

## INSTITUTO SUPERIOR DE AGRONOMIA / DEP CIÊNCIAS E ENGª BIOSSISTEMAS/ ÁREA DISCIPLINAR DE ENGª RURAL

## NECESSIDADES HÍDRICAS E SISTEMAS DE REGA



1º CICLO EA

2025/2026

## **EXERCÍCIOS SOBRE NECESSIDADES HÍDRICAS DAS CULTURAS**

- 1. Determine o valor de Kc<sub>ini</sub> para as seguintes condições: período inicial da cultura decorre no mês de Maio (ETo = 4 mm dia<sup>-1</sup>), o intervalo entre os acontecimentos de humedecimento é de 5 dias; a altura média das precipitações/rega ocorridas: 18 mm; a textura do solo é limosa (Kc ini = 0.614)
- 2. Determine os valores de Kc<sub>mid</sub> para a cultura do milho para os seguintes climas:
- a) clima húmido com u =  $1.3 \text{ m s}^{-1}$  e HR min = 75%;

 $(Kc \ mid = 1.07)$ 

b) clima árido com  $u = 4.6 \text{ m s}^{-1} \text{ e HR min} = 44\%$ .

 $(Kc \ mid = 1.30)$ 

- 3. Considere uma cultura de beterraba em solo franco-limoso em Beja, cuja sementeira ocorre no dia 23 de maio. Durante o desenvolvimento inicial a ETo vale 5.5 mm dia-1 e são realizadas regas intervaladas em 14 dias e dotação de 10 mm. Durante o desenvolvimento intermédio a HR mínima do ar é de 30 % e a velocidade média de vento é 2.2 m s-1. No período final a HRmin = 45 % e velocidade do vento = 2 m s-1. Não há rega nos dias que antecedem a colheita.
- a) Construa a curva dos coeficientes culturais;
- b) Calcule os Kc médios mensais;
- c) Determine o Kc do dia 183 (DDA) (2 de Julho)
- d) Determine a evapotranspiração cultural acumulada para o mês de Julho se a ETo média for 7 mm d<sup>-1</sup>
- 4. Considere os dados seguintes: Morango:  $Z_r = 0.20$  m; p = 0.25; Batata doce:  $Z_r = 1.3$  m p = 0.65; Solo:  $\theta_{CC} = 0.2$  cm<sup>3</sup> cm<sup>-3</sup>;  $\theta_{CE} = 0.1$  cm<sup>3</sup> cm<sup>-3</sup>
- a) Determine a RU e a RFU das culturas do morango e da batata doce para solo franco arenoso;

(20 mm, 5 mm)

- b) Represente graficamente RU, RFU e LRFU
- 5. Determine, para uma cultura de tomate (Zr = 0.8 m, p = 0.4, Kc = 1.2) num solo limoso ( $\theta_{CC}$  = 0.32 e  $\theta_{CE}$  = 0.12 cm<sup>3</sup> cm<sup>-3</sup>):
- a) RU, RFU e LRFU;

(160 mm; 64 mm; 96 mm)

- b) Determine a depleção de água no solo nos dias em que o armazenamento (A, mm) de água no solo é 100 e 50 mm. (60 e 110 mm)
- c) Em algum desses dias há stress hídrico? Justifique

(no 2º dia)

- d) De acordo com a alínea anterior determine o coeficiente de stress hídrico;
  e) Determine a evapotranspiração para os dias de c), sendo a ETo = 6 mm d<sup>-1</sup>
- (1; 0.52) (7.2 e 3.75 mm d<sup>-1</sup>)
- 6. Considere uma cultura de tomate plenamente desenvolvida ( $Z_r = 0.8$  m, p = 0.40 e  $K_c = 1.2$ ) cultivada num solo limoso ( $\theta_{CC} = 0.32$  e  $\theta_{CE} = 0.12$  cm<sup>3</sup> cm<sup>-3</sup>):
- a) Estime o efeito do stress hídrico sobre a evapotranspiração durante os próximos 10 dias, sendo Dp inicial = 55 mm, não sendo esperadas chuvas ou regas. A  $ET_0$  esperada para o decénio seguinte é 5 mm dia  $^{-1}$ .
- b) Apresente graficamente a evolução temporal da ETc e da ETadi
- 7. Considere que uma cultura do feijão em solo franco. O  $K_y$  para esta cultura é 1.15 (FAO Irrigation and Drainage Paper No 33, Tabela 24).
- a) Compare o efeito de diferentes níveis de redução da evapotranspiração sobre a produção;
- b) Se a produção máxima for de 9 000 kg ha<sup>-1</sup>, determine a produção a esperar quando o défice de *ET* médio ao longo do ciclo é de 20%. (6930 kg m³)
- 8. Considere a cultura do milho. Considerando que houve restrições no uso da água de rega no final do ciclo, levando a uma redução da *ET*, determine:
- a) o impacto que teve sobre a produção;

(-1.5%)

|                                    | ET <sub>c</sub> | <i>ET</i> <sub>adj</sub> | K <sub>y</sub> |
|------------------------------------|-----------------|--------------------------|----------------|
| Fase de desenvolvimento vegetativo | 50              | 50                       | 0.4            |
| Fase intermédia                    | 250             | 250                      | 2.3            |
| Fase final                         | 100             | 70                       | 0.2            |

- 9. Numa determinada região, a cultura do girassol apresenta uma produtividade média de 2 400 kg ha<sup>-1</sup>. A produção potencial para a variedade usada na zona, na ausência de défice hídrico e com boas práticas agronómicas, é de 3 200 kg ha<sup>-1</sup>. Sabendo que o Ky do girassol é 0.95 e que a ETc total durante o ciclo cultural é de 520 mm, determine a quebra relativa da evapotranspiração.
- 10. A produção de feijão numa determinada zona é de 1100 kg ha<sup>-1</sup>. A produção potencial na zona para a variedade utilizada na região, na ausência de stress hídrico e com boas práticas agronómicas, é de 1800 kg ha<sup>-1</sup>. Sendo o  $K_y$  do feijão de 1.15 e a  $ET_c$  total de 350 mm, faça uma estimativa de  $ET_{adj}$  da cultura nesta região.

## **EXERCÍCIOS SOBRE NECESSIDADES DE REGA DAS CULTURAS**

- 11. Determine a dotação de rega diária que foi aplicada a uma cultura durante o período Dt = 3 dias. Dados:  $\theta t_1$  = 0.2 cm³ cm⁻³ ;  $\theta t_2$  = 0.22 cm³ cm⁻³ ;  $Z_r$  =0.3 m; Pe = 0, Ac =0; ES = 0; DR = 0, ET<sub>c</sub> = 5 mm dia⁻¹
- 12. Considere a situação do exercício anterior e determine a variação de armazenamento que ocorrerá nos 5 dias seguintes na ausência de rega e o teor de água final, quando  $ET_c = 4$  mm dia<sup>-1</sup>; Pe = 2.5 mm; Ac = 0; ES = 0; DR = 0
- 13. Um solo apresenta teores volumétricos de água à capacidade de campo de 16%, e no coeficiente de emurchecimento, de 8 %. A sua porosidade é de 35 %. A cultura nele instalada apresenta, para as diferentes fases do ciclo, as profundidades radiculares do Quadro seguinte. A fração da reserva facilmente utilizável é 0.4. Calcule RU, RFU e LRFU e apresente graficamente a sua evolução ao longo do ciclo.

|                        | Início | Zr   |
|------------------------|--------|------|
| Fases do ciclo         | dia    | m    |
| Estabelecimento        | 23/mai | 0,01 |
| Rápido desenvolvimento | 12/jun | 0,17 |
| Reprodução/maturação   | 12/jul | 1,00 |
| Senescência            | 21/ago | 1,00 |

14. Considere uma cultura de milho para forragem semeado no dia 23 de Maio num solo franco arenoso com  $\theta_{CC}$  = 0.16 cm³ cm⁻³ e  $\theta_{CE}$  = 0.1 cm³ cm⁻³. O sistema de rega é a aspersão fixa com cobertura total (pretende aproveitar-se a RFU do solo). O p da cultura é 0.4. Ver  $P_{inf}$  e ETc no Quadro 1.

| Fases | Inicio     | Zr (m) |  |
|-------|------------|--------|--|
| Est   | 23/05/2025 | 0.01   |  |
| DR    | 12/06/2025 | 0.17   |  |
| Rep   | 12/07/2025 | 0.7    |  |
| Sen   | 21/08/2025 | 0.7    |  |

- a) Calcule RU, RFU e LRFU;
- b) Apresente graficamente a sua evolução ao longo do ciclo;
- c) Determine os dias de rega e as dotações considerando que se pretende:
  - manter a cultura sempre na zona de conforto hídrico;
  - aproveitar a RFU do solo e regar até encher o reservatório
  - · regar no inicio do dia
  - Acabar as regas no dia 1 de setembro
  - Recorra aos dados do Quadro 2

- Considere que no inicio do primeiro dia A = 85 % de RU
- d) Represente graficamente a evolução do armazenamento, com rega, ao longo do período de desenvolvimento intermédio
- e) Apresente um quadro com os dias e as dotações de rega Quadro 2.

| Datas      | ETc  |
|------------|------|
|            | (mm) |
| 12/06/2024 | 8.83 |
| 13/06/2024 | 8.03 |
| 14/06/2024 | 6.84 |
| 15/06/2024 | 6.62 |
| 16/06/2024 | 6.73 |
| 17/06/2024 | 7.49 |
| 18/06/2024 | 8.71 |
| 19/06/2024 | 7.42 |
| 20/06/2024 | 8.12 |
| 21/06/2024 | 7.48 |
| 22/06/2024 | 5.97 |

- 15. Considere os seguintes dados referentes a uma cultura de batata em solo franco
- a) Determine os armazenamentos mínimos de água no solo permitidos antes de uma rega para as situações de reserva facilmente utilizável totalmente explorada, MAD = 70 % da reserva utilizável e MAD = 30 % da reserva utilizável
- b) Quais os limites correspondentes? Represente-os graficamente

| θСС | 0,276 | cm <sup>3</sup> cm <sup>-3</sup> |
|-----|-------|----------------------------------|
| θCΕ | 0,098 | cm <sup>3</sup> cm <sup>-3</sup> |
| Zr  | 0,6   | m                                |
| р   | 0,6   |                                  |

- 16. Considere a cultura da batata do exemplo anterior, na fase intermédia do ciclo, com inicio no dia 7 de Julho. Tenha em conta as seguintes informações:
- Precipitação na fase intermédia do ciclo = 0;
- K<sub>cmid</sub> = 1.15 (tabela 12 da FAO)
- HR minima na fase intermedia = 45 %;
- velocidade média do vento durante a fase intermedia = 2 m s<sup>-1</sup>
- armazenamento inicial de água no solo 30 % RFU

Determine a próxima data de rega e a sua dotação útil, para a seguinte situação: Stress hídrico com MAD = 80% RU e reposição do armazenamento até 40% da RU (=LRFU). Nota: considere que se rega no início do dia.

17. Estime para cada dia do período de 10 dias apresentado o armazenamento e a depleção de água no solo, considerando que no início, devido às precipitações, o solo estava à CC e que no fim do  $8^{\rm o}$  dia é efetuada uma rega de 27 mm (Dotação bruta). Considere os seguintes dados adicionais:  $\theta_{\rm CC} = 0.21$  m3 m-3  $\theta_{\rm CE} = 0.08$  m³ m-3  $z_{\rm CE} = 0.4$  m  $z_{\rm CE} = 0.08$  p = 0.3

| Dia | ET <sub>c</sub> | Pinf | Du | Α  | Dp | K <sub>s</sub> | ET <sub>adj</sub> |
|-----|-----------------|------|----|----|----|----------------|-------------------|
|     | mm              | mm   | mm | mm | mm | -              | mm                |
| 1   | 5.3             | 0    |    |    |    |                |                   |
| 2   | 5.0             | 15   |    |    |    |                |                   |
| 3   | 5.3             | 0    |    |    |    |                |                   |
| 4   | 5.5             | 0    |    |    |    |                |                   |
| 5   | 5.4             | 0    |    |    |    |                |                   |
| 6   | 5.6             | 0    |    |    |    |                |                   |
| 7   | 5.8             | 0    |    |    |    |                |                   |
| 8   | 6.3             | 0    |    |    |    |                |                   |
| 9   | 5.7             | 0    |    |    |    |                |                   |
| 10  | 5.5             | 0    |    |    |    |                |                   |

- 18. Considere as dotações de rega calculadas para um período de 31 anos apresentadas no Quadro.
- a) diga quais foram os passos de cálculo necessários para chegar aos valores apresentados e quais os dados necessários;
- b) determine a dotação de projeto caso se trate de uma cultura anual e de um pomar. Justifique

| Ano  | D (mm) | Ano  | D (mm) |
|------|--------|------|--------|
| 1960 | 254,4  | 1976 | 276,1  |
| 1961 | 260,1  | 1977 | 214,8  |
| 1962 | 211,1  | 1978 | 206,2  |
| 1963 | 236,4  | 1979 | 218,8  |
| 1964 | 260,8  | 1980 | 263,8  |
| 1965 | 243,8  | 1981 | 243,8  |
| 1966 | 221,2  | 1982 | 221,2  |
| 1967 | 204,8  | 1983 | 204    |
| 1968 | 212,5  | 1984 | 211,5  |
| 1969 | 269,7  | 1985 | 270,7  |
| 1970 | 241,6  | 1986 | 241,6  |
| 1971 | 262,6  | 1987 | 262,6  |
| 1972 | 205,9  | 1988 | 220,1  |
| 1973 | 257,8  | 1989 | 277,1  |
| 1974 | 206,3  | 1990 | 214,6  |
| 1975 | 220,3  |      |        |

- 19. Pretende regar-se uma área de 3 ha cultivada com milho grão. A dotação de ponta obtida por análise de frequência de uma série de 31 anos é a calculada no exercício 16. Sabendo que i) a fração de lavagem é 0.2; ii) a disponibilidade horária para a rega é de 8 h e que iii) o intervalo mínimo entre regas pretendido é de três dias, determine:
  - a) O caudal fictício contínuo

b) O caudal específico

c) O caudal de dimensionamento ou projeto

 $(qfc = 0.98 L s^{-1} ha^{-1})$  $(qe = 6.86 L s^{-1} ha^{-1})$ 

 $(qd = 20.6 L s^{-1})$