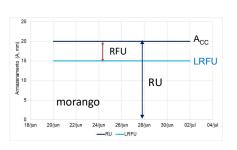
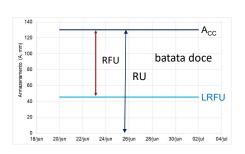


Exercício 4

- a) Determine a RU e a RFU das culturas do morango e da batata doce para solo franco arenoso;
- b) Represente graficamente RU, RFU e LRFU


<u>Dados</u>


Morango: Batata doce:

 $Z_{\rm r}$ = 0.20 m $Z_{\rm r} = 1.3 \, {\rm m}$ p = 0.25p = 0.65

Solo:

 $\theta_{\text{CC}}\text{= }0.2~\text{cm}^{\text{3}}~\text{cm}^{\text{-3}}$ $\theta_{\text{CE}}\text{= }0.1~\text{cm}^{\text{3}}~\text{cm}^{\text{-3}}$

Exercício 5

Determine, para uma cultura de tomate num solo limoso (θ _{CC} = 0.32 e θ _{CE} = 0.12 cm³ cm⁻³):

a) RU, RFU e LRFU;

(160 mm; 64 mm; 96 mm)

- b) Determine a depleção de água no solo nos dias em que o armazenamento (A, mm) de água no solo é 100 e 50 mm.
- c) Em algum desses dias há stress hídrico? Justifique

(no 2º dia)

d) De acordo com a alínea anterior determine o coeficiente de stress hídrico;

(1; 0.52)

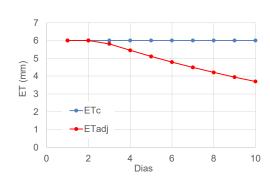
e) Determine a evapotranspiração para os dois dias da alínea c), sendo a ET_0 = 6 mm d⁻¹.

(7.2 e 3.75 mm)

Dados

cultura		
Zr	0,8	m
р	0,40	
Kc	1,20	

Exercício 6


Estime o efeito do stress hídrico sobre a evapotranspiração de uma cultura de tomate plenamente desenvolvida ($Z_{\rm r}$ = 0.8 m, p = 0.40 e $K_{\rm c}$ = 1.2) cultivada num solo limoso (θ $_{\rm CC}$ = 0.32 e θ $_{\rm CE}$ = 0.12 cm³ cm³) durante os próximos 10 dias, sendo Dp inicial = 55 mm, não sendo esperadas chuvas ou regas. A $ET_{\rm o}$ esperada para o decénio seguinte é 5 mm dia-1. Apresente graficamente a evolução temporal da $ET_{\rm c}$ e da $ET_{\rm adi}$

Solução:

UC Necessidades Hídricas e Sistemas de Rega / $1^{
m e}$ ciclo de Eng Agronómica

RU =	160	mm
RFU =	64	mm
LRFU =	96	mm

Dias	ETo	Dp	Ks	ETadj
Dias	mm	mm	1/2	mm
1	5	55.0	1.00	6.0
2	5	61.0	1.00	6.0
3	5	67.0	0.97	5.8
4	5	72.8	0.91	5.4
5	5	78.3	0.85	5.1
6	5	83.4	0.80	4.8
7	5	88.2	0.75	4.5
8	5	92.6	0.70	4.2
9	5	96.9	0.66	3.9
10	5	100.8	0.62	3.7

UC Necessidades Hidricas e Sistemas de Rega / 1º ciclo de Eng Agronómica M º Rosdrio Cameiro /Instituto Superior de Agroi Resumo do procedimento de cálculo para a estimativa da quebra da produção devida ao stress hídrico:

- a) Estimativa da produção máxima (Y_m) da cultura supondo que não há limitação de factores agronómicos (por exemplo, água, fertilizantes, pragas e doenças);
- b) Calculo da evapotranspiração máxima (ET_c) para condições padrão;
- c) Calculo da evapotranspiração real das culturas (ET_{adi}) sob a situação específica;
- d) Calculo da produção real ou actual (Y_a), através da seleção adequada do fator de resposta (K_y) para o ciclo ou para as diferentes fases de crescimento.

$$1 \; - \; \frac{Y_a}{Y_m} \; = \; K_y \; . \; \left(1 - \; \frac{ET_{adj}}{ET_c}\right) \label{eq:continuous}$$

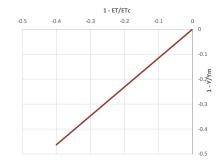
Ky médio para todo o ciclo

$$\frac{Y_a}{Y_m} = 1 - \frac{\sum_i K_{yi} (ET_{ci} - ET_{ai})}{ET_c}$$

Ky especifico para cada fase do ciclo

Exercício 7

Considere que uma cultura do feijão em solo franco. O K_y para esta cultura é 1.15 (FAO Irrigation and Drainage Paper No 33, Tabela 24).


- a) Compare o efeito de diferentes níveis de redução da evapotranspiração sobre a produção;
- b) Se a produção máxima for de 9 000 kg, determine a produção a esperar quando o défice de ET médio ao longo do ciclo é de 20%.

$$1 - \frac{Y_a}{Y_m} = K_y \cdot \left(1 - \frac{ET_{adj}}{ET_c}\right)$$

Soluções:

UC Necessidades Hidricas e Sistemas de Rega / 1º ciclo de Eng Agronômica M a Rosdrio Cameira /Insti

a)	FT /FT	4 57 /57	4 V /V	Y _a /Y _m
ET _{adj} /ET _c	1-ET _{adj} /ET _c	1-Y _a /Y _m	(%)	
	1	0.0	0.00	100.0
	0.9	0.1	0.12	88.5
→	0.8	0.2	0.23	77.0
	0.7	0.3	0.35	65.5
	0.6	0.4	0.46	54.0

b) $Y_a = 0.77 \times 9000 = 6930 \text{ kg}$

Exercício 8

Considere a cultura do milho.

- a) Considerando que houve restrições no uso da água de rega no final do ciclo, levando a uma redução da *ET*, determine o impacto que teve sobre a produção.
- b) Qual a redução que ocorreria caso o stress tivesse ocorrido durante a fase intermédia?

	ET _c	<i>ET</i> _{adj}	K _y
Fase de desenvolvimento vegetativo	50	50	0.4
Fase intermédia	250	250	2.3
Fase final	100	70	0.2

 ET_c total = 50 + 250 + 100 = 400 mm

$$Y_a/Y_m = 1 - [0.4 \text{ x} (50-50) + 2.3 \text{ x} (250-250) + 0.2 \text{ x} (100-70)]/400$$

$$Y_a/Y_m = 98.5\% \rightarrow \text{redução} = 1.5\%$$

$$\frac{Y_a}{Y_m} = 1 - \frac{\sum_i K_{yi} (ET_{ci} - ET_{ai})}{ET_c}$$

 $Y_a/Y_m = 1 - [0.4 \times (50-50) + 2.3 \times (250-175) + 0.2 \times (100-100)]/400$ $Y_a/Y_m = 43.1 \% \rightarrow \text{redução} = 56.8\%$

Exercício 9

A produção de feijão numa determinada zona é de 1100 kg ha⁻¹. A produção potencial na zona para a variedade utilizada na região, na ausência de stress hídrico e com boas práticas agronómicas, é de 1800 kg ha⁻¹.

Sendo o K_y do feijão de 1.15 e a ET_c total de 350 mm, faça uma estimativa de ET_{adj} da cultura nesta região.

$$\frac{ET_{adj}}{ET_c} = 1 - \frac{1}{K_y} \left(1 - \frac{Y_a}{Y_m} \right)$$

$$\frac{ET_{adj}}{ET_c} = 1 - \frac{1}{1.15} \left(1 - \frac{1100}{1800} \right) = 0.66$$

$$ET_{adj} = 0.66 \times 350 = 230 \text{ mm}$$

UC Necessidades Hídricas e Sistemas de Rega / 1º ciclo de Eng Agronómica M ª Rosário Cameira /Instituto Superior de Agron

3.2.2 BALANÇO HÍDRICO PARA A CONDUÇÃO DA REGA EM CONFORTO HÍDRICO

Condução da rega:

- pretende responder às perguntas quando regar e quanto regar
- resulta da combinação ótima entre <u>as necessidades hídricas das culturas</u>, as <u>característica do solo</u>, e o <u>método/sistema de rega</u> a utilizar.

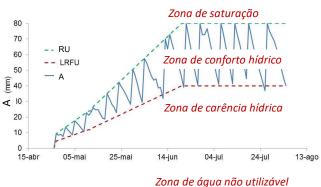
O conhecimento do balanço hídrico do solo na zona explorada pelas raízes é fundamental para a boa condução da água em regadio.

14-jun

04-jul

24-jul

13-ago


25-mai

Data	Dotação (mm)
1-mai	7.7
5-mai	10.8
10-mai	13.7
19-mai	19.4
24-mai	23.0
30-mai	25.9
4-jun	32.8
13-jun	45.0
22-jun	47.9
28-jun	47.3
7-jul	46.0
13-jul	46.3
19-jul	42.4
27-jul	48.6
	456.8

UC Necessidades Hidricas e Sistemas de Rega / 1º ciclo de Eng Agronómica Mº Rosdrio Comeiro / Instituto Superior de Adronomia

Delimitam-se no gráfico:

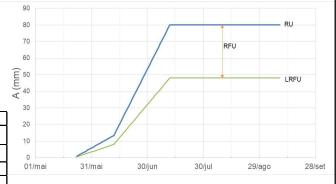
- a) uma *zona de saturação*, em que a água não é imediatamente utilizável, acima da capacidade de campo,
- b) uma *zona de conforto hídrico* entre a capacidade de campo e o LRFU, onde a cultura se desenvolve em condições ótimas,
- c) uma zona de carência hídrica entre este limite e o coeficiente de emurchecimento, em que se reduz a evapotranspiração cultural de acordo com a diminuição do teor de água no solo, e uma zona de água não utilizável abaixo deste valor.

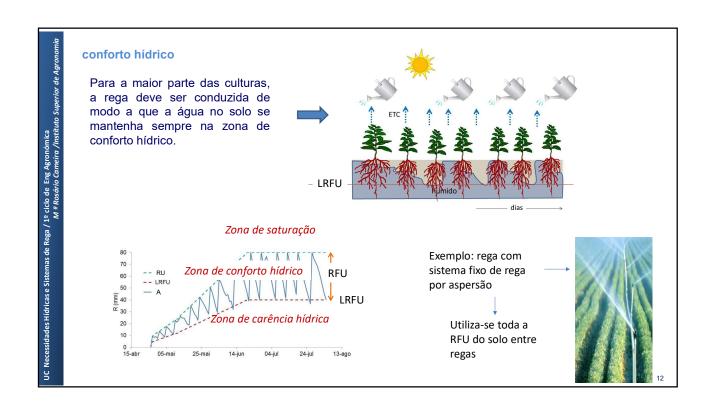
ona de agua não utilizavei

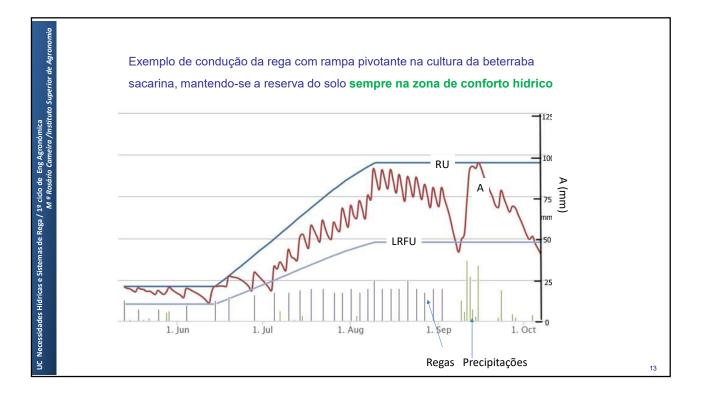
Necessidades Hidricas e Sistemas de Rega / 1º ciclo de Eng Agronómica M º Rosário Cameiro /Instituto Superior de Agronomia

Exercício 13

Um solo apresenta teores volumétricos de água à capacidade de campo de 16%, e no coeficiente de emurchecimento, de 8 %. A cultura nele instalada apresenta, para as diferentes fases do ciclo, as profundidades radiculares do Quadro seguinte. A fração da reserva facilmente utilizável é 0.4.


- a) Calcule RU, RFU e LRFU;
- b) Apresente graficamente a sua evolução ao longo do ciclo


Dados relativos à cultura


Fases do ciclo	Inicio	Zr (m)
Estabelecimento	23/05/2025	0.01
Desenvolvimento rápido	12/06/2025	0.17
Reprodução/maturação	12/07/2025	1.0
Senescência	21/08/2025	1.0

, ,

Soluções Fases do ciclo RFU (mm) LRFU (mm) RU (mm) Estabelecimento 0.3 8.0 0.5 13.6 5.4 8.2 Desenvolvimento rápido 80.0 32.0 48.0 Reprodução/maturação 80.0 32.0 48.0 Senescência

Na zona de conforto hídrico – simplificações da equação do balanço hídrico

- DR = 0, porque $\theta < \theta_{CC} e A < A_{CC}$;
- ET é igual ao seu valor máximo, ET_c
- Ac = 0, porque não há gradiente de humidade entre a zona das raízes e a zona freática

$$\Delta A = (P_e - ETc + Du)$$

UC Necessidades Hídricas e Sistemas de Rega / $1^{
m e}$ ciclo de Eng Agronómica

P_e e ET_c em mm dia-1

14

Necessidades Hídricas e Sistemas de Rega / 1º ciclo de Eng Agronómica M g Rocário Camaira (Instituto Cunarior de .

Exercício 14 Muito IMP!

Considere uma cultura de milho para forragem semeado no dia 23 de Maio num solo franco arenoso com θ_{CC} = 0.16 cm³ cm⁻³ e θ_{CE} = 0.1 cm³ cm⁻³. O sistema de rega é a aspersão fixa com cobertura total (pretende aproveitar-se a RFU do solo). O p da cultura é 0.4.

Fases	Inicio	Zr (m)
Est	23/05/2025	0.01
DR	12/06/2025	0.17

12/07/2025

21/08/2025

Quadro 2. Dados relativos à cultura

0.7

0.7

- a) Calcule RU, RFU e LRFU;
- b) Apresente graficamente a sua evolução ao longo do ciclo
- c) Determine os dias de rega e as dotações considerando que se pretende:
 - manter a cultura sempre na zona de conforto hídrico;
 - aproveitar a RFU do solo e em cada rega encher completamente o reservatório
 - regar no inicio do dia
 - Acabar as regas no dia 1 de setembro

Recorra aos dados do Quadro 2

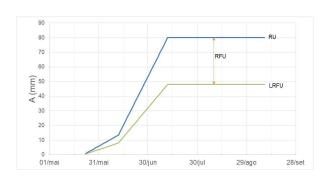
Considere que no inicio do primeiro dia A = 85 % de RU

d) Represente graficamente a evolução do armazenamento, com reg<mark>açido toltigo do período de</mark> desenvolvimento intermédio

e) Apresente um quadro com os dias e as dotações de rega

Na aula, resolver o problema apenas para o período de desenvolvimento intermédio (12 jul a 21 agosto)

Fora da aula, resolver o problema para todo o


15

UC Necessidades Hidricas e Sistemas de Rega / 1º ciclo de Eng Agronómica M 9 Rockin Crumeiro Vinstituto Sunavior de Amonomi

a) Determinar RU, RFU e LRFU;

	Início	Zr	RU	RFU	LRFU
Fases do ciclo	dia	m	mm		
Estabelecimento	23/mai	0,01	0,8	0,3	0,5
Rápido desenvolvimento	12/jun	0,17	13,6	5,4	8,2
Reprodução/maturação	12/jul	1,00	80,0	32,0	48,0
Senescência	21/ago	1,00	80,0	32,0	48,0

b) Representar graficamente a zona de conforto hídrico

16

c) Aplicar a equação do BH e calcular as datas e dotações uteis de rega no período intermédio de desenvolvimento da cultura

rega no período intermédio de desenvolvimento da cultura	

			(mm)
Zr (mm)	0.7	RU	42.00
р	0.4	RFU	16.80
CCvol	0.16	LRFU	25.20
CEVol	0.1		

Datas	ETo	P	Kc	ETc	A /	A (mm)		Du
	(mm)	(mm)		(mm)	А (П			(mm)
12/07/2024		0.0		8.83	35.70	0.0	6.30	0.00
13/07/2024		0.0		8.03	26.87	42.0	0.00	15.13
14/07/2024		0.0		6.84	33.97	0.0	8.03	0.00
15/07/2024		0.0		6.62	27.13	42.0	0.00	14.87
16/07/2024		0.0		6.73	35.38	0.0	6.62	0.00
17/07/2024		0.0		7.49	28.65	42.0	0.00	13.35
18/07/2024		0.0		8.71	34.51	0.0	7.49	0.00
19/07/2024		20.0		7.42	25.80	0.0	16.20	0.00
20/07/2024		0.0		8.12	38.38	0.0	3.62	0.0
21/07/2024		0.0		7.48	30.26	42.0	0.00	11.7
22/07/2024		0.0		5.97	34.52	0.0	7.48	0.0

Conforto hídrico => Ac = 0; DR = 0

$$A_i = A_{i-1} + P_{i-1} - ETc_{i-1}$$

$$Du = RU - A$$

Regámos no dia 13, pois sem rega, ao fim do dia A seria < 25.2 mm ou Dp seria > 16.8. Com a rega, o A foi reposto até à RU (42 mm)

Uma vez que não queremos stress hídrico, regamos para evitar que

□ A < LRFU

e/ou
□ Dp > RFU