Capítulo 3

Ortogonalidade e Projeção Ortogonal

NORMA E DISTÂNCIA

Exercícios 29.

- 1. Calcule as normas e indique os versores dos seguintes vectores.
 - (a) (1,-1,2)
 - (b) $(-1,0,\pi,0)$
 - (c) (5,0,1,0,1,3)
- 2. Calcule as distâncias entre os seguintes pares de vectores.
 - (a) (1,-1,2) e (0,-1,0).
 - (b) (-1,0,2,0) e (1,0,0,1).
 - (c) (5,0,1,0,1,3) e (-1,2,0,1,1,0).

Exercício 30. Determine os vetores de norma
$$\sqrt{21}$$
 que são solução do sistema linear $Ax = b$ com $A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ e $b = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.

ORTOGONALIDADE E COMPLEMENTO ORTOGONAL

Exercício 31. Considere $v_1 = (1, 0, 1)$ e $v_2 = (1, 1, -1)$.

- 1. Determine o conjunto dos vectores de \mathbb{R}^3 simultaneamente ortogonais a v_1 e v_2 .
- 2. Indique um vetor unitário de \mathbb{R}^3 simultaneamente ortogonal a v_1 e v_2 .

Exercícios 32.

1. Justifique que (2,1,1,-1) é ortogonal ao espaço gerado pelos vetores,

$$(1,0,0,2), (-1,0,2,0), (-1,2,0,0), (1,1,1,4).$$

2. Verifique que (4,2,-1) é ortogonal ao espaço das colunas da matriz

$$A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ -1 & 1 & 2 \\ 2 & 2 & 0 \end{array} \right].$$

Exercícios 33.

1. Determine os complementos ortogonais do espaço das colunas de cada uma das seguintes matrizes (no caso das alíneas a), b) e c) interprete ainda geometricamente o resultado obtido).

(a)
$$\begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 1 \\ -1 & -2 \\ 1 & -1 \\ -1 & 1 \end{bmatrix}$.

- 2. Determine os complementos ortogonais dos subespaços gerados pelos conjuntos de vetores $\{(1,2,2,1),(1,0,2,0)\}$ e $\{(1,1,2,-1)\}$.
- 3. Calcule a dimensão e indique uma base do complemento ortogonal de cada um dos seguintes subespaços gerados.
 - (a) $\langle (1,1) \rangle$.
 - (b) $\langle (1,1,3), (1,1,2), (0,0,1) \rangle$.
 - (c) $\langle (1,1,0,0), (0,2,4,5) \rangle$.
 - (d) $\langle (2,2,1,0), (2,4,0,1), (4,-2,1,-1), (8,4,2,0) \rangle$.
- 4. Para cada subespaço da alínea anterior indique uma base de \mathbb{R}^n , com n conveniente, que seja constituída por vetores desse subespaço e do seu complemento ortogonal.

PROJEÇÃO ORTOGONAL

Exercício 34. Considere a matriz
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 e o vetor $b = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Justifique por definição que $\operatorname{proj}_{\mathscr{C}(A)}(b) = \frac{1}{3} \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix}$.

Exercícios 35.

- 1. Determine $\operatorname{proj}_{\mathbb{R}^3}(a,b,c)$ e $\operatorname{proj}_{\{\vec{0}\}}(a,b,c)$ para todo o $a,b,c \in \mathbb{R}$.
- 2. Considere o vetor b = (1, 1, 2) e o subespaço vetorial $V = \langle (1, 0, 1), (0, 1, 1) \rangle$. Justifique que $b \in V$ e indique as projeções ortogonais de b sobre V e V^{\perp} .

Exercícios 36.

- 1. Determine a projeção ortogonal do vetor (2, 3) sobre o vetor (3, 1).
- 2. Determine as projeção ortogonais do vetor (6,5,4) sobre a reta <(1,-1,3)> e sobre o seu complemento ortogonal.

Exercício 37. Considere o vetor b = (4, -1, 1) e os subespaços vetoriais de \mathbb{R}^3 ,

$$U = \{(x, y, z) : x + y + z = 0\}$$
 e $V = <(1, 0, 1), (0, 1, 1) > .$

- 1. Determine as projecões ortogonais de b sobre U^{\perp} , U, V^{\perp} e V.
- 2. Calcule as distâncias de *b* a *U* e a *V*.
- 3. Identifique o vetor de *V* a menor distância do vetor *b*.

Exercícios 38.

- 1. Determine a projeção ortogonal do vetor (0,2,5,-1) sobre o subespaço vetorial de \mathbb{R}^4 gerado pelos vetores (1,1,0,2) e (-1,0,0,1).
- 2. Considere o subespaço vetorial de \mathbb{R}^4 ,

$$U = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 - x_3 + x_4 = 0, x_2 - x_3 = 0\}$$

e o vetor v = (2, 1, 0, 1). Determine as projeções ortogonais de v sobre U e sobre complemento ortogonal de U.

Exercício 39. Sejam $v_1 = (1, 0, 1, 0), v_2 = (1, 1, 1, 1), v_3 = (1, -1, 1, -1), A = [v_1 \ v_2 \ v_3]$ e b = (1, 2, 3, 4).

- 1. Calcule a projeção ortogonal de b sobre $\mathscr{C}(A)$ usando o método das equações normais.
- 2. Indique uma solução dos mínimos quadrados do sistema Ax = b. Será que essa solução corresponde a uma solução de Ax = b no sentido usual?

MATRIZ DE PROJEÇÃO

Exercícios 40.

- 1. Considere o vetor w = (1, -2, 2, 2) e o subespaço $V = \langle \{(1, 2, 0, 0), (1, 0, 1, 1)\} \rangle$.
 - (a) Determine a matriz de projeção P sobre o subespaço V.
 - (b) Utilizando a alínea anterior calcule a projeção de w sobre V.
- 2. Determine as matrizes de projeção ortogonal sobre o plano V de equação x+2y+3z=0 e sobre V^{\perp} .
- 3. Sejam A uma matriz do tipo $m \times n$, com característica n e $P = A(A^{T}A)^{-1}A^{T}$ a matriz de projeção sobre $\mathscr{C}(A)$. Prove os seguintes resultados.
 - (a) $P^{\top} = P$ (P é simétrica).
 - (b) $P^2 = P$ (P é idempotente).
- 4. Justifique que $P = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ é a matriz de projeção sobre o su-

bespaço vetorial $W = \{(x, y, z, t) : x = y, z = t\}.$

BASE ORTOGONAL E MÉTODO DE GRAM-SCHIMDT

Exercícios 41.

- 1. Considere $u = (1, -1, 0, 1), v = (0, 1, 0, 1), V = \langle u, v \rangle$ e b = (2, -1, 0, 1).
 - (a) Justifique que $\{u, v\}$ é uma base ortogonal do subespaço V.
 - (b) Utilizando a alínea anterior determine a projeção ortogonal de b sobre V.
- 2. Considere os vetores de \mathbb{R}^3 , a = (1, -1, 1), b = (-1, 1, 2) e c = (1, 1, 0).
 - (a) Mostre que $\{a, b, c\}$ é uma base ortogonal de \mathbb{R}^3 .
 - (b) Utilizando projeções ortogonais escreva (0, 2, 4) como combinação linear de a, b e c.

Exercícios 42.

- 1. (a) Utilizando o processo de ortogonalização de Gram-Schmidt, determine uma base ortogonal de \mathbb{R}^3 que inclua o vetor (1,0,1).
 - (b) Transforme a base obtida na alínea anterior numa base ortonormada de \mathbb{R}^3 .

CAPÍTULO 3. ORTOGONALIDADE E PROJEÇÃO ORTOGONAL

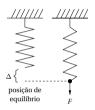
- 2. Seja $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 x_3 + x_4 = 0\}.$
 - (a) Utilizando o processo de ortogonalização de Gram-Schmidt determine uma base ortogonal de V.
 - (b) Utilizando a alínea anterior calcule a projeção ortogonal de (2,1,0,1) sobre V.
- 3. Considere $W = \langle (1, 1, 1, -1), (0, 1, 2, -1) \rangle$ e b = (4, -1, 0, 3).
 - (a) Determine uma base e a dimensão de W^{\perp} .
 - (b) Calcule $\operatorname{proj}_{W^{\perp}}(b)$.
 - (c) Calcule as distâncias de b a W e W^{\perp} .
 - (d) Indique uma base ortogonal de \mathbb{R}^4 que contenha uma base de W.
- 4. Determine uma base ortogonal de \mathbb{R}^4 que inclua uma base de cada um dos seguintes subespaços vetoriais
 - (a) $\langle (1,0,1,0), (1,1,1,1), (1,-1,1,-1) \rangle$
 - (b) $\{(x, y, z, w): x y z + w = 0, x + z = 0\}$

EXERCÍCIOS VARIADOS

Exercícios 43.

- 1. Considere $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -2 & 6 & 2 \end{bmatrix}$ e $b = \begin{bmatrix} 2 \\ 6 \\ 1 \end{bmatrix}$.
 - (a) Indique uma base e a dimensão de $\mathscr{C}(A)$.
 - (b) Descreva, analitica e geometricamente, $\mathscr{C}(A)$.
 - (c) Qual a dimensão de $\mathcal{N}(A)$?
 - (d) Calcule a projeção de b sobre $\mathscr{C}(A)$.
- 2. Considere $V = \{(x, y, z) \in \mathbb{R}^3 : x = y\}$
 - (a) Indique uma base e a dimensão de V.
 - (b) Determine o conjunto de todos os vetores ortogonais a *V* .
 - (c) Calcule a matriz de projeção sobre V.
- 3. Considere uma matriz $A_{3\times 4}$ tal que $\{(2,3,1,0)\}$ é uma base para $\mathcal{N}(A)$.
 - (a) Qual a característica de A?
 - (b) Indique as soluções de Ax = 0.
 - (c) Escreva a matriz de projeção sobre $\mathcal{N}(A)$.

- (d) Calcule a distância de b = (0, 2, 1, 0) a $\mathcal{N}(A)$.
- 4. Determine uma base ortogonal para cada um dos subespaços vetoriais
 - (a) $\langle (1,1,1), (1,0,-1), (0,3,1) \rangle$
 - (b) $\langle (1,0,1,0), (1,1,1,1), (1,-1,1,-1) \rangle$
 - (c) $\{(x, y, z): x + y = 0, y + z = 0\}$
 - (d) $\{(x, y, z, w): x y z + w = 0, x + z = 0\}$
- 5. Segundo a *lei de Hooke*, o deslocamento x de uma mola relativamente à sua posição de equilíbrio, é proporcional à força aplicada na mola, isto é, verifica uma relação do tipo F = k x em que k é uma constante positiva designada por *constante elástica da mola* (esta lei é uma aproximação apenas válida para pequenas deformações da mola).



Foram efectuados diversos deslocamentos numa mola e registadas as forças que foram necessárias para produzir esses deslocamentos, assinaladas no seguinte quadro.

$$x_i$$
 (m) 0.1 0.15 0.2 0.25 0.3 0.35
 F_i (N) 2.1 3.9 5.7 8.2 10.5 11.7

Pretende-se estimar o valor da constante elástica da mola k que minimiza o erro E no sentido dos mínimos quadrados, isto é, que minimiza

$$E^2 = (F_1 - kx_1)^2 + \dots + (F_6 - kx_6)^2.$$

Interprete geometricamente o resultado obtido.