Estatística e Delineamento Experimental 2025/2026

Conceitos fundamentais e principais tipos de delineamento experimental

Elsa Gonçalves Secção de Matemática, DCEB, ISA-Ulisboa

Antes de escolher o delineamento experimental de uma experiência é importante saber claramente qual o objectivo do estudo (quais a(s) hipóteses(s) a testar)

Alguns termos importantes:

Factor: uma variável categórica (qualitativa);

Níveis do factor: as diferentes categorias do factor, ou seja, diferentes situações experimentais a serem testadas e onde se efectuam observações da variável resposta. **Conhecidos como Tratamentos** (diferentes variedades, fertilizantes, sistema de poda, diferentes clones, etc.).

Unidade experimental (indivíduo, parcela de terreno, vaso, placa de *petri*, etc.): as n observações da variável resposta correspondem a n diferentes unidades experimentais.

A agricultura tem uma longa tradição no desenvolvimento de delineamentos experimentais para estabelecer ensaios de campo rigorosos. Muitos dos princípios importantes do delineamento experimental foram desenvolvidos por R.A. Fisher nas décadas de 1920 e 1930.

Princípios gerais a seguir:

Repetição

A repetição de observações independentes é essencial para estimar a variância dos erros aleatórios; permite a diminuição dos erros de amostragem e outros; a precisão de um ensaio aumenta com o número de repetições.

Casualização (aleatorização)

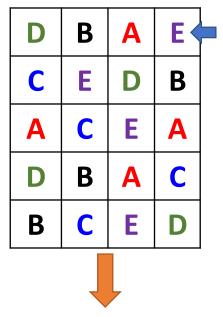
ou seja, aleatoriedade na escolha das unidades experimentais e na associação que lhes é feita de um dado nível do factor.

- Condição fundamental para a validade de todo o processo indutivo (para se poder trabalhar com a teoria de probabilidades) e para evitar enviesamentos (mesmo inconscientes).
- É essencial para validar a estimativa a variância dos erros aleatórios.
- Há um paralelismo rigoroso entre o tipo de casualização adoptado e o modelo de análise dos dados.

Controlo da heterogeneidade entre unidades experimentais

Diferentes tipos de casualização/diferentes tipos de delineamento experimental

Delineamento experimentais

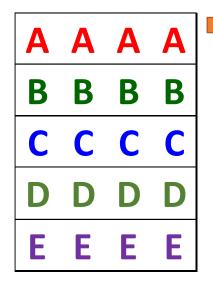

Alguns exemplos

Delineamento experimental totalmente casualizado (CRD)

Exemplo:

Exemplo de uma disposição de árvores de 5 proveniências de pinheiro manso (A,B,C,D,E) em 4 repetições, em condições homogéneas.

1 factor em estudo (proveniência), com 5 níveis.


Cada quadrado representa a unidade experimental (uma planta, uma parcela de terreno com várias plantas, um vaso, uma placa de Petri, etc.).

Uma casualização possível (exemplo de um delineamento totalmente casualizado (CRD)

Nota: Repetições e pseudo-repetições

Convém distinguir entre repetições e pseudo-repetições. Por pseudo-repetições entende-se medições que são feitas na mesma unidade experimental. Por exemplo: pesos de vários frutos de uma planta; medições do comprimento das folhas de uma planta; observações em plantas diferentes no mesmo vaso, na mesma parcela de terreno; observações na mesma amostra no laboratório, etc.. Estes exemplos são repetições que não são independentes.

Mas a existência de pseudo-repetições é essencial para a redução da variabilidade entre observações independentes. De facto, substituindo cada grupo de pseudo-repetições por uma única observação média pode-se diminuir a variabilidade entre diferentes observações médias (que são independentes).

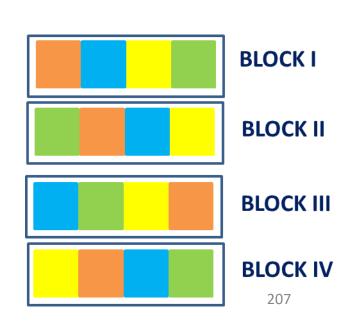
Uma disposição sistemática

A mesma letra repetida são pseudo-repetições (por exemplo, 4 plantas seguidas no campo, 4 vasos seguidos numa bancada de uma estufa, etc., portanto, existe apenas uma repetição independente por tratamento).

Exemplo: diferentes variedades (A,B,C,D,E) em filas paralelas. Em cada linha, são plantadas várias plantas da mesma variedade. As unidades experimentais são as filas de plantas e não as plantas (ou grupos de plantas) de cada fila da mesma variedade. As plantas (ou grupos de plantas) de cada variedade na mesma linha devem ser consideradas como pseudo-repetições. Por conseguinte, neste exemplo, existe apenas uma verdadeira repetição por variedade.

206

<u>Delineamento em blocos completos casualizados (RCBD)</u> desenvolvido por *Fisher* (1935) é dos delineamentos mais simples para o controlo da heterogeneidade (nomeadamente, da variação espacial em ensaios agronómicos).

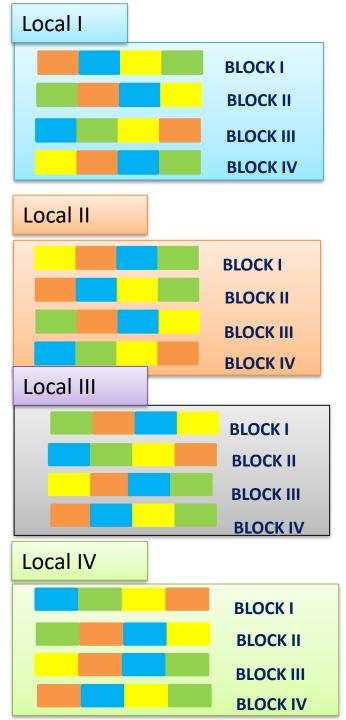


- ➤ O ensaio é dividido em unidades homogéneas, de forma a controlar a variação no campo (ou na estufa, no laboratório, etc).
- ➤ Os níveis do factor a ser estudado (designados por tratamentos), são aleatoriamente atribuídos às unidades experimentais dentro do bloco (cada tratamento aparece uma única vez em cada bloco).
- > O número de blocos é o número de repetições.

Exemplo: cada linha representa 1 bloco. Existem 4 blocos (I-IV) and 4 tratamentos (diferentes cores)

2 factores em estudo. Por exemplo, factor variedade (ou fertilizante, etc.) (4 níveis) e factor bloco (4 níveis).

Bloco – é um factor para controlar uma fonte de variação que se sabe que existe (diferentes tipos de terrenos, diferentes disponibilidades de água, operações culturais, diferentes luminosidades numa estufa, diferentes operadores de um aparelho, diferentes provadores, etc.).



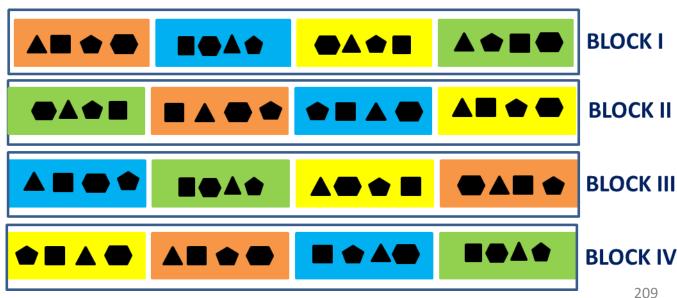
EXEMPLO: RCBD repetido em mais de um local

- Os blocos são dispostos em mais do que um local: factor bloco subordinado ao local; estrutura hierarquizada (nested structure).
- Em cada local, os tratamentos são atribuídos aleatoriamente dentro de blocos, cada tratamento uma vez por bloco.
- O número de blocos é o número de repetições em cada local.

3 factores em estudo: há 4 tratamentos (cores diferentes que podem ser 4 variedades diferentes (ou 4 sistemas de condução, 4 fertilizantes, etc.), 4 locais e 4 blocos por local.

Como em cada local há repetições independentes de cada tratamento pode ser estudada, por exemplo, a interação tratamento×local.

Delineamento em parcelas divididas (split-plot design em RCB)


- > O emsaio é dividido em unidades homogéneas, de forma a controlar a variação no campo, estufa, etc.
- O número de blocos é o número de repetições.
- Existem dois outros fatores em estudo (o objectivo do estudo). As unidades experimentais são organizadas em blocos, cada bloco com grandes parcelas (whole plots), tantas quantas o número de níveis do factor A (factor principal), e cada grande parcela é depois dividida em pequenas parcelas (split plots ou subplots), às quais são aleatoriamente atribuídos os níveis do factor B.

Exemplo:

Cada linha representa 1 bloco.

Existem 4 blocos (I-IV) cada um com 4 tratamentos principais (cores, níveis do factor A; por exemplo, diferentes variedades) divididos em 4 outros tratamentos (subplot, símbolos, níveis do factor B; por exemplo, sistemas de condução).

3 factores em estudo e várias interações

Delineamento em Quadrado Latino (LSD) (Latin Square Design)

Útil quando padrões de heterogeneidade estão associados a 2 factores com o mesmo número de níveis e configuração quadrada (chamados Linha e Coluna).

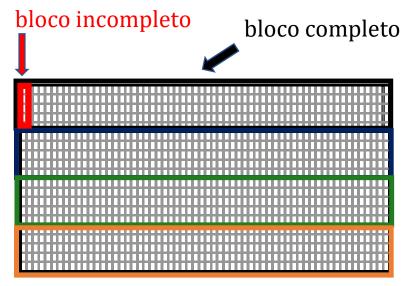
- ✓ O número de tratamentos (o número de níveis do factor que representa o objectivo do estudo) tem de ser igual ao número de linhas e de colunas
- ✓ A alocação dos tratamentos é feita de forma a que cada tratamento apareça exactamente uma única vez em cada linha e uma única vez em cada coluna.

Por exemplo: 4 linhas (L1, L2, L3, L4), 4 colunas (C1, C2, C3, C4) e 4 tratamentos (A,B,C,D) **3 factores em estudo**: factor variedade (ou, fertilizante, etc.) (4 níveis), factor Linha (4 níveis) e Factor Coluna (4 níveis).

	C1	C2	C3	C4
L1	Α	С	В	D
L2	В	D	С	Α
L3	С	Α	D	В
L4	D	В	Α	С

Mas, quando o número de tratamentos é elevado (nº de níveis de 1 factor), torna-se difícil garantir a homogeneidade dentro do bloco!

Surgiram depois os delineamentos pertencentes à classe dos

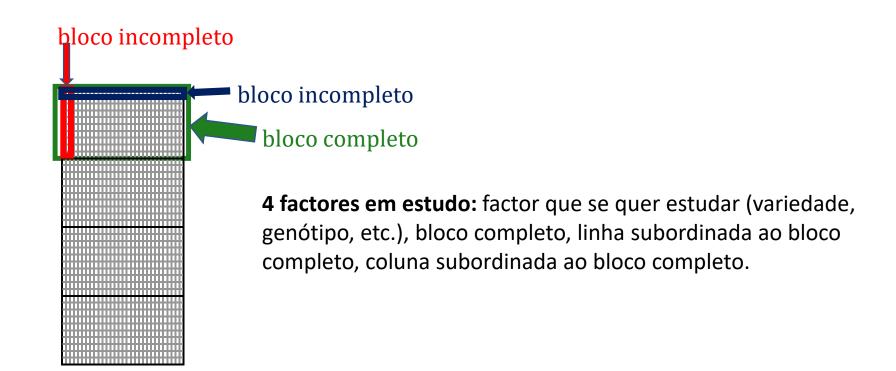

Delineamentos em Blocos Incompletos,

direcionados para o controlo da heterogeneidade (nomeadamente, espacial em ensaios agrícolas) em ensaios com maior número de tratamentos.

• Quando o número de tratamentos (v) é grande, o controlo da heterogeneidade poderá ser conseguido constituindo pequenos conjuntos homogéneos de unidades experimentais, isto é:

uma repetição de tamanho v pode ser dividida em s blocos incompletos, cada um de tamanho k (k < v), sendo v = ks.

Um delineamento com *r* repetições (blocos completos) deste tipo é designado por <u>Delineamento Experimental em</u> <u>Blocos Incompletos Resolúvel</u>.



- \triangleright Os delineamentos em blocos incompletos equilibrados originais de *Yates* (1936; 1940) requerem que v seja o quadrado de k.
- ▶ Delineamentos em blocos incompletos resolúveis, particularmente adequados para ensaios com um grande número de tratamentos, são os delineamentos alfa (Patterson e Williams, 1976): v/k um número inteiro; > eficiência quando o tamanho do bloco, k, for menor que a raiz quadrada do número de tratamentos, v, e então, menor que s (Giesbrecht e Gumpertz, 2004).

3 factores em estudo: factor que se quer estudar (variedade, genótipo, etc.), bloco completo e bloco incompleto subordinado ao bloco completo.

O Delineamento Linha-Coluna Resolúvel (RCD) (Williams e John, 1989) é usado quando se suspeita da existência de variação espacial em duas direções no campo, sendo as **linhas e colunas** utilizadas conjuntamente para introduzir dois fatores de controlo da heterogeneidade espacial (generalização dos quadrados latinos para situações mais complexas).

Neste caso, têm-se blocos incompletos simultaneamente nas linhas e nas colunas e o delineamento é resolúvel se, em cada repetição, o número de tratamentos v for igual ao número de linhas l, multiplicado pelo número de colunas c, isto é, v = lc.

design.alpha																						34
design.bib .																						35
design.crd .																						37
design.cyclic																						38
design.dau .																						40
design.graec	0																					41
design.lattice	•																					43
design.Isd .																		_				44
design.mat.																						45
design.rcbd																						46
design.split																						47
design.strip																						49
design.voude	'n																					50

Delineamento totalmente casualizado (CRD) Example: 3 tratamentos, 4 repetições

design.crd

Gera um delineamento experimental totalmente casualizado

Arguments:

trt Treatments
r Replications
serie number plot
seed seed
kinds method for to randomize
randomization TRUE or FALSE – randomize

```
> trt <- c("A", "B", "C")
> repetition <- 4
> outdesignCRD <-
design.crd(trt,r=repetition,seed=851,serie=0,
randomization=TRUE)
> print(outdesignCRD)
  plots r trt
    4
    6
            Α
    9
        4
    10
         4 B
    12
12
        4 A
```

Exemplo: 5 tratamentos, 4 repetições

design.rcbd

Gera um delineamento em blocos completos casualizados

Arguments:

trt Treatments
r Replications or blocks
serie number plot
seed seed
kinds method for to randomize
first TRUE or FALSE - randomize rep 1
continue TRUE or FALSE, continuous
numbering of plot
randomization TRUE or FALSE - randomize

lizados (RCBD)
> trt <- c("A", "B", "C","D","E")
> repetition<-4
> outdesignRCBD <- design.rcbd(trt,r=repetition,
seed=756, serie=2, randomization=TRUE)
> print(outdesignRCBD)
\$parameters
\$parameters\$design
[1] "rcbd"
\$parameters\$trt
[1] "A" "B" "C" "D" "E"
\$parameters\$r
[1] 4
\$parameters\$serie
[1] 2
\$parameters\$seed
[1] 756
\$parameters\$kinds
[1] "Super-Duper"
\$parameters[[7]]
[1] TRUE

```
$sketch
  [,1] [,2] [,3] [,4] [,5]
[1,] "D" "E" "A" "B" "C"
[2,] "B" "A" "E" "C" "D"
[3.] "B" "D" "E" "A" "C"
[4,] "A" "E" "B" "D" "C"
$book
 plots block trt
1 101 1 D
  102 1 E
  103
        1 A
   104
        1 B
   105
        1 C
   201
        2 B
   202
        2 A
   203
        2 E
   204
        2 C
         2 D
   301
   302
         3 D
   303
         3 E
   305
                    216
20 405
         4 C
```

Delineamento em Quadrado Latino (LSD) Exemplo: 4 tratamentos, 4 repetições

design.lsd

Gera um delineamento em quadrado latino

Arguments

trt Treatments
serie number plot
seed seed
kinds method for to randomize
first TRUE or FALSE - randomize rep 1
randomization TRUE or FALSE - randomize

```
$sketch
> trt <- c("A", "B", "C", "D")
                                                  [,1] [,2] [,3] [,4]
> repetition<-4
                                               [1,] "B" "C" "A" "D"
> outdesignLSD<- design.lsd(trt, seed=543, serie=2,
                                               [2,] "D" "A" "C" "B"
randomization=TRUE)
                                               [3,] "C" "D" "B" "A"
> print(outdesignLSD)
                                               [4,] "A" "B" "D" "C"
$parameters
$parameters$design
                                               Sbook
[1] "Isd"
                                                 plots row col trt
$parameters$trt
                                               1 101 1 1 B
[1] "A" "B" "C" "D"
                                                  102 1 2 C
$parameters$r
                                                  103 1 3 A
[1] 4
                                                  104 1 4 D
$parameters$serie
                                                  201 2 1 D
[1] 2
                                                  202 2 2 A
$parameters$seed
                                                  203 2 3 C
[1] 543
                                                  204 2 4 B
$parameters$kinds
                                                  301 3 1 C
[1] "Super-Duper"
                                                   302 3 2 D
$parameters[[7]]
                                                   303 3
                                                          3 B
[1] TRUE
                                               12 304 3 4 A
                                                   401 4 1 A
                                               14 402 4 2 B
                                               15 403 4 3 D
                                               16 404 4 4 C
```

Delineamento em parcelas divididas (Split-Plot)

design.split

Gera um delineamento em parcelas divididas design.split(trt1, trt2,r=NULL, design=c("rcbd","crd","lsd"),serie = 2, seed = 0, kinds = "Super-Duper", first=TRUE,randomization=TRUE)

Arguments

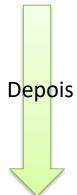
trt1 Treatments in Plots
trt2 Treatments in Subplots
r Replications or blocks
design Experimental design

serie number plot, 1: 11,12; 2: 101,102; 3: 1001,1002

seed seed

kinds method for to randomize

first TRUE or FALSE - randomize rep 1


randomization TRUE or FALSE - randomize

Exemplo: delineamento em parcelas divididas em blocos completos casualizados - 5 blocos completos cada um com 2 tratamentos principais (grandes parcelas, 2 níveis do factor A), divididos em 3 outros tratamentos (pequenas parcelas, 3 níveis do factor B)

```
> wholeplot<-c("T1", "T2")</pre>
> subplot<-c("R1", "R2", "R3")</pre>
> outdesignSPLIT<- design.split(wholeplot, subplot, r=5,
design="rcbd", serie = 2, seed = 555, kinds = "Super-
Duper", first=TRUE,randomization=TRUE)
 > outdesignSPLIT$book
  plots splots block wholeplot subplot
 3 101 3 1 T1 R1
             T1
                                                            218
```

30 110 3 5 T2 R2

E muitos outros delineamentos experimentais...

Modelos de análise de dados adequados

(devem traduzir o delineamento experimental adotado)

Para os delineamentos mais simples e mais clássicos, serão apresentados os correspondentes modelos de "Análise de Variância"