INSTITUTO SUPERIOR DE AGRONOMIA

1º teste de Álgebra Linear

27 de outubro de 2025 - Duração: 2h

Guarde todos os equipamentos eletrónicos, incluindo telemóveis, calculadoras e *smartwatches* na mala/mochila fechada ou coloque-os na secretária do docente. Não é permitido escrever no enunciado para além do preenchimento do nome e do número de aluno e da resposta à questão 3., que deve ser assinalada na tabela. O incumprimento das regras anteriores leva à anulação da prova.

Apresente os cálculos que efetuar e justifique todas as respostas (com excepção da questão 3.)

Número: Nome:

Cotação (não preencher)

1a)	1b)	1c)i	1c)ii	1d)i	1d)ii	2	3	4a)	4b)	5	Total
3	1	2	1.25	1.75	2.25	1	2.25	2.5	1	2	20

Os dados relativos às questões 1. e 4. encontram-se abaixo. No início da resolução destas duas questões, comece por copiar os dados que dizem respeito à questão para o caderno de teste.

1.
$$A = \begin{bmatrix} 1 & 0 & 1 \\ -\alpha & \alpha & 0 \\ 0 & 1 & \alpha \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \in b = (1, 0, \beta), \text{ com } \alpha, \beta \in \mathbb{R}.$$

4.
$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 + x_4, \quad x_1 + x_2 + x_3 + x_4 = 0\}$$

[11.25v] 1. (a) Discuta o sistema
$$Ax = b$$
 para todos os valores de $\alpha, \beta \in \mathbb{R}$.

Se
$$\alpha \neq 0, 1$$
, o sistema é PD para todo o β .

Se
$$\alpha = 0$$
, o sistema é PI para todo o β .

Se
$$\alpha = 1$$
, o sistema é PI para $\beta = 1$ e IMP para $\beta \neq 1$.

(b) Indique os valores de
$$\alpha$$
 para os quais $(2, 2, -2) \in \mathcal{N}(A)$.
 $u = (2, 2, -2) \in \mathcal{N}(A) \Leftrightarrow Au = \vec{0} \Leftrightarrow \alpha = 1$.

(c) Considere
$$\alpha = 2$$
.

i. Calcule a inversa de
$$A$$
.

i. Calcule a inversa de
$$A$$
.
$$A^{-1} = \begin{bmatrix} 2 & \frac{1}{2} & -1 \\ 2 & 1 & -1 \\ -1 & -\frac{1}{2} & 1 \end{bmatrix}.$$

ii. Escreva
$$(1,2,5)$$
 como combinação linear de v_1, v_2 e v_3 .

$$\begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = -2v_1 - v_2 + 3v_3.$$

(d) Considere
$$\alpha = 1$$
.

i. Determine
$$C(A)$$
 e interprete-o geometricamente.

$$C(A) = \{(b_1, b_2, b_3) \in \mathbb{R}^3 : b_3 - b_2 - b_1 = 0\} = \langle (1, -1, 0), (0, 1, 1) \rangle$$
, que define o plano de \mathbb{R}^3 que passa na origem, com vetores diretores $v_1 = (1, -1, 0)$ e $v_2 = (0, 1, 1)$ e vetor normal $(-1, -1, 1)$.

ii. Justifique que
$$\{(1,4,5),(-4,5,1)\}$$
 é uma base de $\mathcal{C}(A)$.

Aplicar o
$$2^{\circ}$$
 teorema do slide 139 considerando $V = \mathcal{C}(A)$.

[1v] 2. Seja
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 uma transformação linear definida por $T(x, y, z) = (x + y - 2z, 2x + z)$. Determine a matriz canónica da transformação T .

É a matriz
$$\begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \end{bmatrix} = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 0 & 1 \end{bmatrix}$$
.

3. A tabela seguinte contém alguns conjuntos de vetores de \mathbb{R}^3 e propriedades que estes [2.25v]conjuntos podem verificar ou não. Para cada conjunto de vetores de \mathbb{R}^3 e cada uma das propriedades, assinale com S (Sim) ou N (Não) consoante o conjunto verifique ou não a propriedade (não justifique a resposta):

	Linearmente independente	Gera \mathbb{R}^3	Base de \mathbb{R}^3
$\{(1,-1,0),(1,2,1),(2,1,1)\}$	N	N	N
$\{(2,0,0),(3,1,0),(4,1,2)\}$	S	S	S
$\{(2,0,0),(3,1,0),(4,1,2),(-5,6,-1)\}$	N	S	N

- [3.5v] 4. (a) Determine uma base e a dimensão de V.

 Uma base de V é $\{w_1, w_2\} = \{(-\frac{1}{2}, -\frac{1}{2}, 1, 0), (0, -1, 0, 1)\}$ dim V = 2 (número de vetores da base).
 - (b) Escreva V como espaço gerado por 3 vetores não nulos de \mathbb{R}^4 . Por exemplo, $V = \langle w_1, w_2, w_1 + w_2 \rangle = \langle (-\frac{1}{2}, -\frac{1}{2}, 1, 0), (0, -1, 0, 1), (-\frac{1}{2}, -\frac{3}{2}, 1, 1) \rangle$.
 - [2v] 5. Seja A uma matriz do tipo $m \times n$ tal que $\operatorname{car}(A) = n$ e sejam $x, y \in \mathbb{R}^n$ tais que Ax = Ay. Prove que x = y.

Como car(A) é igual ao número de colunas de A, o sistema linear homogéneo com matriz ampliada $\begin{bmatrix} A & 0 \end{bmatrix}$ é determinado e tem como solução **única** a solução trivial $u = \vec{0}$.

Como Ax = Ay tem-se $A(x - y) = \vec{0}$ e portanto x - y é solução do sistema homogéneo $\begin{bmatrix} A & \vec{0} \end{bmatrix}$. Logo $x - y = u = \vec{0}$, isto é, x = y.