomposition (SVD)
Let Ynxp be a generic matrix. It is always possible to factorise Y as follows:

o ot
oWV, ,

Mo

Y = WAV! — Y =

Il
Y

where
Apxp diagonal matrix
Vpxp matrix with orthonormal columns (VIV = 1,,)
Wpxp matrix with orthonormal columns (WIW = Ip)
o; diagonal elements of A (singular values of Y)
w; columns of W (left singular vectors of Y)
v; columns of V (right singular vectors of Y)

We assume that the singular values §; are in decreasing order.
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Observations on the SVD: Y = WAV!

@ The transpose Y! has Singular Value Decomposition Y! = VAW!,

@ Y'Y =VAZ2V! s a Spectral Decomposition of Y!Y. Hence, V is a matrix whose
columns are an orthonormal set of eigenvectors of Y!Y.

@ W is an analogous matrix, of eigenvectors of YY! = WA2W!,

@ A is the diagonal matrix of square roots of the eigenvalues of Y'Y (which, if
non-zero, are also eigenvalues of YY?).

@ The SVD of a matrix is always possible, though not unique (ate least due to
sign-switching in pairs of vectors).

@ If Y has rank (maximum number of linearly independent columns) r < p, then
§j=0fori>r.

@ If Y has rank r < p, the p—r final terms in the sum Y = Y, 5,w;V! are matrices
of zeros. This means that the p—r final columns of V and W, and the p—r final
rows/columns of A can be dropped. The resulting SVD is called the Thin SVD.
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SVD and PCA

PCA corresponds to a Singular Value Decomposition of a centred data matrix
X¢, divided by vn—1, (or vn, depending on the convention used to define
covariances):

1_X¢ = UAV!,

Vi)

with:

V - matrix whose columns are eigenvectors of S = _L. X*!X¢, that
is, with PC loadings.

A - matrix whose diagonal elements are square roots of
eigenvalues of S, i.e., standard deviations of the PCs;

XV = vn1UA - matrix whose columns are centred scores for the individuals
on each PC.

U=_L XVA~" - matrix of left singular vectors, which are vectors of
normalised scores.
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SVD and PCA (cont.)

We illustrate, carrying out the SVD of a matrix 1 X® with R, for the crayfish
(lavagantes) dataset.

Centring a data matrix can be done as follows:

> lav.centrado <- scale(lavagantes, scale=FALSE) )

The command scale can both centre (subtract the means) and divide by
standard deviations of the matrix columns.

Each of these operations is controlled by an argument, respectively center
and scale.

By default, these arguments are TRUE. Any of these operation may be omitted
setting the corresponding argument to the logical value FALSE.

In R, a Singular Value Decomposition is done with the command svd.
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PCA and SVD (cont.)
SVD with crayfish data

> svd(lav.centrado/sqrt(62))

$d
[1] 4.4171243 2.1583124 0.9617894 0.7071970 0.6163559 0.4992560 0.4639879
[8] 0.3848417 0.3362918 0.2500701 0.2060563 0.1770375 0.1405790

[,11 [,2] [,3] [,4] [,5]
[1,] -0.144379990 -0.182396510 -0.123645871 0.1059842750 0.070557452
[2,] -0.144331125 -0.157779185 0.254967864 0.1172558607 0.146926297
[3,] -0.059725146 -0.177923620 -0.059333869 0.1101757182 0.113206688
[4,] -0.093246935 -0.113657051 0.014976742 0.0804924915 -0.069971697
[5,1 -0.035380664 -0.210254166 -0.097758921 -0.1206499751 -0.146049537
L

[,1] [,2] [,31 [,4] [,5] [,6]

[1,] 0.28762060 -36935786 0.08475822 -0.31404094 -0.454639049 0.272071976

[2,] 0.10615292 -61487598 -0.01728674 0.46421995 0.550775374 0.088028646

[3,]1 0.19089393 .22112280 0.09978650 -0.10987953 -0.186701149 -0.178125878

[4,] 0.13951311 .14784642 0.13138041 0.01598041 0.105009202 -0.171612241

[5,1 0.04682070 .49290700 -0.05172379 0.06592005 -0.405755003 -0.046182873
od]

o oo oo

Warning: Output components $u and $v are, respectively, the matrices U and V.
Component $d is a vector, with the diagonal elements of matrix A.

v
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PCA and SVD (cont.)
SVD for the crayfish (cont.)

> DVS <- svd(lav.centrado/sqrt(62))

> U <- DVS$u

> D <- diag(DVS$d) <- creates a diagonal matrix from vector DVS$d
> U %*/% D * sqrt(62)

[,1] [,2] [,31 [,41 [,51 L,6]
[1,] -5.0216041 -3.09975004 -0.93638716 0.590170762 0.34242883 -0.311295721
[2,] -5.0199046 -2.68138921 1.93090666 0.652936303 0.71306147 2.411219117
[3,1 -2.0772687 -3.02373521 -0.44934354 0.613510708 0.54941375 -0.365822245
[Ce<ad
[62,1 1.5767872 4.68339718 -0.49231884 0.246787192 -0.11313707 0.138658304
[63,1 3.2782407 4.30830749 0.15373020 -0.562657698 -0.73379507 0.200035217
(e o od

The command prcomp uses the SVD:

> prcomp(lavagantes) $x

PC1 PC2 PC3 PC4 PC5 PC6
-5.0216041 -3.09975004 -0.93638716 0.590170762 0.34242883 -0.311295721
-5.0199046 -2.68138921 1.93090666 0.652936303 0.71306147 2.411219117
-2.0772687 -3.02373521 -0.44934354 0.613510708 0.54941375 -0.365822245
]

2 1.B767872 4.68339718 -0.49231884 0.246787192 -0.11313707 0.138658304
3 3.2782407 4.30830749 0.15373020 -0.562657698 -0.73379507 0.200035217
acadl

OO P WN -

V.
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(No) A geometric problem

A data matrix X, is represented by an n-point scatterplot in RP or,
alternatively, a bundle of p vectors in R".

If Yn.p is a matrix of equal size, but rank r < p, the corresponding n-point
scatterplot is on a subspace of dimension r of RP. Likewise, its bundle of p
vectors spans a subspace of dimension r in R".

Geometric problem

To identify the matrix Y. p, of rank r, whose n points in RP minimise the sum
of squares of the distances to the n points associated with the original data
matrix Xpxp:

p

Y (xji— y,,
1

]:

s

Il
BN

i

This criterion also minimises the sum of squared distances between the p
columns of X and Y, so that the p-vector bundle defined by Y is “the closest,
overall” to the p vectors defined by X.

v
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(No) The solution

Eckart-Young Theorem
Let Xnxp be a matrix of rank p. The matrix Y xp of rank r < p that minimises the usual
matrix distance [X—Y|| = /LY (X; —y,-j)z, is obtained as follows:

i

@ Let X = WAV! be the singular value decomposition of X.

@ Let W,, V,, be the matrices of r columns of W and V, respectively, associated
with the r largest singular values.

@ Let A, be the diagonal matrix of size r x r resulting from retaining only the r
largest singular values of A.

@ ThenY = W,Arvﬁ (and this is an SVD of Y).

Note 1: If X = ):f:1 6,-\Tv,-\7,f is the SVD of X, Y is the matrix that results from retaining
only the first r terms of that sum: Y =Y/, §;W;v!.

Note 2: Thus, PCA (the SVD of X¢) identifies, both in RP and in R", the subspaces of
dimension r where the representation of the data is as faithful as possible, in the

sense of being the closest to the original values.
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(No) Orthogonal projections in RP and R"

For both representations of the data from X¢, PCA solves the problem of
identifying the subspace of dimension r where the orthogonal projection of

the data onto that subspace minimises the sum of squared (perpendicular)
distances between original and projected points.

PONTOS OBSERVADOS
\ ‘
- //'

PONTOS PROJECTADOS'

SUBESPACO
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Biplots

@ Intimately connected with the Singular Value Decomposition of a
centred data matrix (therefore, with a PCA).

@ Fundamental ideia in a biplot: obtain a good low-dimensional
(approximate) representation of both the individuals and the
variables (hence the prefix bi-).

@ geometrically preserving the main statistical characteristics of the
data.

J. Cadima (DCEB-Matematica/ISA) MMA - Multivariate Statistics 2021-22 69/119



Biplots (cont.)

Let X¢ be a centred data matrix, with SVD: A X = UAV!L.
Defining:

G = U

H = VA

. Cc t
we have: ﬁx = GH".
If X is of rank p,
» Gis nx pand the rows of G correspond to individuals.
» His px pand the rows of H correspond to variables.

The rows of G (g[',]) and of H (hfi]) are markers for, respectively,

individuals and variables, which belong to the same space (RP) and can
be represented together.

The inner product of the markers for individual i and for variable j is the
value for that individual on that variable (centred and divided by vn-1):

t
9y = =% -
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Variable markers

Consider the properties of variable markers, which are vectors in RP. The
inner products of variable markers are:

HH' = (VA)(VA)! = vA?V! = s

since S= - X'X°=(UAV')!(UAV')=VAU'UAV! =VAZ?V',

@ The inner product of markers for pairs of variables give the covariance
between those variables.

@ The norm (size) of each variable marker is the standard deviation of that
variable.

@ The cosine of the angle between each pair of variable markers is the
coefficient of linear correlation between the variables.
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Mahalanobis distances

To understand the properties of markers for individuals, we must introduce (squared)
Mahalanobis distances.

Mahalanobis distances

Let Xn«p be a data matrix, with generic row X;;, covariance matrix S and centre of
gravity m. Define:

@ the (squared) Mahalanobis distance of individual i to the centre:

g — w2, = (X —m)'S™ (X —m)

@ the (squared) Mahalanobis distance between individuals i and j:

%gy — X112, = (g —%p)'S ™ (%g — %) -

The usual Euclidean distances are given by similar expressions, but with the identity
matrix | in place of the matrix S~'.
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Mahalanobis distances (cont.)

Mahalanobis distances take into account the shape of the scatterplot in RP (pattern of
covariances between variables). They can be useful in identifying multivariate outliers.

This is the scatterplot in R? for the crayfish variables propodus_1 and propodus_u:

Largura vs. il da tenaz em
ol B ) The centre of gravity is marked by a
. black cross.
® dj,=4.12
e co i The numerical values are Mahalanobis
o . distances.
g o 6£=003%
- .--;,"- In a biplot, the Euclidean distance
o between markers for individuals is
1. e equal to the Mahalanobis distance
’ : : : : ‘ ‘ between the individuals.
22 24 26 28 30 32 34

propodus._|
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Markers for individuals

@ The Euclidean distance between each pair of rows of G is proportional to the
Mahalanobis distance between the corresponding individuals:
187 — 812 = Gpq—%p7)'S ™" Ky —%gp) = 1% —%gl5-1 -
Here is the scatterplot of the variables propodus_1 and propodus_w and their biplot
markers for individuals:
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% 584285 g B €15 o -
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24 e Bl aglhcth o7 e
4.?54 2 i
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22 2 2 28 30 32 34

propodus | por

In the biplot, the Euclidean distance between points is the Mahalanobis distance
between individuals.
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Biplots (cont.)

The visualization of a biplot requires reducing the representation to a k =2 or
k = 3 dimensional space.

This is done by retaining only the marker coordinates for the first two (or
three) dimensions:

@ G nx k submatrix with the first k columns of G.
@ H() px k submatrix with the first k columns of H.

The rows of G¥) and H(¥) are markers for individuals and variables and:
7 K k)t
ﬁxc — GHH®

is the best rank k approximation of _1-X® (Eckart-Young Theorem).
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Biplots (cont.)

By taking k = 2, we get a 2-dimensional scatterplot, with
@ markers for individuals represented by points; and
@ markers for variables represented by vectors.

We have, approximately:

@ the cosine of the angle between variable markers is the coefficient of
correlation between variables;

@ the length of each variable marker is proportional to its standard
deviation;

@ the Euclidean distance between individual markers is the Mahalanobis
distance between those individuals:

My = (X —%;)'S ™" (X — %) |

The quality of this approximation can be measured as in PCA.
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Biplots (cont.)

We also have the following approximate (only k=2 dimensions) properties:

@ the cosine of the angle between each vector and the horizontal axis is
approximately the coefficient of linear correlation between that variable
and PC 1;

@ the cosine of the angle between each vector and the vertical axis is
approximately the coefficient of linear correlation between each variable
and PC 2;

@ The orthogonal projection of each point on the line defined by each
vector is approximately the value of each individual on the
corresponding variable.
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Biplots with @®@

The biplot command for the crayfish data
> biplot(lav.acp)
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The individuals in group 43-63 (females) tend to have smaller claws and larger tails
than the males.

v
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3D biplots with pca3d

Three-dimensional biplots with package pca3d
Add to the command pca3d the argument biplot=TRUE:

> library(pca3d)
> pca3d(lav.acp, biplot=TRUE)

RGL device 1 [Focus]

The picture has frozen one moment in the rotation

. By default, not all variable
markers are shown.

v
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Biplots with @ (cont.)

Function biplot for the standardised crayfish data
> biplot(lav.acpR)
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The male/female separation is still visible. The first PC now points in the direction of a
highly correlated group of variables (size).

v
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A 3D biplot for the standardised crayfish data

The 3-D biplot using package pca3d
> pca3d(lav.acpR, biplot=TRUE, biplot.vars=13)

RGL device 1 [Focus]

PC2

@;’w-

b =PC1

) ) %mi‘
e

° . pre
‘PCs

The argument biplot. vars provides control over the variable markers that
are shown.
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Linear Discriminant Analysis
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Discriminant Analyses

Multivariate methods that:

@ Assume that the n observed individuals belong to k (known) subgroups

or classes.

@ Seek functions of the p observed variables that best distinguish or
discriminate those subgroups.

Linear (or Fisher’s) Discriminant Analysis:

Seeks linear combinations of the p observed variables which best
discriminate the subgroups.

NOTE: We assume a descriptive context, although often Discriminant
Analyses are introduced with probabilistic concepts.
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Linear Discriminant Analysis (cont.)

Starting point: a data matrix Xpxp.

The nindividuals (rows of X) define a partition into k subgroups, that is
known. They can be seen as k factor levels.

Informal goal: determine the best linear combination Xa of observed
variables that can ensure that:
@ individuals of a common class have similar values, and

@ individuals in different classes have values far apart.

Solutions: linear combinations Xa, called discriminant axes (or sometimes
canonical variables).

The solution involves orthogonal projections on the subspace of R” spanned
by the indicator variables for each subgroup (the same as in a one-way
ANOVA).
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The classification matrix

The classification matrix G, whose i-th column is the indicator variable for subgroup i:

1 0 o0 0
1 0 o0 0
10 o0 0
o 1 o 0
o 1 0 0
ank: .
o 1 o 0
o o o 1
o o o 1

It is similar to the one-way ANOVA model matrix, but the first column is the indicator
variable for factor level 1. The subspace of R spanned by two matrices is the same.

There is a close connection between LDA and a one-way ANOVA, although we use
only descriptive concepts when defining LDA.
2021-22 85/119
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The classification matrix (cont.)

The vectors of the column-space of matrix G have the same value for all
elements in each subgroup, that is, Z € ¢'(G) are of the form:

St

z = [21 Z1 ... Z4 | Zo 2o ... 2o | | Zx Zk ... Zk]
— —
ny vezes Ny vezes Ny vezes

Hence, vectors in '(G) are homogeneous within classes.

But not necessarily heterogeneous between classes: ¢ (G) also includes the
vector 1,, which does not discriminate subgroups.

Maximising heterogeneity between classes means maximising the variability
of the k values {z} .

We would like the linear combination to be as far away as possible from
% (15) C €(G), say orthogonal to vector 1.
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Formulation of the problem
Vectors orthogonal to vector 1, are centred vectors.

Consider only the centred linear combinations: X¢@

The orthogonal projection of any centred linear combination on the
column-space of the classification matrix G is PgX¢a, where

Pc = G(G!G) 'G'.

The orthogonal projection creates a right triangle:
R" a
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Revisiting Pythagoras

By the Pythagorean Theorem, and since Pg are I, are symmetric and
idempotent, we have:

1x°a? IPGXE|? + ||(In—Pg)X°d|?
& alxe'’xa = a'Xx'PgX‘a + a'Xx'(l,—Pg)X°a

The left-hand side of the equation is alX*'X°a = (n—1)-a’Sa, i.e., n—1 times
the variance of the linear combination X°a.

The desirable linear combination X°a will, in this decomposition, maximise (in
relative terms) the first term on the right-hand side: this maximises the
variability of the class values z;.
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The matrix of orthogonal projections Pg (cont.)

Matrix P = G(G!G)~'G! is a block-diagonal matrix with a single value in each
diagonal block: .

1 1 . 1
m m m
0!11 XI72 e 0[71 xnk
1 1 . 1
nq nq nq
T T T
n2 n2 n2
Onyxny . X aee On,xny
Pe= R TR
7] 7] 7]
T T T
Nk Nk Nk
Onjexny Onxny
1 1 1
Nk Mk Mk

Pre-multiplying any vector by Pg, replaces each element of the vector by its group
(factor level) mean.
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The projected vectors Pgy

Consider any vector y € R”, with doubly-indexed elements (/, /), where i denotes
subroup and j repetition. Consider also its orthogonal projection onto ¢ (G):

2T B2
Sin
Y1 Yo,
y= Vom Pgy = 7
YI.( Y.

L }/k.nk | | Yk |
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Projected centred vectors Pzy°

Now consider a centred vector:

[y ] RO
Y1n1:17.. Vi -V
Yo1 =Y. Yo Y
V= ,V2n2:_7.. PV =| 7y
L Yknk.*y_ ] L w7, |
PGV = 1(y, ¥ )2 measures the dispersion of class means around the

overall mean y”. It is the Factor Sum of Squares SQF in the one-way ANOVA of y on
the factor defining the classes. It is between-class variability, and should be large, as

it reflects heterogeneity between classes.
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The vectors (I, —Pg)y

For any vector y € R”, including centred vectors y¢:

[ 1=V ] [ y11=Y1

Yiny :—?1. Yiny .—?1.

Y21 =Y. Yo1—Ya.

y-Pgy=(In-Pg)y = Yan, Ve (In-Pg)y° = Yan, :*72.
L Yiny .—7;{. ] L Ykny .—7k. ]

[(1,—Pg)¥°|> =k , Y4 (vj —¥i.)? measures the dispersion of individual
observations around their class (level) mean. It is the Residual Sum of Squares,
SQRE, in the one-way ANOVA of y on the classification factor. It is within-class
variability and should be small: it reflects class homogeneity.
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Again the equation from Pythagoras

The equation on slide 88 simplifies if we define the matrices:

S= %1 Xetxe (Co)variance matrix for X
B=_1 X'PgX° Matrix of between-class variability
wW=_%4 X°t(ln —Pg)X¢ Matrix of within-class variability
We have:
At yctye 3 _ ct c ctey cz
al X'xc a= a'x“'PgXx°a + a'x*'(I,—Pg)X‘a
=(n-1)-S =(n-1)-B =(n-1)-W
= alsa= a'Ba + a'wa

Fisher’s formulation of the problem: among all possible linear combinations X¢a,

choose that which maximises:

a'Ba
alwa
This will be the first discriminant function.
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Generalized eigenvalue problem

Theorem (Generalised eigenvalue problem)

Let Apxp and Bp.p be symmetric matrices (B with only positive eigenvalues).
@ Maximising the ratio
x!AX
x!Bx
is associated with the first eigenpair of matrix B—"'A, (11,%X1).

@ Sucessive pairs of eigenvalues/vectors of B! A sucessively maximise the ratio
X!AX : ] " n By e,
B’ subject to the B-orthogonality of sucessive vectors, i.e., xfo/-:O, if i) .

v

Note: The product of symmetric matrices is not, in general, symmetric, so their
eigenvalues/vectors may be complex. But the eigenvalues/vectors of B-1A are
necessarily real.
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Fisher’s formulation (cont.)

Solution: If W is invertible, the generalised eigenvalue problem (slide 94) gives the
solution: take a=4j, the eigenvector of W—'B with the largest eigenvalue.

The eigenvalue A4 = ?ﬁ Bé‘ is the discriminating capacity of the axis: the ratio of
ajWa,

bewteen-group and within-group variability

If the number of non-zero eigenvalues of W—'B is greater than 1, we may seek new
discriminant linear combinations.

Sucessive solutions will be the linear combinations Xa; with &; given by other
eigenvectors of matrix W~ "B with non-zero eigenvalues.

iy
ajBa,

The discriminating capacity of the new axes is given by their eigenvalues 1; = W
J J
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Observations

@ If k>n—p, Wis not invertible. In general, if k<n—p W is invertible.

@ The matrices of an LDA verify the relation S =B +W.

I = Pg+(In—Pg) = XInX¢ = XIPeXe Xl (1, —Pg)X¢ & S =B+W

@ Sucessive discriminant axes are uncorrelated.

Different discriminant axes are of the form X°d@; and X°@;, with &; and &; different eigenvectors of matrix W-"B. We know
that &; and &; are W-orthogonal. Hence, if i # J:

w-! Béj = ljﬁj Béj = leéj
W3, +Ba; — W&, +1,Wa;
S&; = (1+4)Wa;

Cov(X°a;, X d)) = &lSd; = (1-+A))alWa; =0

=
=
=
=
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Observations (cont.)

@ Unlike PCA, discriminant axes Xa, being uncorrelated does not mean
that the vectors of loadings a; are orthogonal (they are W-orthogonal).

@ W-'B cannot have more than k—1 non-zero eigenvalues. Thus, the
number of discriminant axes cannot exceed the number of factor levels
minus one.

@ The solutions of a Linear Discriminant Analysis are invariant to linear
transformations in the individual variables.
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LDA - Summary

tl vaBa /a1 >\) /

PoXd
% (G)

Maximising gf‘?\g means maximising ctg?(6). For each axis, A; = ctg?(6)).
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Again the geometry of LDA

Maximising the co-tangent of the angle 6 means minimising 6.

In LDA we seek the linear combination X¢a of the centred variables (columns
of X°¢) that form the smallest possible angle (6) with the space spanned by
the indicator variables of the subgroups (columns of G).
This angle 0 is the smallest angle between two subspaces of R":

@ the subspace spanned by the indicator variables, ¢ (G); and

@ the subspace spanned by the centred variables, €' (X¢).

The discriminant capacity of the variables depends on this smallest angle
between %' (X¢) e €(G), i.e., on the angular relation between those two
subspaces of R".
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Alternative formulations

Alternative formulations that minimise the angle 6:

@ Minimise the squared sine of .

i.e., minimise the proportion of total variablity of the linear combination
Xc¢a that corresponds to within-class variability.

a'wa
a'sa

@ Maximise the squared cosine of angle 6

that is, maximise the proportion of total variability of the linear
combination X¢a that corresponds to between-class variability.

a'Ba

a'sa
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Relations between alternative formulations
But the same problem (minimising 8) =- the same solution.

It is easy to check the equality of:
@ Eigenvectors of W—'B;
@ Eigenvectors of S~1W;
@ Eigenvectors of S~1B;

The linear combinations X¢a@ obtained with the alternative formulations are the same.

The corresponding eigenvalues are not equal because they correspond to different
trigonometric functions. But they are related: let a be the common eigenvector of all
three matrices. Then:

@ If 1 is the corresponding eigenvector for matrix W~ 'B;

@ ;. is the eigenvector with matrix S—'W (which we minimise);

@ /4 is the eigenvalue with S~ 'B (which we maximise).
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ADL e ANOVA

Consider:
@ a one-way ANOVA with k factor levels (classes);
@ the response variable y = X“a.

The criterion that defines LDA is equivalent to seeking @ such that the ANOVA F-test
statistic for factor effects is maximum in:

@ aone-way ANOVA with k factor levels (classes);
@ with the response variable y = X°@.

The criterion that defines LDA is equivalent to seeking @ such that the ANOVA F-test
statistic for factor effects is maximum:

QMF SQF n-k IPGY|2 n—k alBa n—k
~ QMRE ~ SQRE k—1 ~ |(lh—-Pg)y|2 k—1 ~ awa k—1"
Discriminant axes are the successively uncorrelated linear combinations of the p
observed variables that maximise the separation of values for each factor level.

F
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Classification of new individuals using one axis

We can classify new individuals, of unknown “affiliation”.

Let X be a vector of observations of the new individual on the p variables.
The individual’'s value (score) on the discriminant axis 1 is y* = X'a;.

Comparing this value with the k class means on that axis, ¥V, 7@ ... y®),
we can classify that individual in the group whose centre of gravity:

@ is closest, in the usual Euclidean distance:
attribute it to class i if |y* — y| < |y* =y, vj#i.

@ is closest, on a Euclidean distance inversely weighted by the class
standard deviation:

. . ey ) .
attribute it to class i if % L < % T
Sy Sy

where s}(,i) indicates the standard deviation of the scores in group /.
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Classification with g axes

Using g discriminant axes, an individual has a vector of scores given by:

vy =x%'Ag, with Ag the p x g matrix whose columns are the vectors @y, ...,aq.
q q q

We can classify the individual in the class whose centre of gravity m;:
@ is closest to y*, in the usual Euclidean distance:
attribute to class i if ||[y* —m || < [y —mg, |, Vj#i
@ is closest to y* in the usual Mahalanobis distance:
attribute to class i if ||S"* — ﬁ"l(,‘)HSq < HV* — ﬁ'l(j)”sq , YA,

where S is the matrix of (co)variances of the scores of the n
observations.

@ is closest to y* in the Mahalanobis distances defined by the covariance
matrix for the scores in each class:
class 1 f |y ~ys + < [V~ Mglls 1, ¥ 7

where S; is the (co)variance matrix of the scores of group i.
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LDA with R - command 1da

Command 1da, in the MASS package, provides the basic information for a
Linear (Fisher) Discriminant Analysis.

The command 1da was conceived for an inferential context (which is not ours
and is not necessary for LDA). But it provides the essential information for a
descriptive context.

Consider the example of the crayfish data: the first 21 observations are of
reproducing males (group MR); the next 21 are non-reproducing males (group
MN); and the final 21 observations are females (group F).

We create the factor of the groups and load the package MASS:

> lav.grupos <- factor(rep(c("MR","MN","F"),c(21,21,21)))
> library(MASS) J
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The crayfish data

LDA for the crayfish data 1da

In the formula argument, the factor with the groups is the response variable.

> lav.lda <- lda(lav.grupos ~ . , data=as.data.frame(lavagantes))

> lav.lda
Coefficients of linear discriminants: <- loadings vectors
LD1 LD2
carapace_l -0.0005163473 -1.19955746
tail 1 -0.1736612417 0.33191555
carapace_w 0.1866238904 -0.90101141
carapace_d -0.3521185558 -0.23124418
tail_w -2.6055856004 1.28663805
areola_l 0.3588957427 -0.06043209
areola_w -2.1123185437 -0.03550332
rostrum_1 1.2415578489 1.22874815
rostrum_w -0.3314912527 1.39715849
postorbital w 0.1940959791 -1.59005854
propodus_1 0.6321803333 0.17783018
propodus_w 0.4297842346 0.71193763
dactyl_1 -0.0850563760 0.36615202

Proportion of trace:

<- proportion of the sum of non-zero eigenvalues of inv(W)B

LD1 LD2
0.9501 0.0499 <- not the criterion values defined above )
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Crayfish example (cont.)
The plot method for objects of class 1da produced by the command 1da:

Crayfish data LDA

> plot(lav.lda, col=as.numeric(lav.grupos))

< d
MRy
~ F MR
MR
B F F (53 MR
F R MR iR
G Y
N [T Mgy i
a8 o 4 MBIR
= FF MR MN MbiN
F g F MM MN MN
i b 'y
o~ F M
[ MN M
MN MN s
MN
T T T T T T
-6 -4 =2 0 2 4

v
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Crayfish example (cont.)

The vectors of scores used to create the plot can be obtained with the
command predict, in output argument x.

Crayfish LDA
> predict(lav.lda) $x

D1 LD2
2.9590031 0.9654792
3.6848954 0.8131683
3.5259200 2.1811447
2.0462745 0.6083346

acadl

60 -4.9547011 0.2934347
61 -6.75925682 -0.6571673
62 -5.6927267 0.4566755
63 -5.4276951 -0.5692571

bW N

The command predict can be used to determine the coordinates on the
discriminant axes of a new individual, as was done in Linear Models.
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Crayfish example (cont.)
Crayfish LDA

We define 3 new individuals whose values are the maximum values for each variable
in each subgroup, and plot them on the new discriminant axes:

> 1lxml <- apply(lavagantes[1:21,],2,max)
> 1xm2 <- apply(lavagantes[22:42,],2,max)
> 1xm3 <- apply(lavagantes[43:63,],2,max)
> novos <- as.data.frame(rbind(lxmil,lxm2,1xm3))
> novos
carapace_l tail_l carapace_w carapace_d tail_w areola_l areola_w rostrum_l
1xml 35.33 25.15 18.36 14.57 15.40 13.26 2.60 7.06
1xm2 35.50 25.05 18.74 15.11 15.11 16.85 2.64 7.05
1xm3 35.73 26.77 18.50 15.06 17.37 13.14 2.32 7.27
rostrum_w postorbital_w propodus_l propodus_w dactyl_l
1xmi 8.12 10.76 33.24 15.53 20.71
1xm2 7.74 11.85 33.67 15.15 20.83
1xm3 7.83 11.14 28.29 12.30 17.58

> predict(lav.lda, new=novos)$x

LD1 LD2
1xml 2.650187 1.9990716 <- coordinates of the first individual on the DAs
1xm2 4.931230 -1.7232999 <- coordinates of the second individual on the DAs
1xm3 -6.183037 -0.7078646 <- coordinates of the third individual on the DAs

v
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Crayfish example (cont.)
Crayfish LDA

> lxmp <- predict(lav.lda, new=novos)$x
> plot(lav.lda, col=as.numeric(lav.grupos), xlim=c(-8,6))
> points(lxmp, col="blue", pch=16)
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Remarks about the 1da command in MASS

Attention: With the command 1da,

@ the W matrix is defined as W = -1 X°/(1, — Pg)XS;
@ the B matrix is defined as B = 15 X°'PgX¢;
@ the decomposition S = W + B no longer holds.

@ the eigenvalues of W—'B with the 1da definitions are Z;_’{ times those of
our definition. They are the value of the F-test statistic in the one-way
ANOVA of each discriminant axis on the grouping factor;

@ the svd component of an object of class 1da gives the square roots of
the eigenvalues of W~ 'B (defined as in 1da).
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The quality of the discriminant axes

Crayfish LDA

> lav.lda$svd

[1] 21.345129 4.890076

> lav.lda$svd~2 <- Eigenvalues (and values of the F statistic)
[1] 455.61455 23.91285

> summary (aov (predict(lav.lda)$x[,1] ~ lav.grupos))

Df Sum Sq Mean Sq F value Pr(>F)
lav.grupos 2 911.2 455.6  455.6 <2e-16
Residuals 60 60.0 1.0

> summary (aov (predict(lav.lda)$x[,2] ~ lav.grupos))

Df Sum Sq Mean Sq F value Pr(>F)
lav.grupos 2 47.83 23.91 23.91 2.31e-08
Residuals 60 60.00 1.00
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Quality of discriminant axes (cont.)

The eigenvalues of Fisher’s original definition are given by multiplying
the 1da eigenvalues by &=

Crayfish LDA

> lav.lda$svd~2*2/60 <- Eigenvalues with Fisher’s definition of W and B
[1] 15.1871516 0.7970949

The discriminating capacity of the first axis is 15.187, i.e., the variability between the
three groups is, on that axis, 15.187 times larger than the within-group variability.

The discriminating capacity of the second axis is weak: 0.797, i.e., on that axis, the
variability between the three groups is smaller than the variability within groups.
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Remarks about the 1da function (cont.)

@ the proportions of the trace (given in the output) of each eigenvalue are
not affected by the different definitions.

> val <- lav.lda$svd~2

> val/sum(val)

[1] 0.95013247 0.04986753

> val2 <- lav.lda$svd~2%*2/60
> val2/sum(val2)

[1] 0.95013247 0.04986753

@ the W-orthogonality of the loadings given in the output is also preserved
(although the squared norm of the loadings vectors is affected: it is Z%’f
when measured using the definition of W on slide 93).
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The classification of new individuals

The predict method of the 1da command classifies individuals in the groups,
with criteria based on inferential concepts, but analogous to classifications
based on Mahalanobis distances. The classifications are stored in the class

output object.

Classification of crayfish with LDA
> predict (lav.lda)$class

[1] MR MR MR MR MR MR MR MN MN MR MR MR MR MR MR MR MR MR MR MR MR MN MR MN MN
[26] MN MR MN MN MN MN MN MN MN MN MN MV M{ MR MN MV MN F F F F F F F F
[511 F F F F F F F F F F F F F

> predict(lav.lda, new=novos)$class

[1]1 MR MN F
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Classification tables
Classification tables may be created with the table command.

Classification tables for the crayfish data

> lav.pred <- predict(lav.lda)$class
> table(lav.pred, lav.grupos)
lav.grupos
lav.pred F MN MR
F 21 0 O
MN 0 18 2
MR 0 3 19

@ All the females were correctly classified.
@ Three non-reproducing males were incorrectly classified as reproducing males.
@ Two reproducing males were incorrectly classified as non-reproducing males.
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Misclassifications
Wrong classifications in the crayfish LDA

> (lav.grupos != predict(lav.lda)$class)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
[17] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[33] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> lav.mal <- (lav.grupos !'= predict(lav.lda)$class)
> plot(lav.lda, col=as.numeric(predict(lav.lda)$class),

FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE

cex=0.7+lav.mal)

v
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@'s potential: a new function for LDA

Exercise 17: our function adl

> adl <- function(X,grupos){ <- input arguments are data (X) and classes (grupos)
grupos <- as.factor(grupos) <- ensures that ’grupos’ is a factor

X <- as.matrix(X) <- ensures that ’X’ is a matrix

k <- length(levels(grupos)) <- k: number of groups

n <- dim(X)[1] <- n: number of individuals

p <- dim(X)[2] <- p: number of variables

Ind <- model.matrix(aov(X[,1] -1 + grupos)) <- creates matrix G as in the slides
PG <- Ind %*} solve(t(Ind)%*%Ind) %*% t(Ind) <- projection matrix P_G

Xc <- scale(X, scale=F) <- centred data matrix

B <- (t(Xc) %% PG %% Xc)/(n-1) <- between-group variability matrix B

W <- (t(Xc) %x% (diag(n)-PG) %x% Xc)/(n-1) <- within-group variability matrix W
valvec <- eigen(solve(W)%*/%B) <- eigenvalues and eigenvectors of inv(W)B

val <- Re(valvec$val)[1:(k-1)] <- eigenvalues of inv(W)B

loadings <- Re(valvec$vec)[,1:(k-1)] <- eigenvectors of inv(W)B

if (k>2) rownames(loadings) <- colnames(X) <- names of objects in the output list
else if (k==2) names(loadings) <- colnames(X)

rownames(B) <- colnames(X)

colnames(B) <- colnames(X)

rownames (W) <- colnames(X)

colnames (W) <- colnames(X)

if (k>2) colnames(loadings) <- paste("ED",1:(k-1),sep=)

scores <- Xc x) loadings

rownames (scores) <- rownames(X)
list(B=B,W=W,va1=va1,loadings=loadings,scores=scores) <- output object (list)
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The adl function in action

> adl(lavagantes, lav.grupos)$val
[1] 15.1871516 0.7970949

> adl(lavagantes, lav.grupos)$loadings

<- compare with previous values

<- of norm 1, W-orthogonal

ED1 ED2
carapace_1 0.000138748 -0.36607521
tail 1 0.046664632 0.10129240
carapace_w -0.050147834 -0.27496636
carapace_d 0.094618019 -0.07056999
tail_w 0.700148699 0.39265005
areola_l -0.096439122 -0.01844238
areola_w 0.567602569 -0.01083473
rostrum_1 -0.333619864 0.37498349
rostrum_w 0.089075243 0.42637815
postorbital_w -0.052155664 -0.48524647
propodus_1 -0.169873612 0.05426936
propodus_w -0.115487617 0.21726572
dactyl_1 0.0228555657 0.11174052

y
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