Capítulo 2

Espaços vetoriais

ESPAÇO NULO

Exercício 14. Determine e interprete geometricamente o espaço nulo das seguintes matrizes.

a)
$$\begin{bmatrix} 3 & 4 \\ -6 & -8 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$ e) $\begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & 1 \\ 5 & 5 & 1 \end{bmatrix}$ f) $\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{bmatrix}$

g)
$$\begin{bmatrix} 1 & -2 & 2 \\ 4 & -6 & 2 \end{bmatrix}$$
 h) $\begin{bmatrix} 1 & -2 & 2 \\ 3 & -6 & 6 \end{bmatrix}$ i) $\begin{bmatrix} 3 & -1 \\ 9 & -3 \\ 6 & -2 \end{bmatrix}$.

a) $\mathcal{N}(A) = \{(x_1, x_2) : x_1 = -\frac{4}{3}x_2, \ x_2 \in \mathbb{R}\}$ - reta de \mathbb{R}^2 que passa na origem com vetor diretor (-4,3) **b)** $\mathcal{N}(A) = \{(0,0)\}$ - subespaço minimal **c)** $\mathcal{N}(A) = \mathbb{R}^2$ - subespaço maximal **d)** $\mathcal{N}(A) = \{(x_1, x_2, x_3) : x_1 = -x_3, \ x_2 = 2x_3, \ x_3 \in \mathbb{R}\}$ - reta de \mathbb{R}^3 que passa na origem com vetor diretor (-1,2,1) **e)** $\mathcal{N}(A) = \{(x_1, x_2, x_3) : x_1 = -\frac{2}{5}x_3, \ x_2 = \frac{1}{5}x_3, \ x_3 \in \mathbb{R}\}$ reta de \mathbb{R}^3 que passa na origem com vetor diretor (-2,1,5) **f)** $\mathcal{N}(A) = \{(0,0,0)\}$ - subespaço minimal **g)** $\mathcal{N}(A) = \{(x_1, x_2, x_3) : x_1 = 4x_3, \ x_2 = 3x_3, \ x_3 \in \mathbb{R}\}$ - reta de \mathbb{R}^3 que passa na origem com vetor diretor (4,3,1) **h)** $\mathcal{N}(A) = \{(x_1, x_2, x_3) : x_1 = 2x_2 - 2x_3, \ x_2 \in \mathbb{R}, \ x_3 \in \mathbb{R}\}$ - plano de \mathbb{R}^3 que passa na origem com vetores diretores (2,1,0) e (-2,0,1). **i)** $\mathcal{N}(A) = \{(x_1, x_2) : x_1 = \frac{1}{3}x_2, \ x_2 \in \mathbb{R}\}$ - reta de \mathbb{R}^2 que passa na origem com vetor diretor (3,1)

COMBINAÇÃO LINEAR E ESPAÇO DAS COLUNAS

Exercícios 15.

1. Escreva (-3, 12, 12) como combinação linear dos vetores $v_1 = (-1, 3, 1)$, $v_2 = (0, 2, 4)$ e $v_3 = (1, 0, 2)$.

$$(-3, 12, 12) = 2v_1 + 3v_2 - v_3$$

- 2. Em cada uma das alíneas seguintes, verifique se o vetor u é combinação linear dos vetores de V.
 - a) u = (3, -5), $V = \{(1, 2), (-2, 6)\};$ É.C.L.
 - b) u = (1, 1, 1), $V = \{(1, 0, 1), (0, 3, 5)\};$ Não é C.L.
 - c) $u = (2, -2, \frac{1}{6}, \frac{1}{6}), V = \{(1, -1, 0, 0), (2, 0, 1, 1), (0, 3, 1, 1)\};$ É C.L.
 - d) u = (0, 1, 0, 1, 0), $V = \{(1, 2, 2, 1, 1), (\frac{2}{3}, 1, \frac{4}{3}, 1, \frac{2}{3})\}.$ Não é C.L.
- 3. Averigue se $(0,1,4) \in \langle (1,3,-5),(2,9,4) \rangle$ e interprete geometricamente a situação.
 - $(0,1,4) \notin \langle (1,3,-5),(2,9,4) \rangle$. De facto, este subespaço gerado define um plano que passa na origem de equação $19x \frac{14}{3}y + 14z = 0$ (verifique) e (0,1,4) não satisfaz esta equação.
- 4. Justifique que (3,1) está no espaço das colunas da matriz $\begin{bmatrix} 2 & -1 & 5 \\ 4 & 3 & 9 \end{bmatrix}$ e escreva-o como combinação linear das colunas dessa matriz.

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} = \left(1 - \frac{12}{5}\alpha_3\right) \begin{bmatrix} 2 \\ 4 \end{bmatrix} + \left(-1 + \frac{1}{5}\alpha_3\right) \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \alpha_3 \begin{bmatrix} 5 \\ 9 \end{bmatrix}, \operatorname{com} \alpha_3 \in \mathbb{R}.$$

- 5. Determine os espaços das colunas relativos às matrizes do exercício 14.
 - **a)** $\mathscr{C}(A) = \{(b_1, b_2) : b_2 = -2b_1, \ b_1 \in \mathbb{R}\}$ **b)** $\mathscr{C}(A) = \mathbb{R}^2$ **c)** $\mathscr{C}(A) = \{(0, 0)\}$ **d)** $\mathscr{C}(A) = \{(b_1, b_2, b_3) : b_3 = b_2 + b_1, \ b_1 \in \mathbb{R}, \ b_2 \in \mathbb{R}\}$ **e)** $\mathscr{C}(A) = \{(b_1, b_2, b_3) : b_3 = b_2 + 2b_1, \ b_1 \in \mathbb{R}, \ b_2 \in \mathbb{R}\}$ **f)** $\mathscr{C}(A) = \mathbb{R}^3$ **g)** $\mathscr{C}(A) = \mathbb{R}^2$ **h)** $\mathscr{C}(A) = \{(b_1, b_2) : b_2 = 3b_1, \ b_1 \in \mathbb{R}\}$ **i)** $\mathscr{C}(A) = \{(b_1, b_2, b_3) : b_2 = 3b_1, \ b_3 = 2b_1, \ b_1 \in \mathbb{R}\}$

INDEPENDÊNCIA LINEAR

Exercícios 16.

1. Decida sobre a independência linear dos seguintes conjuntos de vetores.

```
a) {(3,1),(4,-2)}
b) {(3,1),(4,-2),(7,2)}
l.d.
c) {(-1,2,0,2),(5,0,1,1),(8,-6,1,-5)}
l.d.
d) {(-1,2,0,2),(5,0,1,1),(8,-6,1,-5),(0,0,0,1)}
l.d.
e) {(0,-3,1),(2,4,1),(-2,8,5)}
l.i.
```

2. Decida sobre a independência linear dos conjuntos de vetores, $U = \{(1,2,-1,0),(0,2,1,0),(2,-1,3,0),(1,1,1,1)\}$ e $U' = \{(1,2,-1,0),(2,-1,3,0),(1,1,1,1)\}$ U l.i. e U' l.i.

3. Mostre que o conjunto de vetores $\{(1,0,3,1),(-1,1,0,1),(2,3,0,0),(1,1,6,3)\}$ é linearmente dependente. Pode cada um dos vetores ser expresso como uma combinação linear dos restantes?

Não, pois (2, 3, 0, 0) não é C.L. dos restantes vetores.

4. Discuta, em função de $\alpha, \beta, \gamma \in \mathbb{R}$, a independência linear dos seguintes conjuntos de vetores.

```
a) \{(1,-2),(\alpha,-1)\}

l.i. \iff \alpha \neq \frac{1}{2}.

b) \{(\alpha,1,1),(1,\alpha,1),(1,1,\alpha)\}

l.i. \iff \alpha \neq -2,1.

c) \{0,\gamma,-\beta\},(-\gamma,0,\alpha),(\beta,-\alpha,0)\}.

l.d. \forall \alpha,\beta,\gamma \in \mathbb{R}.
```

5. Sejam $\{v_1, v_2, v_3\}$ um conjunto linearmente independente de vetores de \mathbb{R}^n e $u_1 = v_1 + v_2$, $u_2 = v_1 + v_3$ e $u_3 = v_2 + v_3$. Justifique que $\{u_1, u_2, u_3\}$ é também linearmente independente.

BASE E DIMENSÃO

Sim.

Exercícios 17.

1. Indique quais dos seguintes conjuntos são bases de \mathbb{R}^2 :

```
a) V = \{(1,-1),(3,0)\}
Sim.
b) U = \{(1,1),(0,2),(2,3)\}
Não.
c) W = \{(1,1),(8,8)\}.
```

2. Indique quais dos seguintes conjuntos são bases de \mathbb{R}^3 .

3. Considere em \mathbb{R}^3 os vetores $v_1 = (\alpha, 6, -1)$, $v_2 = (1, \alpha, -1)$ e $v_3 = (2, \alpha, -3)$, com $\alpha \in \mathbb{R}$.

a) Determine α de modo que $\{v_1, v_2, v_3\}$ seja uma base de \mathbb{R}^3 . $\alpha \neq -\frac{3}{3}$ e $\alpha \neq 2$.

b) Para um dos valores de α determinados em a), determine as componentes do vetor (-1,1,2) em relação à base correspondente. Assumindo $\alpha = 0$ vem $(-1,1,2) = \frac{1}{6}v_1 + \frac{4}{3}v_2 - \frac{7}{6}v_3$.

Exercício 18. Determine uma base e a dimensão do espaço nulo de cada uma das seguintes matrizes.

a)
$$\begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 3 & 4 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 3 & 6 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 2 & 1 & -1 & 3 \\ 2 & 4 & 3 & 0 & 2 \\ 3 & 6 & 4 & -1 & 5 \end{bmatrix}$ e) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.

a) Possível base para o espaço nulo: $\{(1, -3, 1, 0), (2, -4, 0, 1)\}$.

b) Possível base para o espaço nulo: $\{(-2, 1, 0)\}$.

- **c)** Possível base para o espaço nulo: $\{(1,0,0),(0,-2,-1)\}$.
- **d)** Possível base para o espaço nulo: $\{(-2,1,0,0,0),(3,0,-2,1,0),(-7,0,4,0,1)\}$.
- **e)** Possível base para o espaço nulo (\mathbb{R}^2): {(1,0),(0,1)} (base canónica).

Exercício 19. Considere o subconjunto de \mathbb{R}^4 ,

$$V = \{(x_1, x_2, x_3, x_4) : x_1 = x_2 - 3x_3, x_3 = 2x_4\}.$$

- a) Mostre que V é subespaço vetorial.
- b) Indique uma base de V.

Uma possível base é $\{(1, 1, 0, 0), (-6, 0, 2, 1)\}$.

Exercícios 20. Indique uma base para cada um dos seguintes conjuntos.

- 1. O plano de \mathbb{R}^3 definido por $2x_1 + 4x_2 2x_3 = 0$. Uma possível base é $\{(-2, 1, 0), (1, 0, 1)\}$.
- 2. O hiperplano de \mathbb{R}^5 definido por $3x_1 6x_2 + 3x_3 2x_4 + 9x_5 = 0$. Uma possível base é $\{(2, 1, 0, 0, 0), (-1, 0, 1, 0, 0), (\frac{2}{3}, 0, 0, 1, 0), (-3, 0, 0, 0, 1)\}$.

Exercício 21. Determine uma base para o espaço das colunas de cada uma das matrizes do exercício 18.

a) Possível base para o espaço das colunas: {(1,0),(0,1)}.
b) Possível base para o espaço das colunas: {(1,1),(3,5)}
c) Possível base para o espaço das colunas: {(1,2,3)}.
d) Possível base para o espaço das colunas: {(1,2,3),(1,3,4)}
e) Possível base para o espaço das colunas ({(0,0,0)}): {} (por convenção).

Exercício 22.

- 1. Calcule dim S, com $S = \langle \{(1,0,1), (1,-1,0), (3,-1,2)\} \rangle$ e $S = \{(x,y,z,t) \in \mathbb{R}^4 : x 2y + z t = 0\}$.
- 2. Para que valores de α a dimensão do subspaço $S = \langle \{(1, \alpha, -1), (-1, 1, 1), (\alpha, 0, -1)\} \rangle \neq 3$? $\alpha \neq -1, 1$.

Exercício 23. Determine uma base e a dimensão dos subespaços de \mathbb{R}^4 gerados pelos seguintes conjuntos de vetores.

a) $\{(1,0,2,3),(7,4,-2,1),(5,2,4,1),(3,2,0,1)\}$ Uma possível base é $\{(1,0,2,3),(7,4,-2,1),(5,2,4,1),(3,2,0,1)\}$ e a dimensão é 4. b) $\{(1,3,2,-1),(2,0,-1,0),(1,1,1,1),(1,2,0,0),(5,6,2,0)\}$ Uma possível base é $\{(1,3,2,-1),(2,0,-1,0),(1,1,1,1),(1,2,0,0)\}$ e a dimensão 4.

Exercício 24. Seja V o espaço vetorial gerado pelo conjunto de vetores de \mathbb{R}^3

$$\{(1,0,5),(1,1,1),(0,3,1),(-3,0,-2)\}.$$

- a) Mostre que $V = \mathbb{R}^3$.
- b) Determine uma base de \mathbb{R}^3 contida no conjunto de vetores dado. Uma possível base é $\{(1,0,5),(1,1,1),(0,3,1)\}$.
- c) Escreva o vetor (-2,3,4) como combinação linear dos vetores da base obtida em b).

$$(-2,3,4) = (1,0,5) - 3(1,1,1) + 2(0,3,1).$$

Exercício 25. Seja
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = [u_1 | u_2 | u_3].$$

1. Para que valores de $\alpha \in \mathbb{R}$ o vetor $(\alpha, \alpha^2, 2)$ é combinação de linear de u_1 , u_2 e u_3 ?

$$\alpha = -2 e \alpha = 1$$
.

2. Indique uma base para \mathbb{R}^3 que inclua os vetores u_1 e u_3 . Uma possível base para \mathbb{R}^3 é $\{(1,0,1),(0,1,1),(0,0,2)\}$.

Exercícios 26.

1. Seja A uma matriz do tipo $m \times n$. Para cada um dos casos considerados na tabela seguinte, determine as dimensões de $\mathcal{C}(A)$, $\mathcal{N}(A)$ e $\mathcal{N}(A^T)$.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)
$m \times n$	3×3	3×3	3×3	5×9	9×5	4×4	6×2
car(A)	3	2	1	2	2	0	2
	din	2 (A)	2 2	1 2	2 0	2	

$\dim \mathscr{C}(A)$	3	2	1	2	2	0	2
$\dim \mathcal{N}(A)$	0	1	2	7	3	4	0
$\dim \mathcal{N}(A^T)$	0	1	2	3	7	4	4

2. Seja A uma matriz quadrada de ordem 3, cujo espaço das colunas define um plano de \mathbb{R}^3 que passa na origem. Pode o espaço nulo de A determinar um plano que passa na origem? Justifique.

Não. Tem que ser uma reta que passa na origem (Porquê?).

Exercícios 27.

- 1. Construa uma base de \mathbb{R}^3 que inclua o vetor (1,1,1). Uma possível base é $\{(1,0,0),(0,1,0),(1,1,1)\}$.
- 2. Considere a matriz $A = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 3 \\ 2 & 1 & 1 & 6 \end{bmatrix}$. Verifique que v = (0, 3, 3, -1)

pertence a $\mathcal{N}(A)$ e indique uma base de $\mathcal{N}(A)$ que inclua v.

Uma possível base é $\{(-1,1,1,0),(0,3,3,-1)\}$.

- 3. Considere a matriz $\begin{bmatrix} 1 & 0 & 2 & 1 \\ 2 & -1 & 5 & 0 \\ 1 & -1 & 3 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}.$
 - a) Resolva o sistema homogéneo $Ax = \vec{0}$ e indique a dimensão de $\mathcal{N}(A)$. $\mathcal{N}(A) = \{(x_1, x_2, x_3, x_4) : x_1 = -2x_3 x_4, x_2 = x_3 2x_4, x_3 \in \mathbb{R}, x_4 \in \mathbb{R}\}$, cuja dimensão é 2 (número de variáveis livres).
 - b) Mostre que $\{(1,2,0,-1) \in (-1,3,1,-1)\}$ é uma base de $\mathcal{N}(A)$.
 - c) Verifique que $v = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ é solução do sistema $Ax = \begin{bmatrix} 4 \\ 6 \\ 2 \\ 2 \end{bmatrix}$, e mostre

que se u é um vetor do espaço nulo de A, entao v+u é também solução do sistema.

- 4. Sejam $A = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ e $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 x_3 + x_4 = 0, x_2 = x_3\}$
 - (a) Descreva $\mathcal{N}(A)$ analitica e geometricamente. $\mathcal{N}(A) = \{(x_1, x_2, x_3) : x_1 = x_3, \ x_2 = -\frac{1}{2}x_3, \ x_3 \in \mathbb{R}\}. \ \mathcal{N}(A) \text{ define a reta de } \mathbb{R}^3 \text{ que passa na origem e contém a direção } (1, -\frac{1}{2}, 1).$
 - (b) Indique uma base e a dimensão de V. $\dim(V) = 2$ e uma possível base para V é $\{(0,1,1,0),(-1,0,0,1)\}$.
 - (c) Mostre que $\mathscr{C}(A) = V$. Uma possível forma é verificar que $\mathscr{C}(A) \subset V$ e que dim $\mathscr{C}(A) = \dim V \dots$

5. Considere
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ e $S = \{x \in \mathbb{R}^3 : Ax = Bx\}$.

- a) Mostre que S é um espaço vetorial de \mathbb{R}^3 .
- b) Indique uma base de S. Uma possível base é $\{(-\frac{1}{2},1,0),(-\frac{1}{2},0,1)\}$.
- c) Determine um vetor não nulo do espaço nulo de *A* que pertença a *S*.

Por exemplo (0, 1, -1).

d) Mostre que se *y* é um vetor que pertence simultaneamente a *S* e ao espaço nulo de *A*, então *y* também pertence ao espaço nulo de *B*.

EXERCÍCIOS VARIADOS

Exercícios 28.

1. Considere
$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} v_1 | v_2 | v_3 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} e \ y = \begin{bmatrix} 1 \\ -3 \\ 0 \\ -4 \end{bmatrix}.$$

- (a) Descreva, analitica e geometricamente, $\mathscr{C}(A)$. $\mathscr{C}(A) = \{(b_1, b_2, b_3, b_4) : b_2 = 2b_3 3b_1, b_1 \in \mathbb{R}, b_3 \in \mathbb{R}, b_4 \in \mathbb{R}\}$. Trata-se de um hiperplano de \mathbb{R}^4 que passa na origem.
- (b) Indique uma base e a dimensão de $\mathscr{C}(A)$. Uma possível base é $\{v_1, v_2, v_3\}$ e a dimensão de $\mathscr{C}(A)$ é 3.
- (c) Mostre que o vetor y pertence a $\mathscr{C}(A)$ e escreva-o como combinação linear dos vetores da base de $\mathscr{C}(A)$ indicada em b). $y = 0v_1 2v_2 + v_3$.
- (d) Indique um vetor de \mathbb{R}^4 que não pertença a $\mathscr{C}(A)$. Por exemplo (1,0,0,0) (Justifique!)
- (e) Indique dim $\mathcal{N}(A)$. dim $(\mathcal{N}(A)) = 0$.
- (f) Será $\{y, v_3\}$ uma base de $\mathcal{C}(A)$? Justifique. Não! Todas as bases para $\mathcal{C}(A)$ possuem 3 vetores.
- (g) Classifique o sistema $Ax = \vec{0}$. Determinado.

- 2. Considere a matriz $A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \\ 2 & 2 & -2 \end{bmatrix}$.
 - (a) Determine $\mathcal{N}(A)$ e interprete-o geometricamente. $\mathcal{N}(A) = \{(x_1, x_2, x_3) : x_1 = -x_2 + x_3, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}\}$ Define o plano de \mathbb{R}^3 que passa na origem e contém as direções (-1, 1, 0) e (1, 0, 1).
 - (b) Indique uma base para $\mathscr{C}(A)$. Uma possível base é $\{(1,-1,2)\}$.
 - (c) Indique car(A). $car(A) = dim \mathcal{C}(A) = 1$.
 - (d) Mostre que $\mathcal{N}(A) = \langle (-1, 1, 0), (1, 0, 1) \rangle$.
- 3. Considere $V = \langle (1, 1, 0), (-1, 1, 1), (1, 3, 1) \rangle$.
 - (a) Indique dim V. dim(V) = 2.
 - (b) Mostre que $(2, 4, 1) \in V$.
 - (c) Indique uma matriz A tal que $\mathscr{C}(A) = V$. Por exemplo, $A = [v_1 \ v_2]$ onde $v_1 = (1, 1, 0)$ e $v_2 = (-1, 1, 1)$ (indique outra possível matriz).
- 4. Considere os vetores u = (1, 2, 1) e v = (0, 3, 1).
 - (a) Indique vetores w e z distintos de u e v tais que $\langle u, v \rangle = \langle w, z \rangle$. Por exemplo, z = u - v e w = u + v.
 - (b) Escreva uma matriz A quadrada de ordem 3 tal que $\mathscr{C}(A) = \langle u, v \rangle$.
 - (c) Determine $\mathcal{N}(A)$. $\mathcal{N}(A) = \langle (-1, -1, 1) \rangle$ para a matriz indicada em b).
- 5. Sejam $v_1 = (1, -1, 1), v_2 = (1, 0, -1), v_3 = (2, -1, 0)$ e $v_4 = (1, 1, 0)$.
 - (a) Será $\{v_1, v_2, v_3, v_4\}$ linearmente independente? Não (4 vetores de \mathbb{R}^3 são sempre l.d.)
 - (b) Será que $\langle v_1, v_2, v_3, v_4 \rangle = \mathbb{R}^3$? Sim.
 - (c) Indique uma base para \mathbb{R}^3 constituída por vetores de $\{v_1, v_2, v_3, v_4\}$. $\{v_1, v_2, v_4\}$.

6. Sejam
$$A = \begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix}$$
 e $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

- a) Determine uma base de $\mathcal{N}(\mathcal{A})$. $\{(3,1)\}.$
- b) Determine uma solução do sistema Ax = b. (1,0).
- c) Seja x_0 a solução obtida em b). Verifique que para todo o vetor $u \in \mathcal{N}(\mathcal{A})$, $x_0 + u$ é solução de Ax = b e prove que não existem mais soluções para o sistema Ax = b.
- d) Interprete geometricamente o resultado obtido na alínea anterior.