
P R E S S U R E  A N D  
F L U I D  S TAT I C S

This chapter deals with forces applied by fluids at rest or in rigid-body
motion. The fluid property responsible for those forces is pressure,
which is a normal force exerted by a fluid per unit area. We start this

chapter with a detailed discussion of pressure, including absolute and gage
pressures, the pressure at a point, the variation of pressure with depth in a
gravitational field, the manometer, the barometer, and pressure measure-
ment devices. This is followed by a discussion of the hydrostatic forces
applied on submerged bodies with plane or curved surfaces. We then con-
sider the buoyant force applied by fluids on submerged or floating bodies,
and discuss the stability of such bodies. Finally, we apply Newton’s second
law of motion to a body of fluid in motion that acts as a rigid body and ana-
lyze the variation of pressure in fluids that undergo linear acceleration and
in rotating containers. This chapter makes extensive use of force balances
for bodies in static equilibrium, and it will be helpful if the relevant topics
from statics are first reviewed.
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CHAPTER

3
OBJECTIVES
When you finish reading this chapter, you
should be able to

! Determine the variation of
pressure in a fluid at rest

! Calculate the forces exerted by a
fluid at rest on plane or curved
submerged surfaces

! Analyze the rigid-body motion of
fluids in containers during linear
acceleration or rotation
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3–1 ! PRESSURE
Pressure is defined as a normal force exerted by a fluid per unit area. We
speak of pressure only when we deal with a gas or a liquid. The counterpart
of pressure in solids is normal stress. Since pressure is defined as force per
unit area, it has the unit of newtons per square meter (N/m2), which is called
a pascal (Pa). That is,

The pressure unit pascal is too small for pressures encountered in prac-
tice. Therefore, its multiples kilopascal (1 kPa ! 103 Pa) and megapascal
(1 MPa ! 106 Pa) are commonly used. Three other pressure units com-
monly used in practice, especially in Europe, are bar, standard atmosphere,
and kilogram-force per square centimeter:

Note the pressure units bar, atm, and kgf/cm2 are almost equivalent to each
other. In the English system, the pressure unit is pound-force per square
inch (lbf/in2, or psi), and 1 atm ! 14.696 psi. The pressure units kgf/cm2

and lbf/in2 are also denoted by kg/cm2 and lb/in2, respectively, and they are
commonly used in tire gages. It can be shown that 1 kgf/cm2 ! 14.223 psi.

Pressure is also used for solids as synonymous to normal stress, which is
force acting perpendicular to the surface per unit area. For example, a 150-
pound person with a total foot imprint area of 50 in2 exerts a pressure of
150 lbf/50 in2 ! 3.0 psi on the floor (Fig. 3–1). If the person stands on one
foot, the pressure doubles. If the person gains excessive weight, he or she is
likely to encounter foot discomfort because of the increased pressure on the
foot (the size of the foot does not change with weight gain). This also
explains how a person can walk on fresh snow without sinking by wearing
large snowshoes, and how a person cuts with little effort when using a sharp
knife.

The actual pressure at a given position is called the absolute pressure,
and it is measured relative to absolute vacuum (i.e., absolute zero pressure).
Most pressure-measuring devices, however, are calibrated to read zero in the
atmosphere (Fig. 3–2), and so they indicate the difference between the
absolute pressure and the local atmospheric pressure. This difference is
called the gage pressure. Pressures below atmospheric pressure are called
vacuum pressures and are measured by vacuum gages that indicate the dif-
ference between the atmospheric pressure and the absolute pressure.
Absolute, gage, and vacuum pressures are all positive quantities and are
related to each other by

(3–1)

(3–2)

This is illustrated in Fig. 3–3.

Pvac ! Patm " Pabs

Pgage ! Pabs " Patm

 ! 0.9679 atm 

 ! 0.9807 bar 

 1 kgf#cm2 ! 9.807 N#cm2 ! 9.807 $ 104 N#m2 ! 9.807 $ 104 Pa 

 1 atm ! 101,325 Pa ! 101.325 kPa ! 1.01325 bars 

 1 bar ! 105 Pa ! 0.1 MPa ! 100 kPa 

1 Pa ! 1 N#m2
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150 pounds

Afeet = 50 in2

P = 3 psi P = 6 psi

300 pounds

W––––
Afeet

150 lbf––––––
50 in2P =   n = = 3 psi=s

FIGURE 3–1
The normal stress (or “pressure”) 
on the feet of a chubby person is 
much greater than on the feet of 
a slim person.

FIGURE 3–2
Some basic pressure gages.
Dresser Instruments, Dresser, Inc. Used by
permission.
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Absolute

vacuum

Absolute

vacuum

Pabs

Pvac

Patm

Patm

Patm

Pgage

Pabs

Pabs = 0
FIGURE 3–3

Absolute, gage, and vacuum pressures.

Like other pressure gages, the gage used to measure the air pressure in an
automobile tire reads the gage pressure. Therefore, the common reading of
32 psi (2.25 kgf/cm2) indicates a pressure of 32 psi above the atmospheric
pressure. At a location where the atmospheric pressure is 14.3 psi, for exam-
ple, the absolute pressure in the tire is 32 ! 14.3 " 46.3 psi.

In thermodynamic relations and tables, absolute pressure is almost always
used. Throughout this text, the pressure P will denote absolute pressure
unless specified otherwise. Often the letters “a” (for absolute pressure) and
“g” (for gage pressure) are added to pressure units (such as psia and psig) to
clarify what is meant.

EXAMPLE 3–1 Absolute Pressure of a Vacuum Chamber

A vacuum gage connected to a chamber reads 5.8 psi at a location where
the atmospheric pressure is 14.5 psi. Determine the absolute pressure in the
chamber.

SOLUTION The gage pressure of a vacuum chamber is given. The absolute
pressure in the chamber is to be determined.
Analysis The absolute pressure is easily determined from Eq. 3–2 to be

Discussion Note that the local value of the atmospheric pressure is used
when determining the absolute pressure.

Pressure at a Point
Pressure is the compressive force per unit area, and it gives the impression
of being a vector. However, pressure at any point in a fluid is the same in all
directions. That is, it has magnitude but not a specific direction, and thus it
is a scalar quantity. This can be demonstrated by considering a small
wedge-shaped fluid element of unit length (into the page) in equilibrium, as
shown in Fig. 3–4. The mean pressures at the three surfaces are P1, P2, and
P3, and the force acting on a surface is the product of mean pressure and the

Pabs " Patm # Pvac " 14.5 # 5.8 " 8.7 psi
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surface area. From Newton’s second law, a force balance in the x- and z-
directions gives

(3–3a)

(3–3b)

where r is the density and W " mg " rg $x $z/2 is the weight of the fluid
element. Noting that the wedge is a right triangle, we have $x " l cos u and
$z " l sin u. Substituting these geometric relations and dividing Eq. 3–3a
by $z and Eq. 3–3b by $x gives

(3–4a)

(3–4b)

The last term in Eq. 3–4b drops out as $z → 0 and the wedge becomes
infinitesimal, and thus the fluid element shrinks to a point. Then combining
the results of these two relations gives

(3–5)

regardless of the angle u. We can repeat the analysis for an element in the
xz-plane and obtain a similar result. Thus we conclude that the pressure at a
point in a fluid has the same magnitude in all directions. It can be shown in
the absence of shear forces that this result is applicable to fluids in motion
as well as fluids at rest.

Variation of Pressure with Depth
It will come as no surprise to you that pressure in a fluid at rest does not
change in the horizontal direction. This can be shown easily by considering
a thin horizontal layer of fluid and doing a force balance in any horizontal
direction. However, this is not the case in the vertical direction in a gravity
field. Pressure in a fluid increases with depth because more fluid rests on

P1 " P2 " P3 " P

P2 # P3 #
1
2

 rg $z " 0 

P1 # P3 " 0 

a Fz " maz " 0:  P2 $x # P3l cos u#
1
2
 rg $x $z " 0 

a Fx " max " 0:    P1 $z # P3l sin u" 0 
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P2 $x

P3l

P1 $z

$x

($y = 1)

z$

z

x

l
u

u

FIGURE 3–4
Forces acting on a wedge-shaped fluid
element in equilibrium.
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deeper layers, and the effect of this “extra weight” on a deeper layer is bal-
anced by an increase in pressure (Fig. 3–5).

To obtain a relation for the variation of pressure with depth, consider a
rectangular fluid element of height $z, length $x, and unit depth (into the
page) in equilibrium, as shown in Fig. 3–6. Assuming the density of the
fluid r to be constant, a force balance in the vertical z-direction gives

(3–6)

where W " mg " rg $x $z is the weight of the fluid element. Dividing by
$x and rearranging gives

(3–7)

where gs " rg is the specific weight of the fluid. Thus, we conclude that the
pressure difference between two points in a constant density fluid is propor-
tional to the vertical distance $z between the points and the density r of the
fluid. In other words, pressure in a fluid increases linearly with depth. This
is what a diver experiences when diving deeper in a lake. For a given fluid,
the vertical distance $z is sometimes used as a measure of pressure, and it is
called the pressure head.

We also conclude from Eq. 3–7 that for small to moderate distances, the
variation of pressure with height is negligible for gases because of their low
density. The pressure in a tank containing a gas, for example, can be consid-
ered to be uniform since the weight of the gas is too small to make a signif-
icant difference. Also, the pressure in a room filled with air can be assumed
to be constant (Fig. 3–7).

If we take point 1 to be at the free surface of a liquid open to the atmo-
sphere (Fig. 3–8), where the pressure is the atmospheric pressure Patm, then
the pressure at a depth h from the free surface becomes

(3–8)

Liquids are essentially incompressible substances, and thus the variation
of density with depth is negligible. This is also the case for gases when the
elevation change is not very large. The variation of density of liquids or
gases with temperature can be significant, however, and may need to be
considered when high accuracy is desired. Also, at great depths such as
those encountered in oceans, the change in the density of a liquid can be
significant because of the compression by the tremendous amount of liquid
weight above.

The gravitational acceleration g varies from 9.807 m/s2 at sea level to
9.764 m/s2 at an elevation of 14,000 m where large passenger planes cruise.
This is a change of just 0.4 percent in this extreme case. Therefore, g can be
assumed to be constant with negligible error.

For fluids whose density changes significantly with elevation, a relation
for the variation of pressure with elevation can be obtained by dividing Eq.
3–6 by $x $z, and taking the limit as $z → 0. It gives

(3–9)

The negative sign is due to our taking the positive z direction to be upward
so that dP is negative when dz is positive since pressure decreases in an
upward direction. When the variation of density with elevation is known,

dP
dz

" #rg

P " Patm ! rgh    or    Pgage " rgh

$P " P2 # P1 " rg $z " gs $z

a Fz " maz " 0:    P2 $x # P1 $x # rg $x $z " 0
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Pgage

FIGURE 3–5
The pressure of a fluid at rest

increases with depth (as a result 
of added weight).

P2

W

P1

x

0

z

z

x

$

$

FIGURE 3–6
Free-body diagram of a rectangular

fluid element in equilibrium.

Ptop  = 1 atm

AIR

(A 5-m-high room)

Pbottom  = 1.006 atm

FIGURE 3–7
In a room filled with a gas, the

variation of pressure with height 
is negligible.
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the pressure difference between points 1 and 2 can be determined by inte-
gration to be

(3–10)

For constant density and constant gravitational acceleration, this relation
reduces to Eq. 3–7, as expected.

Pressure in a fluid at rest is independent of the shape or cross section of
the container. It changes with the vertical distance, but remains constant in
other directions. Therefore, the pressure is the same at all points on a hori-
zontal plane in a given fluid. The Dutch mathematician Simon Stevin
(1548–1620) published in 1586 the principle illustrated in Fig. 3–9. Note
that the pressures at points A, B, C, D, E, F, and G are the same since they
are at the same depth, and they are interconnected by the same static fluid.
However, the pressures at points H and I are not the same since these two
points cannot be interconnected by the same fluid (i.e., we cannot draw a
curve from point I to point H while remaining in the same fluid at all
times), although they are at the same depth. (Can you tell at which point the
pressure is higher?) Also, the pressure force exerted by the fluid is always
normal to the surface at the specified points.

A consequence of the pressure in a fluid remaining constant in the hori-
zontal direction is that the pressure applied to a confined fluid increases the
pressure throughout by the same amount. This is called Pascal’s law, after
Blaise Pascal (1623–1662). Pascal also knew that the force applied by a
fluid is proportional to the surface area. He realized that two hydraulic
cylinders of different areas could be connected, and the larger could be used
to exert a proportionally greater force than that applied to the smaller. “Pas-
cal’s machine” has been the source of many inventions that are a part of our
daily lives such as hydraulic brakes and lifts. This is what enables us to lift

$P " P2 # P1 " #!
2

1

rg dz
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P1 = Patm

P2 = Patm + rgh

h

1

2

FIGURE 3–8
Pressure in a liquid at rest increases
linearly with distance from the free
surface.

h

A B C D E

Water

Mercury

F G

IH

Patm

PA = PB = PC = PD = PE = PF = PG = Patm + rgh

PH ≠ PI

FIGURE 3–9
The pressure is the same at all points on a horizontal plane in a given fluid regardless of geometry, provided that the
points are interconnected by the same fluid.
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a car easily by one arm, as shown in Fig. 3–10. Noting that P1 " P2 since
both pistons are at the same level (the effect of small height differences is
negligible, especially at high pressures), the ratio of output force to input
force is determined to be

(3–11)

The area ratio A2 /A1 is called the ideal mechanical advantage of the hydraulic
lift. Using a hydraulic car jack with a piston area ratio of A2 /A1 " 10, for
example, a person can lift a 1000-kg car by applying a force of just 100 kgf
(" 908 N).

3–2 ! THE MANOMETER
We notice from Eq. 3–7 that an elevation change of $z in a fluid at rest cor-
responds to $P/rg, which suggests that a fluid column can be used to mea-
sure pressure differences. A device based on this principle is called a
manometer, and it is commonly used to measure small and moderate pres-
sure differences. A manometer mainly consists of a glass or plastic U-tube
containing one or more fluids such as mercury, water, alcohol, or oil. To
keep the size of the manometer to a manageable level, heavy fluids such as
mercury are used if large pressure differences are anticipated.

Consider the manometer shown in Fig. 3–11 that is used to measure the
pressure in the tank. Since the gravitational effects of gases are negligible,
the pressure anywhere in the tank and at position 1 has the same value. Fur-
thermore, since pressure in a fluid does not vary in the horizontal direction
within a fluid, the pressure at point 2 is the same as the pressure at point 1,
P2 " P1.

The differential fluid column of height h is in static equilibrium, and it is
open to the atmosphere. Then the pressure at point 2 is determined directly
from Eq. 3–8 to be

(3–12)

where r is the density of the fluid in the tube. Note that the cross-sectional
area of the tube has no effect on the differential height h, and thus the pres-
sure exerted by the fluid. However, the diameter of the tube should be large
enough (more than a few millimeters) to ensure that the surface tension
effect and thus the capillary rise is negligible.

EXAMPLE 3–2 Measuring Pressure with a Manometer

A manometer is used to measure the pressure in a tank. The fluid used has
a specific gravity of 0.85, and the manometer column height is 55 cm, as
shown in Fig. 3–12. If the local atmospheric pressure is 96 kPa, determine
the absolute pressure within the tank.

SOLUTION The reading of a manometer attached to a tank and the
atmospheric pressure are given. The absolute pressure in the tank is to be
determined.
Assumptions The fluid in the tank is a gas whose density is much lower
than the density of manometer fluid.

P2 " Patm ! rgh

P1 " P2  →   F1

A1
 "

F2

A2
  →   F2

F1
"

A2

A1
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F1 = P1A1

1 2A1
P1

F2 = P2 A2

A2
P2

FIGURE 3–10
Lifting of a large weight by 

a small force by the application 
of Pascal’s law.

Gas
h

1 2

FIGURE 3–11
The basic manometer.

P

SG

 = ?
h = 55 cm

= 0.85

Patm  = 96 kPa

FIGURE 3–12
Schematic for Example 3–2.
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Properties The specific gravity of the manometer fluid is given to be 0.85.
We take the standard density of water to be 1000 kg/m3.
Analysis The density of the fluid is obtained by multiplying its specific
gravity by the density of water, which is taken to be 1000 kg/m3:

Then from Eq. 3–12,

Discussion Note that the gage pressure in the tank is 4.6 kPa.

Many engineering problems and some manometers involve multiple
immiscible fluids of different densities stacked on top of each other. Such
systems can be analyzed easily by remembering that (1) the pressure change
across a fluid column of height h is $P " rgh, (2) pressure increases down-
ward in a given fluid and decreases upward (i.e., Pbottom % Ptop), and (3) two
points at the same elevation in a continuous fluid at rest are at the same
pressure.

The last principle, which is a result of Pascal’s law, allows us to “jump”
from one fluid column to the next in manometers without worrying about
pressure change as long as we don’t jump over a different fluid, and the
fluid is at rest. Then the pressure at any point can be determined by starting
with a point of known pressure and adding or subtracting rgh terms as we
advance toward the point of interest. For example, the pressure at the bot-
tom of the tank in Fig. 3–13 can be determined by starting at the free sur-
face where the pressure is Patm, moving downward until we reach point 1 at
the bottom, and setting the result equal to P1. It gives

In the special case of all fluids having the same density, this relation reduces
to Eq. 3–12, as expected.

Manometers are particularly well-suited to measure pressure drops across
a horizontal flow section between two specified points due to the presence
of a device such as a valve or heat exchanger or any resistance to flow. This
is done by connecting the two legs of the manometer to these two points, as
shown in Fig. 3–14. The working fluid can be either a gas or a liquid whose
density is r1. The density of the manometer fluid is r2, and the differential
fluid height is h.

A relation for the pressure difference P1 # P2 can be obtained by starting
at point 1 with P1, moving along the tube by adding or subtracting the rgh
terms until we reach point 2, and setting the result equal to P2:

(3–13)

Note that we jumped from point A horizontally to point B and ignored the
part underneath since the pressure at both points is the same. Simplifying,

(3–14)P1 # P2 " (r2 # r1)gh

P1 ! r1g(a ! h) # r2gh # r1ga " P2

Patm ! r1gh1 ! r2gh2 ! r3gh3 " P1

 " 100.6 kPa 

 " 96 kPa ! (850 kg&m3)(9.81 m&s2)(0.55 m)a 1 N
1 kg ' m&s2b a 1 kPa

1000 N&m2b
P " Patm ! rgh 

r " SG (rH2O) " (0.85)(1000 kg&m3) " 850 kg&m3

72
FLUID MECHANICS

Patm

1
h3

h2

h1

Fluid 2

Fluid 1

Fluid 3

FIGURE 3–13
In stacked-up fluid layers, the pressure
change across a fluid layer of density
r and height h is rgh.

a

hr1

A B

Fluid

A flow section
or flow device

1 2

r2

FIGURE 3–14
Measuring the pressure drop across a
flow section or a flow device by a
differential manometer.
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Note that the distance a has no effect on the result, but must be included in
the analysis. Also, when the fluid flowing in the pipe is a gas, then r1 ! r2
and the relation in Eq. 3–14 simplifies to P1 ! P2 r2gh.

EXAMPLE 3–3 Measuring Pressure with a Multifluid Manometer

The water in a tank is pressurized by air, and the pressure is measured by a
multifluid manometer as shown in Fig. 3–15. The tank is located on a moun-
tain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa.
Determine the air pressure in the tank if h1 " 0.1 m, h2 " 0.2 m, and h3 "
0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3,
850 kg/m3, and 13,600 kg/m3, respectively.

SOLUTION The pressure in a pressurized water tank is measured by a multi-
fluid manometer. The air pressure in the tank is to be determined.
Assumption The air pressure in the tank is uniform (i.e., its variation with
elevation is negligible due to its low density), and thus we can determine the
pressure at the air–water interface.
Properties The densities of water, oil, and mercury are given to be
1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.
Analysis Starting with the pressure at point 1 at the air–water interface,
moving along the tube by adding or subtracting the rgh terms until we reach
point 2, and setting the result equal to Patm since the tube is open to the
atmosphere gives

Solving for P1 and substituting,

Discussion Note that jumping horizontally from one tube to the next and
realizing that pressure remains the same in the same fluid simplifies the
analysis considerably. Also note that mercury is a toxic fluid, and mercury
manometers and thermometers are being replaced by ones with safer fluids
because of the risk of exposure to mercury vapor during an accident.

EXAMPLE 3–4 Analyzing a Multifluid Manometer with EES

Reconsider the multifluid manometer discussed in Example 3–3. Determine
the air pressure in the tank using EES. Also determine what the differential
fluid height h3 would be for the same air pressure if the mercury in the last
column were replaced by seawater with a density of 1030 kg/m3.

SOLUTION The pressure in a water tank is measured by a multifluid
manometer. The air pressure in the tank and the differential fluid height h3
if mercury is replaced by seawater are to be determined using EES.

 " 130 kPa 

 ! (850 kg#m3)(0.2 m)]a 1 N
1 kg $  m#s2b a 1 kPa

1000 N#m2b  

 " 85.6 kPa % (9.81 m#s2)[(13,600 kg#m3)(0.35 m) ! (1000 kg#m3)(0.1 m)

 " Patm % g(rmercuryh3 ! rwaterh1 ! roilh2) 

P1 " Patm ! rwatergh1 ! roilgh2 % rmercurygh3 

P1 % rwatergh1 % roilgh2 ! rmercurygh3 " Patm

73
CHAPTER 3

h1

h2
h3

Oil

Mercury

WATER

AIR

1

2

FIGURE 3–15
Schematic for Example 3–3; drawing

not to scale.
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Analysis We start the EES program by double-clicking on its icon, open a
new file, and type the following on the blank screen that appears (we express
the atmospheric pressure in Pa for unit consistency):

Here P1 is the only unknown, and it is determined by EES to be

which is identical to the result obtained in Example 3–3. The height of the
fluid column h3 when mercury is replaced by seawater is determined easily by
replacing “h3=0.35” by “P1=129647” and “rm=13600” by “rm=1030,”
and clicking on the calculator symbol. It gives

Discussion Note that we used the screen like a paper pad and wrote down
the relevant information together with the applicable relations in an orga-
nized manner. EES did the rest. Equations can be written on separate lines
or on the same line by separating them by semicolons, and blank or com-
ment lines can be inserted for readability. EES makes it very easy to ask
“what if” questions and to perform parametric studies, as explained in
Appendix 3 on the DVD.

Other Pressure Measurement Devices
Another type of commonly used mechanical pressure measurement device
is the Bourdon tube, named after the French engineer and inventor Eugene
Bourdon (1808–1884), which consists of a hollow metal tube bent like a
hook whose end is closed and connected to a dial indicator needle (Fig.
3–16). When the tube is open to the atmosphere, the tube is undeflected,
and the needle on the dial at this state is calibrated to read zero (gage pres-
sure). When the fluid inside the tube is pressurized, the tube stretches and
moves the needle in proportion to the pressure applied.

Electronics have made their way into every aspect of life, including pres-
sure measurement devices. Modern pressure sensors, called pressure trans-
ducers, use various techniques to convert the pressure effect to an electrical
effect such as a change in voltage, resistance, or capacitance. Pressure trans-
ducers are smaller and faster, and they can be more sensitive, reliable, and
precise than their mechanical counterparts. They can measure pressures
from less than a millionth of 1 atm to several thousands of atm.

A wide variety of pressure transducers is available to measure gage,
absolute, and differential pressures in a wide range of applications. Gage
pressure transducers use the atmospheric pressure as a reference by venting
the back side of the pressure-sensing diaphragm to the atmosphere, and they
give a zero signal output at atmospheric pressure regardless of altitude. The
absolute pressure transducers are calibrated to have a zero signal output at
full vacuum. Differential pressure transducers measure the pressure difference

h3 " 4.62 m

P1 " 129647 Pa "  130 kPa

P1!rw*g*h1!roil*g*h2#rm*g*h3"Patm

rw"1000; roil"850; rm"13600 

h1"0.1; h2"0.2; h3"0.35 

Patm"85600 

g"9.81 
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C-type Spiral

Twisted tube

Tube cross section

Helical

FIGURE 3–16
Various types of Bourdon tubes used
to measure pressure.
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between two locations directly instead of using two pressure transducers
and taking their difference.

Strain-gage pressure transducers work by having a diaphragm deflect
between two chambers open to the pressure inputs. As the diaphragm
stretches in response to a change in pressure difference across it, the strain
gage stretches and a Wheatstone bridge circuit amplifies the output. A
capacitance transducer works similarly, but capacitance change is measured
instead of resistance change as the diaphragm stretches.

Piezoelectric transducers, also called solid-state pressure transducers,
work on the principle that an electric potential is generated in a crystalline
substance when it is subjected to mechanical pressure. This phenomenon,
first discovered by brothers Pierre and Jacques Curie in 1880, is called the
piezoelectric (or press-electric) effect. Piezoelectric pressure transducers
have a much faster frequency response compared to the diaphragm units and
are very suitable for high-pressure applications, but they are generally not as
sensitive as the diaphragm-type transducers.

3–3 ! THE BAROMETER AND 
ATMOSPHERIC PRESSURE

Atmospheric pressure is measured by a device called a barometer; thus, the
atmospheric pressure is often referred to as the barometric pressure.

The Italian Evangelista Torricelli (1608–1647) was the first to conclu-
sively prove that the atmospheric pressure can be measured by inverting a
mercury-filled tube into a mercury container that is open to the atmosphere,
as shown in Fig. 3–17. The pressure at point B is equal to the atmospheric
pressure, and the pressure at C can be taken to be zero since there is only
mercury vapor above point C and the pressure is very low relative to Patm
and can be neglected to an excellent approximation. Writing a force balance
in the vertical direction gives

(3–15)

where r is the density of mercury, g is the local gravitational acceleration,
and h is the height of the mercury column above the free surface. Note that
the length and the cross-sectional area of the tube have no effect on the
height of the fluid column of a barometer (Fig. 3–18).

A frequently used pressure unit is the standard atmosphere, which is
defined as the pressure produced by a column of mercury 760 mm in height
at 0°C (rHg " 13,595 kg/m3) under standard gravitational acceleration 
(g " 9.807 m/s2). If water instead of mercury were used to measure the
standard atmospheric pressure, a water column of about 10.3 m would be
needed. Pressure is sometimes expressed (especially by weather forecasters)
in terms of the height of the mercury column. The standard atmospheric
pressure, for example, is 760 mmHg (29.92 inHg) at 0°C. The unit mmHg
is also called the torr in honor of Torricelli. Therefore, 1 atm " 760 torr
and 1 torr " 133.3 Pa.

The standard atmospheric pressure Patm changes from 101.325 kPa at sea
level to 89.88, 79.50, 54.05, 26.5, and 5.53 kPa at altitudes of 1000, 2000,
5000, 10,000, and 20,000 meters, respectively. The standard atmospheric
pressure in Denver (elevation " 1610 m), for example, is 83.4 kPa.

Patm " rgh
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FIGURE 3–17
The basic barometer.

A2A1 A3

FIGURE 3–18
The length or the cross-sectional area
of the tube has no effect on the height

of the fluid column of a barometer,
provided that the tube diameter is

large enough to avoid surface tension
(capillary) effects.
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Engine Lungs

FIGURE 3–19
At high altitudes, a car engine
generates less power and a person 
gets less oxygen because of the 
lower density of air.

Remember that the atmospheric pressure at a location is simply the
weight of the air above that location per unit surface area. Therefore, it
changes not only with elevation but also with weather conditions.

The decline of atmospheric pressure with elevation has far-reaching rami-
fications in daily life. For example, cooking takes longer at high altitudes
since water boils at a lower temperature at lower atmospheric pressures.
Nose bleeding is a common experience at high altitudes since the difference
between the blood pressure and the atmospheric pressure is larger in this
case, and the delicate walls of veins in the nose are often unable to with-
stand this extra stress.

For a given temperature, the density of air is lower at high altitudes, and
thus a given volume contains less air and less oxygen. So it is no surprise
that we tire more easily and experience breathing problems at high altitudes.
To compensate for this effect, people living at higher altitudes develop more
efficient lungs. Similarly, a 2.0-L car engine will act like a 1.7-L car engine
at 1500 m altitude (unless it is turbocharged) because of the 15 percent drop
in pressure and thus 15 percent drop in the density of air (Fig. 3–19). A fan
or compressor will displace 15 percent less air at that altitude for the same
volume displacement rate. Therefore, larger cooling fans may need to be
selected for operation at high altitudes to ensure the specified mass flow
rate. The lower pressure and thus lower density also affects lift and drag:
airplanes need a longer runway at high altitudes to develop the required lift,
and they climb to very high altitudes for cruising for reduced drag and thus
better fuel efficiency.

EXAMPLE 3–5 Measuring Atmospheric Pressure with a
Barometer

Determine the atmospheric pressure at a location where the barometric read-
ing is 740 mm Hg and the gravitational acceleration is g " 9.81 m/s2.
Assume the temperature of mercury to be 10°C, at which its density is
13,570 kg/m3.

SOLUTION The barometric reading at a location in height of mercury col-
umn is given. The atmospheric pressure is to be determined.
Assumptions The temperature of mercury is assumed to be 10°C.
Properties The density of mercury is given to be 13,570 kg/m3.
Analysis From Eq. 3–15, the atmospheric pressure is determined to be

Discussion Note that density changes with temperature, and thus this effect
should be considered in calculations.

EXAMPLE 3–6 Effect of Piston Weight on Pressure in a Cylinder

The piston of a vertical piston–cylinder device containing a gas has a mass
of 60 kg and a cross-sectional area of 0.04 m2, as shown in Fig. 3–20. The

 " 98.5 kPa 

 " (13,570 kg&m3)(9.81 m&s2)(0.74 m)a 1 N
1 kg ' m&s2b a 1 kPa

1000 N&m2b
Patm " rgh 
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A = 0.04 m2

P = ?

Patm = 0.97 bar
m = 60 kg

Patm

W = mg

P

FIGURE 3–20
Schematic for Example 3–6, and the

free-body diagram of the piston.

Increasing salinity
and density

Surface zone

Sun

r0 = 1040 kg/m3

H = 4 m

z
Gradient zone

Storage zone

1

2 FIGURE 3–21
Schematic for Example 3–7.

local atmospheric pressure is 0.97 bar, and the gravitational acceleration is
9.81 m/s2. (a) Determine the pressure inside the cylinder. (b) If some heat is
transferred to the gas and its volume is doubled, do you expect the pressure
inside the cylinder to change?

SOLUTION A gas is contained in a vertical cylinder with a heavy piston. The
pressure inside the cylinder and the effect of volume change on pressure are
to be determined.
Assumptions Friction between the piston and the cylinder is negligible.
Analysis (a) The gas pressure in the piston–cylinder device depends on the
atmospheric pressure and the weight of the piston. Drawing the free-body
diagram of the piston as shown in Fig. 3–20 and balancing the vertical
forces yield

Solving for P and substituting,

(b) The volume change will have no effect on the free-body diagram drawn in
part (a), and therefore the pressure inside the cylinder will remain the same.
Discussion If the gas behaves as an ideal gas, the absolute temperature
doubles when the volume is doubled at constant pressure.

EXAMPLE 3–7 Hydrostatic Pressure in a Solar Pond 
with Variable Density

Solar ponds are small artificial lakes of a few meters deep that are used to
store solar energy. The rise of heated (and thus less dense) water to the sur-
face is prevented by adding salt at the pond bottom. In a typical salt gradi-
ent solar pond, the density of water increases in the gradient zone, as shown
in Fig. 3–21, and the density can be expressed as

where r0 is the density on the water surface, z is the vertical distance mea-
sured downward from the top of the gradient zone, and H is the thickness of

r " r0B1 ! tan2ap
4

 
z
H
b

 " 1.12 bars 

 " 0.97 bar !
(60 kg)(9.81 m&s2)

0.04 m2  a 1 N
1 kg ' m&s2b a 1 bar

105 N&m2b
P " Patm !

mg

A
 

PA " Patm A ! W
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the gradient zone. For H " 4 m, r0 " 1040 kg/m3, and a thickness of 0.8
m for the surface zone, calculate the gage pressure at the bottom of the gra-
dient zone.

SOLUTION The variation of density of saline water in the gradient zone of a
solar pond with depth is given. The gage pressure at the bottom of the gradi-
ent zone is to be determined.
Assumptions The density in the surface zone of the pond is constant.
Properties The density of brine on the surface is given to be 1040 kg/m3.
Analysis We label the top and the bottom of the gradient zone as 1 and 2,
respectively. Noting that the density of the surface zone is constant, the gage
pressure at the bottom of the surface zone (which is the top of the gradient
zone) is

since 1 kN/m2 " 1 kPa. The differential change in hydrostatic pressure
across a vertical distance of dz is given by

Integrating from the top of the gradient zone (point 1 where z " 0) to any
location z in the gradient zone (no subscript) gives

Performing the integration gives the variation of gage pressure in the gradi-
ent zone to be

Then the pressure at the bottom of the gradient zone (z " H " 4 m)
becomes

Discussion The variation of gage pressure in the gradient zone with depth is
plotted in Fig. 3–22. The dashed line indicates the hydrostatic pressure for
the case of constant density at 1040 kg/m3 and is given for reference. Note
that the variation of pressure with depth is not linear when density varies
with depth.

3–4 ! INTRODUCTION TO FLUID STATICS
Fluid statics deals with problems associated with fluids at rest. The fluid
can be either gaseous or liquid. Fluid statics is generally referred to as
hydrostatics when the fluid is a liquid and as aerostatics when the fluid is a
gas. In fluid statics, there is no relative motion between adjacent fluid lay-
ers, and thus there are no shear (tangential) stresses in the fluid trying to
deform it. The only stress we deal with in fluid statics is the normal stress,
which is the pressure, and the variation of pressure is due only to the weight
of the fluid. Therefore, the topic of fluid statics has significance only in

 " 54.0 kPa (gage) 

P2 " 8.16 kPa ! (1040 kg&m3)(9.81 m&s2) 
4(4 m)
p

 sinh#1atan 
p

4
 
4
4
b a 1 kN

1000 kg ' m&s2b
P " P1 ! r0g 

4H
p

 sinh#1atan 
p

4
 

z
H
b

P # P1 " !
z

0

rg dz    →   P " P1 ! !
z

0

 r0B1 ! tan2ap
4

 
z
H
bg dz

dP " rg dz

P1 " rgh1 " (1040 kg&m3)(9.81 m&s2)(0.8 m)a 1 kN
1000 kg ' m&s2b " 8.16 kPa
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FIGURE 3–22
The variation of gage pressure with
depth in the gradient zone of the 
solar pond.
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