Capítulo 3

Ortogonalidade e Projeção Ortogonal

NORMA E DISTÂNCIA

Exercícios 29.

- 1. Calcule as normas e indique os versores dos seguintes vectores.
 - (a) (1,-1,2)
 - (b) $(-1,0,\pi,0)$
 - (c) (5,0,1,0,1,3)

a)
$$\sqrt{6}$$
 e $\left(\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$ **b)** $\sqrt{1+\pi^2}$ e $\left(\frac{-1}{\sqrt{1+\pi^2}}, 0, \frac{\pi}{\sqrt{1+\pi^2}}, 0\right)$ **c)** 6 e $\left(\frac{5}{6}, 0, \frac{1}{6}, 0, \frac{1}{6}, \frac{1}{2}\right)$

- 2. Calcule as distâncias entre os seguintes pares de vectores.
 - (a) (1,-1,2) e (0,-1,0).
 - (b) (-1,0,2,0) e (1,0,0,1).
 - (c) (5,0,1,0,1,3) e (-1,2,0,1,1,0).

a)
$$\sqrt{5}$$
 b) 3 **c)** $\sqrt{51}$

Exercício 30. Determine os vetores de norma $\sqrt{21}$ que são solução do sistema

linear
$$Ax = b \text{ com } A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix} \text{ e } b = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$$

$$(0,1,2,4) \text{ e} \left(-\frac{10}{3}, -\frac{7}{3}, 2, \frac{2}{3}\right)$$

ORTOGONALIDADE E COMPLEMENTO ORTOGONAL

Exercício 31. Considere $v_1 = (1, 0, 1)$ e $v_2 = (1, 1, -1)$.

- 1. Determine o conjunto dos vectores de \mathbb{R}^3 simultaneamente ortogonais a v_1 e v_2 .
- 2. Indique um vetor unitário de \mathbb{R}^3 simultaneamente ortogonal a v_1 e v_2 .

a)
$$\{(-x_3, 2x_3, x_3) : x_3 \in \mathbb{R}\} = \langle (-1, 2, 1) \rangle$$

b) $\operatorname{vers}(-1, 2, 1) = \left(\frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$, ou, em alternativa, $-\operatorname{vers}(-1, 2, 1) = \left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)$.

Exercícios 32.

1. Justifique que (2, 1, 1, -1) é ortogonal ao espaço gerado pelos vetores,

$$(1,0,0,2), (-1,0,2,0), (-1,2,0,0), (1,1,1,4).$$

2. Verifique que (4,2,-1) é ortogonal ao espaço das colunas da matriz

$$A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ -1 & 1 & 2 \\ 2 & 2 & 0 \end{array} \right].$$

Exercícios 33.

1. Determine os complementos ortogonais do espaço das colunas de cada uma das seguintes matrizes (no caso das alíneas a), b) e c) interprete ainda geometricamente o resultado obtido).

(a)
$$\begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(a) $\{(x_1, x_2): x_1 = 2 \ x_2, \ x_2 \in \mathbb{R}\} = \langle (2, 1) \rangle$ que define a reta de \mathbb{R}^2 que passa na origem com vetor diretor (2, 1) e é perpendicular à reta que passa na origem com vetor diretor (1, -2), definida pelo espaço de colunas da matriz.

(b) $\{(x_1, x_2, x_3): x_1 = -2x_3, x_2 = -\frac{3}{2}x_3, x_3 \in \mathbb{R}\} = \langle (-4, -3, 2) \rangle$ que define a reta de \mathbb{R}^3 que passa na origem com vetor diretor (-4, -3, 2) e é perpendicular ao plano que passa na origem com vetores diretores (1, 0, 2) e (-1, 2, 1), definido pelo espaço de colunas da matriz.

(c) $(\mathbb{R}^3)^{\perp} = \{\vec{0}\}\$ (o complemento ortogonal do subespaço maximal de \mathbb{R}^3 é o subespaço minimal de \mathbb{R}^3).

```
(d) \{(x_1, x_2, x_3, x_4) : x_1 = -2 \ x_2 - 3 \ x_3 - 4 \ x_4, \ x_2 \in \mathbb{R}, \ x_3 \in \mathbb{R}, \ x_4 \in \mathbb{R}\} = \langle (-2, 1, 0, 0), (-3, 0, 1, 0), (-4, 0, 0, 1) \rangle que define o hiperplano de \mathbb{R}^4.

(e) \{(x_1, x_2, x_3, x_4) : x_1 = -3 \ x_3 + 3 \ x_4, \ x_2 = -2 \ x_3 + 2 \ x_4, \ x_3 \in \mathbb{R}, \ x_4 \in \mathbb{R}\} = \langle (-3, -2, 1, 0), (3, 2, 0, 1) \rangle.
```

2. Determine os complementos ortogonais dos subespaços gerados pelos conjuntos de vetores $\{(1,2,2,1),(1,0,2,0)\}$ e $\{(1,1,2,-1)\}$.

```
 \langle (1,2,2,1), (1,0,2,0) \rangle^{\perp} = \langle (-2,0,1,0), (0,-1,0,2) \rangle  \langle (1,1,2,-1) \rangle^{\perp} = \langle (-1,1,0,0), (-2,0,1,0), (1,0,0,1) \rangle.
```

- 3. Calcule a dimensão e indique uma base do complemento ortogonal de cada um dos seguintes subespaços gerados.
 - (a) $\langle (1,1) \rangle$.
 - (b) $\langle (1,1,3), (1,1,2), (0,0,1) \rangle$.
 - (c) $\langle (1,1,0,0), (0,2,4,5) \rangle$.
 - (d) $\langle (2,2,1,0), (2,4,0,1), (4,-2,1,-1), (8,4,2,0) \rangle$.
 - (a) A dimensão é 1 e uma possível base é $\{(-1,1)\}$.
 - **(b)** A dimensão é 1 e uma possível base é $\{(-1, 1, 0)\}$.
 - (c) A dimensão é 2 e uma possível base é $\{(2, -2, 1, 0), (5, -5, 0, 2)\}$.
 - (d) A dimensão é 1 e uma possível base é $\{(0,-1,2,4)\}$.
- 4. Para cada subespaço da alínea anterior indique uma base de \mathbb{R}^n , com n conveniente, que seja constituída por vetores desse subespaço e do seu complemento ortogonal.
 - a) Uma possível base de \mathbb{R}^2 é $\{(1,1),(-1,1)\}$,
 - **b)** Uma possível base \mathbb{R}^3 é $\{(1,1,3),(1,1,2),(-1,1,0)\}$,
 - c) Uma possível base de \mathbb{R}^4 é $\{(1,1,0,0),(0,2,4,5),(2,-2,1,0),(5,-5,0,2)\}$,
 - c) Uma possível base de \mathbb{R}^4 é $\{(2,2,1,0),(2,4,0,1),(4,-2,1,-1),(0,-1,2,4)\}.$

Projeção ortogonal

Exercício 34. Considere a matriz $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ e o vetor $b = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Justifique por definição que $\operatorname{proj}_{\mathscr{C}(A)}(b) = \frac{1}{3} \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix}$.

Exercícios 35.

- 1. Determine $\text{proj}_{\mathbb{R}^3}(a, b, c)$ e $\text{proj}_{\{\vec{0}\}}(a, b, c)$ para todo o $a, b, c \in \mathbb{R}$. $\text{proj}_{\mathbb{R}^3}(a, b, c) = (a, b, c)$ e $\text{proj}_{\{\vec{0}\}}(a, b, c) = (0, 0, 0) \ \forall a, b, c \in \mathbb{R}$.
- 2. Considere o vetor b = (1, 1, 2) e o subespaço vetorial $V = \langle (1, 0, 1), (0, 1, 1) \rangle$. Justifique que $b \in V$ e indique as projeções ortogonais de b sobre $V \in V^{\perp}$. $\operatorname{proj}_{V}(b) = b$ e $\operatorname{proj}_{V^{\perp}}(b) = \vec{0}$.

Exercícios 36.

- 1. Determine a projeção ortogonal do vetor (2,3) sobre o vetor (3,1). $\operatorname{proj}_{(3,1)}((2,3)) = \left(\frac{27}{10}, \frac{9}{10}\right).$
- 2. Determine as projeção ortogonais do vetor (6,5,4) sobre a reta <(1,-1,3)> e sobre o seu complemento ortogonal.

$$\operatorname{proj}_{((1,-1,3))}((6,5,4)) = (\frac{13}{11}, -\frac{13}{11}, \frac{39}{11}) \operatorname{e} \operatorname{proj}_{((1,-1,3))^{\perp}}((6,5,4)) = (\frac{53}{11}, \frac{68}{11}, \frac{5}{11}).$$

Exercício 37. Considere o vetor b = (4, -1, 1) e os subespaços vetoriais de \mathbb{R}^3 ,

$$U = \{(x, y, z) : x + y + z = 0\}$$
 e $V = <(1, 0, 1), (0, 1, 1) > .$

1. Determine as projeções ortogonais de b sobre U^{\perp} , U, V^{\perp} e V.

$$\begin{aligned} & \operatorname{proj}_{U^{\perp}}(b) = \left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right), \\ & \operatorname{proj}_{U}(b) = \left(\frac{8}{3}, -\frac{7}{3}, -\frac{1}{3}\right), \\ & \operatorname{proj}_{V^{\perp}}(b) = \left(\frac{2}{3}, \frac{2}{3}, -\frac{2}{3}\right), \\ & \operatorname{proj}_{V}(b) = \left(\frac{10}{3}, -\frac{5}{3}, \frac{5}{3}\right). \end{aligned}$$

2. Calcule as distâncias de b a U e a V.

$$\begin{array}{l} d(b,U) = \| \mathrm{proj}_{U^{\perp}}(b) \| = \left\| \left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3} \right) \right\| = \left| \frac{4}{3} \right| \, \|(1,1,1) \| = \frac{4}{3} \sqrt{3}. \\ d(b,V) = \frac{2}{3} \sqrt{3}. \end{array}$$

3. Identifique o vetor de V a menor distância do vetor b. O vetor de V a menor distância de b é proj $_V(b) = \left(\frac{10}{3}, -\frac{5}{3}, \frac{5}{3}\right)$.

Exercícios 38.

1. Determine a projeção ortogonal do vetor (0,2,5,-1) sobre o subespaço vetorial de \mathbb{R}^4 gerado pelos vetores (1,1,0,2) e (-1,0,0,1).

$$\operatorname{proj}_{\langle (1,1,0,2),(-1,0,0,1)\rangle}((0,2,5,-1)) = (\frac{7}{11},\frac{1}{11},0,-\frac{4}{11}).$$

2. Considere o subespaço vetorial de \mathbb{R}^4 ,

$$U = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 - x_3 + x_4 = 0, x_2 - x_3 = 0\}$$

e o vetor v = (2, 1, 0, 1). Determine as projeções ortogonais de v sobre U e sobre complemento ortogonal de U.

$$\operatorname{proj}_{U}((2,1,0,1)) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}), \operatorname{proj}_{U^{\perp}}((2,1,0,1)) = (\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{3}{2}).$$

Exercício 39. Sejam $v_1 = (1, 0, 1, 0), v_2 = (1, 1, 1, 1), v_3 = (1, -1, 1, -1), A = [v_1 \ v_2 \ v_3]$ e b = (1, 2, 3, 4).

1. Calcule a projeção ortogonal de b sobre $\mathscr{C}(A)$ usando o método das equações normais.

$$(2,3,2,3) = A\bar{x}$$
, com $\bar{x} = (-1,3,0)$.

2. Indique uma solução dos mínimos quadrados do sistema Ax = b. Será que essa solução corresponde a uma solução de Ax = b no sentido usual?

Uma possível solução dos mínimos quadrados, isto é, do sistema $Ax = \operatorname{proj}_{\mathscr{C}(A)}(b)$, é $\bar{x} = (-1,3,0)$, que não corresponde a uma solução de Ax = b no sentido usual pois $A\bar{x} \neq b$. De facto, tem-se $A\bar{x} = \operatorname{proj}_{\mathscr{C}(A)}(b) \neq b$, uma vez que $b \notin \mathscr{C}(A)$ (verifique).

MATRIZ DE PROJEÇÃO

Exercícios 40.

- 1. Considere o vetor w = (1, -2, 2, 2) e o subespaço $V = \langle \{(1, 2, 0, 0), (1, 0, 1, 1)\} \rangle$.
 - (a) Determine a matriz de projeção P sobre o subespaço V.

$$P = \frac{1}{14} \begin{bmatrix} 6 & 4 & 4 & 4 \\ 4 & 12 & -2 & -2 \\ 4 & -2 & 5 & 5 \\ 4 & -2 & 5 & 5 \end{bmatrix}$$

- (b) Utilizando a alínea anterior calcule a projeção de w sobre V. $\text{proj}_V(w) = Pw = (1, -2, 2, 2)$.
- 2. Determine as matrizes de projeção ortogonal sobre o plano V de equação x+2y+3z=0 e sobre V^{\perp} .

A matriz de projeção sobre
$$V^{\perp}$$
 é $Q=\frac{uu^T}{u^Tu}=\frac{1}{14}\begin{bmatrix} 1 & 3 & 3\\ 2 & 4 & 6\\ 3 & 6 & 9 \end{bmatrix}$ onde $u=(1,2,3)$ é o vetor normal a V .

A matriz de projeção sobre
$$V$$
 é $P = I_3 - Q = \frac{1}{14}\begin{bmatrix} 13 & -2 & -3 \\ -2 & 10 & -6 \\ -3 & -6 & 5 \end{bmatrix}$.

- 3. Sejam A uma matriz do tipo $m \times n$, com característica n e $P = A(A^{T}A)^{-1}A^{T}$ a matriz de projeção sobre $\mathscr{C}(A)$. Prove os seguintes resultados.
 - (a) $P^{\top} = P$ (P é simétrica).
 - (b) $P^2 = P$ (P é idempotente).

4. Justifique que
$$P = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 é a matriz de projeção sobre o su-

BASE ORTOGONAL E MÉTODO DE GRAM-SCHIMDT

Exercícios 41.

- 1. Considere $u = (1, -1, 0, 1), v = (0, 1, 0, 1), V = \langle u, v \rangle$ e b = (2, -1, 0, 1).
 - (a) Justifique que $\{u, v\}$ é uma base ortogonal do subespaço V.
 - (b) Utilizando a alínea anterior determine a projeção ortogonal de b sobre V. $\operatorname{proj}_{(u,v)}(b) = \left(\frac{4}{3}, -\frac{4}{3}, 0, \frac{4}{3}\right)$.
- 2. Considere os vetores de \mathbb{R}^3 , a = (1, -1, 1), b = (-1, 1, 2) e c = (1, 1, 0).
 - (a) Mostre que $\{a, b, c\}$ é uma base ortogonal de \mathbb{R}^3 .
 - (b) Utilizando projeções ortogonais escreva (0,2,4) como combinação linear de a,b e c.

$$(0,2,4) = \operatorname{proj}_{\mathbb{R}^3}(0,2,4) = \dots = \frac{2}{3}a + \frac{5}{3}b + c.$$

Exercícios 42.

- 1. (a) Utilizando o processo de ortogonalização de Gram-Schmidt, determine uma base ortogonal de \mathbb{R}^3 que inclua o vetor (1,0,1).

 Uma possível base ortogonal é $\{(1,0,1),(1,0,-1),(0,1,0)\}$.
 - (b) Transforme a base obtida na alínea anterior numa base ortonormada de \mathbb{R}^3 .

Tomando os versores dos vetores da base anterior obtém-se a b.o.n, $\left\{\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right),(0,1,0)\right\}$.

- 2. Seja $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 x_3 + x_4 = 0\}.$
 - (a) Utilizando o processo de ortogonalização de Gram-Schmidt determine uma base ortogonal de V.
 Uma possível base ortogonal é {(-1,1,0,0),(1,1,2,0),(-1,-1,1,3)}.
 - (b) Utilizando a alínea anterior calcule a projeção ortogonal de (2,1,0,1) sobre V.

$$\text{proj}_{V}(b) = (1, 0, 1, 0).$$

- 3. Considere $W = \langle (1, 1, 1, -1), (0, 1, 2, -1) \rangle$ e b = (4, -1, 0, 3).
 - (a) Determine uma base e a dimensão de W^{\perp} . Uma possível base é $\{(1,-2,1,0),(0,1,0,1)\}$ e a dimensão é 2.
 - (b) Calcule $\text{proj}_{W^{\perp}}(b)$. $\text{proj}_{W^{\perp}}(b) = (2, -1, 2, 3)$.
 - (c) Calcule as distâncias de b a W e W^{\perp} . $d(b, W) = \sqrt{18}, d(b, W^{\perp}) = \sqrt{8}.$
 - (d) Indique uma base ortogonal de \mathbb{R}^4 que contenha uma base de W. Uma possível base ortogonal é $\{(1,1,1,-1),(-1,0,1,0),(1,-2,1,0),(1,1,1,3)\}$.
- 4. Determine uma base ortogonal de \mathbb{R}^4 que inclua uma base de cada um dos seguintes subespaços vetoriais
 - (a) $\langle (1,0,1,0), (1,1,1,1), (1,-1,1,-1) \rangle$ Uma possível base ortogonal é $\{(1,0,1,0), (0,1,0,1), (-1,0,1,0), (0,-1,0,1)\}.$
 - (b) $\{(x, y, z, w): x y z + w = 0, x + z = 0\}$ Uma possível base ortogonal é $\{(-1, -2, 1, 0), (-1, 1, 1, 3), (1, 0, 1, 0), (1, -1, -1, 1)\}.$

EXERCÍCIOS VARIADOS

Exercícios 43.

- 1. Considere $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -2 & 6 & 2 \end{bmatrix}$ e $b = \begin{bmatrix} 2 \\ 6 \\ 1 \end{bmatrix}$.
 - (a) Indique uma base e a dimensão de $\mathscr{C}(A)$. Uma possível base é $\{(1,0,-2),(0,1,6),(2,-1,2)\}$ e dimensão é 3.
 - (b) Descreva, analitica e geometricamente, $\mathscr{C}(A)$. \mathbb{R}^3
 - (c) Qual a dimensão de $\mathcal{N}(A)$? dim $\mathcal{N}(A) = 0$.
 - (d) Calcule a projeção de b sobre $\mathscr{C}(A)$. $\operatorname{proj}_{\mathscr{C}(A)}(b) = \operatorname{proj}_{\mathbb{R}^3}(b) = b$.
- 2. Considere $V = \{(x, y, z) \in \mathbb{R}^3 : x = y\}$
 - (a) Indique uma base e a dimensão de V. Uma possível base é $\{(1,1,0),(0,0,1)\}$ e a dimensão é 2.

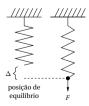
- (b) Determine o conjunto de todos os vetores ortogonais a V. $V^{\perp} = \langle (1,-1,0) \rangle \text{ que representa uma reta de } \mathbb{R}^3 \text{ que passa na origem com a direção do vetor } (1,-1,0).$
- (c) Calcule a matriz de projeção sobre V.

$$P = \frac{1}{2} \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right].$$

- 3. Considere uma matriz $A_{3\times 4}$ tal que $\{(2,3,1,0)\}$ é uma base para $\mathcal{N}(A)$.
 - (a) Qual a característica de A? car(A) = 3.
 - (b) Indique as soluções de Ax = 0. $\mathcal{N}(A) = \langle (2,3,1,0) \rangle$.
 - (c) Escreva a matriz de projeção sobre $\mathcal{N}(A)$.

$$P = \frac{v v^{T}}{v^{T} v} = \frac{1}{14} \begin{bmatrix} 4 & 6 & 2 & 0 \\ 6 & 9 & 3 & 0 \\ 2 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ em que } v = (2, 3, 1, 0).$$

- (d) Calcule a distância de b = (0, 2, 1, 0) a $\mathcal{N}(A)$. $\left\| \left(-1, \frac{1}{2}, \frac{1}{2}, 0 \right) \right\| = \frac{\sqrt{6}}{2}$.
- 4. Determine uma base ortogonal para cada um dos subespaços vetoriais
 - (a) $\langle (1,1,1), (1,0,-1), (0,3,1) \rangle$ Uma possível base ortogonal é $\{(1,1,1), (1,0,-1), (-1,2,-1)\}$.
 - (b) $\langle (1,0,1,0),(1,1,1,1),(1,-1,1,-1) \rangle$ Uma possível base ortogonal é $\{(1,0,1,0),(0,1,0,1)\}.$
 - (c) $\{(x, y, z): x + y = 0, y + z = 0\}$ Uma possível base ortogonal é $\{(1, -1, 1)\}$.
 - (d) $\{(x, y, z, w): x y z + w = 0, x + z = 0\}$ Uma possível base ortogonal é $\{(-1, -2, 1, 0), (-1, 1, 1, 3)\}$.
- 5. Segundo a *lei de Hooke*, o deslocamento x de uma mola relativamente à sua posição de equilíbrio, é proporcional à força aplicada na mola, isto é, verifica uma relação do tipo F = k x em que k é uma constante positiva designada por *constante elástica da mola* (esta lei é uma aproximação apenas válida para pequenas deformações da mola).



Foram efectuados diversos deslocamentos numa mola e registadas as forças que foram necessárias para produzir esses deslocamentos, assinaladas no seguinte quadro.

$$x_i$$
 (m)
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 F_i (N)
 2.1
 3.9
 5.7
 8.2
 10.5
 11.7

Pretende-se estimar o valor da constante elástica da mola k que minimiza o erro E no sentido dos mínimos quadrados, isto é, que minimiza

$$E^2 = (F_1 - kx_1)^2 + \dots + (F_6 - kx_6)^2$$
.

Interprete geometricamente o resultado obtido.

A constante k é a solução no **sentido dos mínimos quadrados** do sistema sobredeterminado a 6 equações e uma variável k, x k = F, isto é, a solução no **sentido usual** do sistema x $k = \text{proj}_x(F)$. Uma vez que $\text{proj}_x(F) = \frac{F^T x}{x^T x} x$ com

$$x = (0.1, 0.15, 0.2, 0.25, 0.3, 0.35),$$
 e $F = (2.1, 3.9, 5.7, 8.2, 10.5, 11.7),$

obtém-se o valor aproximado da constante elástica, $k = \frac{F^T x}{x^T x} = 32.31655$.