Estatística e Análise de Dados em Zootécnia

FORMULÁRIO PARTE I

Descrição	Fórmula
Transformações Linearizantes	
Modelo Exponencial, equação $y = ce^{dx}$	$y^* = \ln(y), \ x^* = x$
Modelo Potência, equação $y = c x^d$	$y^* = \ln(y), \ x^* = \ln(x)$
Modelo Logístico, equação $y = \frac{1}{1 + e^{-(c + dx)}}$	$y^* = \ln\left(\frac{y}{1-y}\right), \ x^* = x$
Propriedades de Matrizes	$(\mathbf{A}\pm\mathbf{B})^t = \mathbf{A}^t \pm \mathbf{B}^t (\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t (\mathbf{A}^t)^{-1} = (\mathbf{A}^{-1})^t$
Propriedades da Multinormal	Se $\vec{\mathbf{W}} \cap \mathcal{N}_n(\vec{\boldsymbol{\mu}}, \boldsymbol{\Sigma})$, $\vec{\mathbf{a}}$ vector $k \times 1$ (não aleatório)
	e \mathbf{C} matriz $k \times n$ (não aleatória, de característica k)
	então $\mathbf{C}\vec{\mathbf{W}} + \vec{\mathbf{a}} \cap \mathcal{N}_k(\mathbf{C}\vec{\boldsymbol{\mu}} + \vec{\mathbf{a}}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^t)$
MODELO LINEAR-Regressão, p preditores	
Equação do modelo	$ec{\mathbf{Y}} = \mathbf{X} ec{oldsymbol{eta}} + ec{oldsymbol{\epsilon}}$
Vector dos estimadores dos parâmetros	$\hat{oldsymbol{eta}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \vec{\mathbf{Y}}$
	Para $p=1$:
	$\hat{\beta}_1 = \frac{Cov_{xY}}{s_x^2} = \sum_{i=1}^n c_i Y_i, \text{ com } c_i = \frac{x_i - \overline{x}}{(n-1) s_x^2}$
	$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} = \sum_{i=1}^n d_i Y_i, \text{ com } d_i = \frac{1}{n} - \frac{(x_i - \overline{x}) \overline{x}}{(n-1) s_x^2}$
Matriz de projecção ortogonal	$egin{array}{cccccccccccccccccccccccccccccccccccc$
Vector dos valores estimados de Y	
Matriz de (co-)variâncias dos estimadores $\hat{\beta}_i$	$Var(\vec{\hat{m{\beta}}}) = \sigma^2. \left(\mathbf{X}^t \mathbf{X} \right)^{-1}$
	Para $p=1$:
	$Var(\hat{\beta}_1) = \frac{\sigma^2}{(n-1) s_x^2}$, $Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{(n-1) s_x^2}\right)$
	$Cov(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\overline{x} \sigma^2}{(n-1) s_x^2}$
IC a $(1-\alpha) \times 100\%$ para combinações lineares	$Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) = -\frac{\overline{x} \sigma^{2}}{(n-1) s_{x}^{2}}$ $\vec{\mathbf{a}}^{t} \vec{\mathbf{b}} - t_{\frac{\alpha}{2}; n-(p+1)} \cdot \hat{\sigma}_{\vec{\mathbf{a}}^{t} \vec{\boldsymbol{\beta}}}, \ \vec{\mathbf{a}}^{t} \vec{\mathbf{b}} + t_{\frac{\alpha}{2}; n-(p+1)} \cdot \hat{\sigma}_{\vec{\mathbf{a}}^{t} \vec{\boldsymbol{\beta}}}$
dos parâmetros: $\vec{\mathbf{a}}^t \vec{\boldsymbol{\beta}} = \sum_{i=0}^{P} a_i \beta_i$:	$\operatorname{com} \hat{\sigma}_{\vec{\mathbf{a}}^t \vec{\hat{\boldsymbol{\beta}}}} = \sqrt{QMRE \cdot \vec{\mathbf{a}}^t (\mathbf{X}^t \mathbf{X})^{-1} \vec{\mathbf{a}}}$
Para $p=1,$ Intervalo de predição a $(1-\alpha)\times 100\%$ para	
observação individual de Y , dado $X=x$:	$(b_0 + b_1 x) + t_{\frac{\alpha}{2}; n-2} \cdot \sqrt{QMRE \cdot \left[1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{(n-1) s_x^2}\right]}$
Estatística do Teste de Ajustamento Global	$F = \frac{QMR}{QMRE} = \frac{n - (p+1)}{p} \cdot \frac{R^2}{1 - R^2}$
Estatística Teste aos Modelos Encaixados	
(modelo completo p preditores, submodelo k preditores)	$F = \frac{(SQRE_s - SQRE_c)/(p-k)}{(SQRE_c)/(n-(p+1))} = \frac{n-(p+1)}{p-k} \cdot \frac{R_C^2 - R_S^2}{1 - R_C^2}$
AIC (Critério de Informação de Akaike)	$F = \frac{(SQRE_s - SQRE_c)/(p-k)}{(SQRE_c)/(n-(p+1))} = \frac{n-(p+1)}{p-k} \cdot \frac{R_C^2 - R_S^2}{1 - R_C^2}$ $AIC = n \ln\left(\frac{SQRE_p}{n}\right) + 2(p+1).$ $E_i \cap \mathcal{N}\left(0, \sigma^2 \cdot (1 - h_{ii})\right) \text{ com } h_{ii} = \mathbf{H}_{(i,i)} \text{ (efeito alavanca)}$
Distribuição dos resíduos	$E_i \cap \mathcal{N}\left(0, \sigma^2 \cdot (1 - h_{ii})\right) \text{ com } h_{ii} = \mathbf{H}_{(i,i)} \text{ (efeito alavanca)}$
Para $p=1$, valor do efeito alavanca	$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{(n-1)s_x^2}$
Resíduos (internamente) estandardizados	$R_i = \frac{E_i}{\sqrt{QMRE \cdot (1 - h_{ii})}}$
Distância de Cook	$D_i = R_i^2 \cdot \left(\frac{h_{ii}}{1 - h_{ii}}\right) \cdot \frac{1}{p+1}$
\mathbb{R}^2 modificado	$R_{mod}^2 = 1 - \frac{QMRE}{QMT} = 1 - (1 - R^2) \cdot \frac{n-1}{n-(p+1)}$