

Geographic Information Systems 2025/2026

Lesson 17 - Digital Terrain Modelling

Digital Terrain Modelling

- Main characteristics of terrain surfaces
 - o streams and ridges
- Digital Terrain modelling (DTM)
 - Traditional mapping (Contours and spot heights)
 - O Digital elevation model (DEM)
 - Creating a DEM using the TIN method
- Derived data
 - o contours
 - o slope

 - o profile, visibility, hillshade

Terrain surface

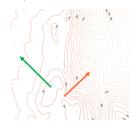
Relief is mainly defined by:

- streams lines defined by the local lowest points of valleys
 - o between 2 streams there is, at least, one hill
- ridges lines defined by the local highest points of hills
 - o between 2 ridges there is, at least, one valley
- other defining elements:
 - o summits
 - o roads
 - o dams
 - o railways
 - 0 ...

Geographic Information Systems - 2024/2025 - Lesson 17 - 7

Digital terrain model (DTM)

In the GIS context, a digital terrain model (<u>DTM</u>) for a given study area is a <u>geographic dataset</u> that enables the height knowledge at any location.


DTM involves 3 main problems:

- 1. modelling a geographic phenomena with continuous distribution
- 2. high volume of data
- 3. high volume of data processing

DTM - Traditional mapping

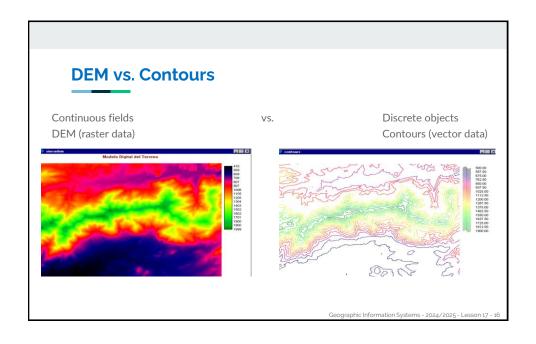
Traditional mapping represents terrain using **contours** and **spot elevations** (at remarkable points)

- contours (or isolines) are lines that connect points of equal value concerning a given variable
 such as elevation, temperature, precipitation, pollution, atmospheric pressure, ...
- location of lines shows how values change across a surface
 - o where there is little change in a value, the lines are spaced farther apart
 - where the values rise or fall rapidly, the lines are closer together

Geographic Information Systems - 2024/2025 - Lesson 17 - 12

Contours and spot elevations in GIS

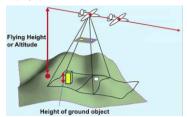
Elevation is the attribute of contours (2D lines) and spots (2D points)


Elevation is the 3rd coordinate of contours (3D lines) and spots (3D points) – truthfully, 3D vector gds

DTM - Digital Elevation Model (DEM)

- A DEM is a raster representation of relief
 - o **pixel values** are the height at the pixel center (or the average of the eights at the 4 cell corners)

Techniques contributing to DEM creation


- Topographic maps (contours, spot elevations, waterlines, ...)
- Theodolite or total station

Geographic Information Systems - 2024/2025 - Lesson 17 - 18


Techniques contributing to DEM creation

- Topographic maps (contours, spot elevations, waterlines, ...)
- Theodolite or total station
- GPS
- Stereo photogrammetry from aerial surveys

Techniques contributing to DEM creation

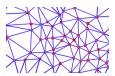
- Topographic maps (contours, spot elevations, waterlines, ...)
- Theodolite or total station
- GP
- Stereo photogrammetry from aerial surveys
- Remote sensing

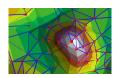
Geographic Information Systems - 2024/2025 - Lesson 17 - 2

Techniques contributing to DEM creation

- Topographic maps (contours, spot elevations, waterlines, ...)
- Theodolite or total station
- GPS
- Stereo photogrammetry from aerial surveys
- Remote sensing
- TIN

Techniques contributing to DEM creation

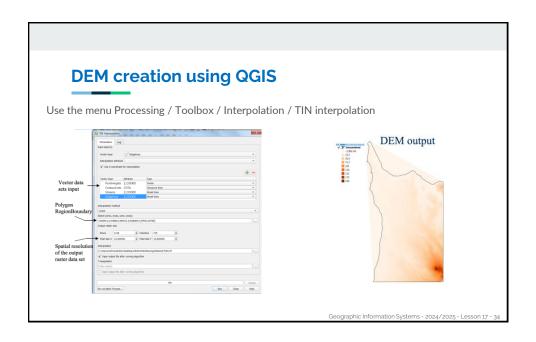

- Topographic maps (contours, spot elevations, waterlines, ...)
- Theodolite or total station
- GPS
- Stereo photogrammetry from aerial surveys
- Remote sensing
- TIN

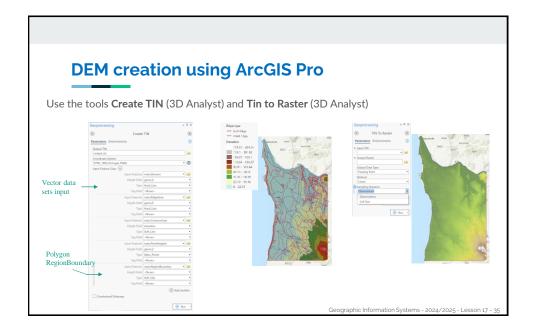

Geographic data are only as good as the sampling scheme used to create them

Geographic Information Systems - 2024/2025 - Lesson 17 - 23

Triangulated irregular network (TIN)

- TINs are a special kind of vector data:
 - o constructed by triangulating a set of 3D vertexes
 - o vertexes are connected by edges to form a network of 3D triangles
- There are different methods of spatial interpolation to form these triangles
 - o the Delaunay triangulation method assures that no vertex lies within the interior of any of the circumcircles of the triangles in the network

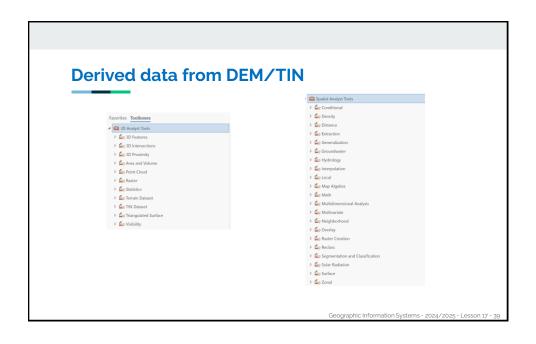

Triangulated irregular network (TIN)

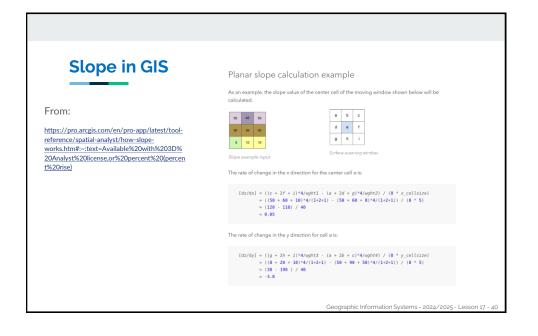

- 3D edges of TINs form contiguous & non-overlapping triangular facets
 - o can be used to capture the position of linear features that play an important role in a surface, such as ridgelines or stream courses.
- Each facet has a constant slope & aspect
 - o but height is not constant
 - o at each location height can be estimated using an analytical method (equation of a plane defined by 3 non-collinear points, the triangle vertices)
- TIN can be easily converted to (raster) DEM

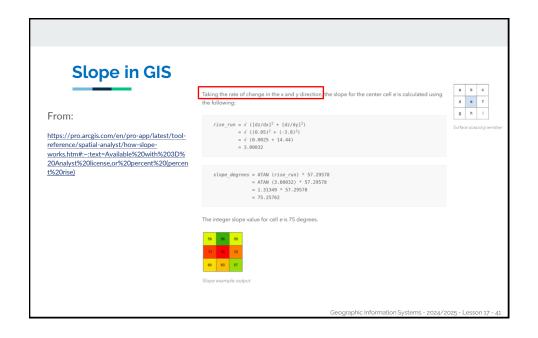
Geographic Information Systems - 2024/2025 - Lesson 17 - 28

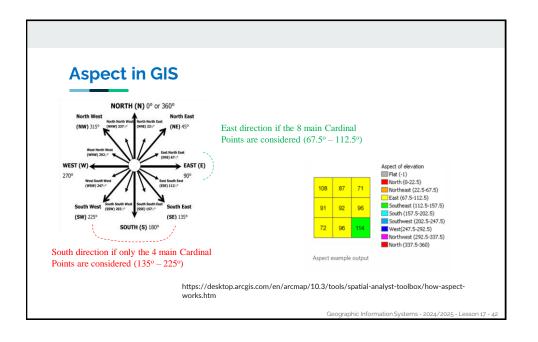
TIN (main) inputs

- Mass points
 - o are point height measurements (2D or 3D points); they become vertexes in the TIN network
- Breaklines
 - o lines typically with height measurements; they become triangle 3D edges representing either natural features, such as ridgelines or streams, or man-made features, such as roadways, railways, ...
 - o hard breaklines represent a discontinuity in the slope of the surface; for example, streams & road cuts (3D lines)
 - soft breaklines are features that do not alter the local slope of a surface; for example, contours (2D or 3D lines)
- Clip polygon (optional, but mostly necessary)
 - o defines a boundary for the TIN surface; it can be a 2D or 3D polygon




DEM accuracy


- The quality of a DEM is a measure of how accurate elevation is at each pixel (absolute accuracy) and how accurately is the morphology presented (relative accuracy); it depends on:
 - o terrain roughness
 - o sampling density (elevation data collection method)
 - o grid resolution or pixel size
 - o interpolation algorithm
 - o vertical resolution
 - o terrain analysis algorithms
 - 0 ...


Geographic Information Systems - 2024/2025 - Lesson 17 - 37

Derived data from DEM/TIN (QGIS) Contour Slope (either % or degrees) Aspect Visualization: O Hillshade Ruggedness Index Ceographic Information Systems - 2024/2025 - Lesson 17 - 38

Downloading public DEM

SRTM DEM spatial resolution 1arc-second~30m: http://earthexplorer.usgs.gov/

How to download SRTM DEM 1arc-second: https://www.youtube.com/watch?v=0YPFegTcL4w

Documentation: https://www2.jpl.nasa.gov/srtm/

Remark: 1 arc-second \approx 30 m near the Equator line (1° \approx 111.321 km, 1° \approx 85 km at parallel 40°)

Geographic Information Systems - 2024/2025 - Lesson 17 - 43

Credits

The structure and content of the course, including most of the slides and exercises was developed by Professor Graça Abrantes (SIG 2021_2022) and Professor Rui Figueira (SIG 2023_2024)