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SUMMARY

 

It is becoming increasingly evident that a plant–pathogen interac-
tion may be compared to an open warfare, whose major weapons
are proteins synthesized by both organisms. These weapons were
gradually developed in what must have been a multimillion-
year evolutionary game of ping-pong. The outcome of each battle
results in the establishment of resistance or pathogenesis. The
plethora of resistance mechanisms exhibited by plants may be
grouped into constitutive and inducible, and range from morpho-
logical to structural and chemical defences. Most of these
mechanisms are defensive, exhibiting a passive role, but some
are highly active against pathogens, using as major targets the
fungal cell wall, the plasma membrane or intracellular targets.
A considerable overlap exists between pathogenesis-related
(PR) proteins and antifungal proteins. However, many of the now
considered 17 families of PR proteins do not present any known
role as antipathogen activity, whereas among the 13 classes of
antifungal proteins, most are not PR proteins. Discovery of novel
antifungal proteins and peptides continues at a rapid pace. In
their long coevolution with plants, phytopathogens have evolved
ways to avoid or circumvent the plant defence weaponry. These
include protection of fungal structures from plant defence
reactions, inhibition of elicitor-induced plant defence responses
and suppression of plant defences. A detailed understanding of
the molecular events that take place during a plant–pathogen

 

interaction is an essential goal for disease control in the future.

 

INTRODUCTION

 

In their long association with pathogens, plants evolved an
intricate and elaborate array of defensive tools. At the same time,

those very same pathogens developed means to overcome plant
resistance mechanisms in what must have been a multimillion-
year evolutionary game of ping-pong (Keen, 1999b). As each defensive
innovation was established in the host, new ways to circumvent
it evolved in the pathogen. Over time, the coevolutionary struggles
between would-be pathogens and their erstwhile hosts have
generated some of the most complex and interesting interactions
known to biology (Taylor, 1998). A plant–pathogen interaction
may therefore be considered as an open warfare, whose major
weapons are proteins synthesized by both organisms (Ferreira

 

et al

 

., 2006).
The cuticle and the plant cell wall, for example, are pre-formed

physical barriers often claimed to constitute the first line of plant
defence by protecting against pathogen penetration. In addition,
they are also a source of signals used by the invading pathogens
to activate their responses or by plants to induce defence mech-
anisms. Nevertheless, recent evidence challenged the traditional
view of the plant cell wall as a passive structural barrier to
pathogen invasion. Apparently, plants are able to sense perturba-
tion of the cell wall by monitoring the integrity of its structure. For
example, mutations in the Arabidopsis cellulose synthase gene

 

CESA3

 

 exhibit constitutive activation of jasmonate- and ethylene-
mediated defence gene expression and enhanced resistance to
powdery mildew pathogens (Cano-Delgado 

 

et al

 

., 2003; Nishimura

 

et al

 

., 2003). The papilla is a local cell-wall fortification formed on
the inner side of the plant cell walls at the site of pathogen penetra-
tion that is regarded as an inducible structural barrier. In the
case of powdery mildews, papillae have been reported to play an
important role against fungal invasion (Thordal-Christensen 

 

et al

 

.,
2000; Zeyen 

 

et al

 

., 2002).
Fungal pathogens almost invariably trigger cell wall-associated

defence responses, such as extracellular hydrogen peroxide
generation and callose deposition, when they attempt to penetrate
either resistant or susceptible plant cells. Expression of these
defences involves communication between the plant cell wall
and the cytosol across the plasma membrane. Indeed, peptides
containing an Arg–Gly–Asp (RGD) motif which interfere with
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plasma membrane–cell wall adhesion or disruption of plant
microfilaments reduce the expression of cell wall-associated
defence responses during the penetration of non-host plants by
biotrophic fungal pathogens with the consequent increment in
fungal penetration efficiency (Mellersh and Heath, 2001).

The actin cytoskeleton has been shown to contribute to both
pre-invasion resistance and papillary callose formation in the
interactions between 

 

Arabidopsis thaliana

 

 and non-adapted

 

Colletotrichum

 

 species (Shimada 

 

et al

 

., 2006). This study showed
an extensive reorganization of actin microfilaments leading to
polar orientation of large actin bundles towards appressorial
contact sites. Non-adapted 

 

Colletotrichum

 

 species differentiate
melanized appressoria on Arabidopsis leaves but fail to form
intracellular hyphae. Analyses of non-pathogenic 

 

C. lagenarium

 

mutants indicated penetration-peg formation as the inductive cue
for papillary callose formation. However, the incidence of papilla
formation at fungal entry sites is greatly reduced during the
compatible interaction of Arabidopsis with 

 

C. higginsianum

 

,
indicating that this adapted pathogen may suppress pre-invasion
resistance at the cell periphery (Shimada 

 

et al

 

., 2006). Indeed,
biotrophic fungi may manipulate the plant cell wall surveillance
system for the establishment of biotrophy, subverting the inter-
connected plant defence signalling pathways or the underlying
resistance mechanisms (Jones and Takemoto, 2004; Schulze-
Lefert, 2004).

Recent observations have revealed that molecular processes
occurring at and in plant cell walls may also function in fungal
pathogenesis. The 

 

β

 

-1,3-

 

D

 

-glucan callose is rapidly synthesized
and deposited at plant cell wall upon microbial attack. Arabidopsis
mutants in the gene encoding the single glucan synthase responsible
for papillary callose synthesis exhibit broad-spectrum enhanced
resistance to powdery mildew fungi, suggesting a role for the
wild-type gene in fungal colonization of the host cells. Callose may
facilitate penetration of pathogens into host cells by providing a
structural collar for the intruder. It has been suggested that the
glucan synthase participates in the containment of pathogen-
derived elicitors at infection sites, thereby preventing their
perception by the plant, or in the protection of the invading
pathogen against plant-derived antimicrobial compounds (Gomez-
Gomez and Boller, 2002; Jacobs 

 

et al

 

., 2003; Nishimura 

 

et al

 

.,
2003).

Therefore, emerging evidence suggests that pathogens may
take over selected aspects of plant gene expression to their own
benefit. In this way, they may induce the expression of some
components required for the infection or development processes,
or they may repress components of the host defence system,
such as, for example, proteins of the cytoskeleton. In 

 

Arabidopsis
thaliana

 

 and barley (

 

Hordeum vulgare

 

), for example, the presence
of specific isoforms of the family of heptahelical plasma membrane-
localized MLO proteins is required for successful host-cell
invasion by powdery mildew fungi (Panstruga, 2005). This study

concluded that powdery mildew fungi appear specifically to
corrupt MLO to modulate vesicle-associated processes at the
plant cell periphery for successful pathogenesis.

 

TARGETS FOR THE PLANT DEFENCE 
MECHANISMS

 

The fungal cell wall

 

The molecular model of the cell wall of 

 

Saccharomyces cerevisiae

 

that is generally accepted (Klis 

 

et al

 

., 2006; Theis and Stahl, 2004)
contains three major classes of carbohydrate polymers, chitin,

 

β

 

-1,3-glucan and 

 

β

 

-1,6-glucan, and two main classes of glycosylated
cell wall proteins (CWPs). There is no complete model of the cell
wall of filamentous fungi available yet, but many similarities are
expected to occur between the cell walls of these groups of fungi.

Chitin, a natural homopolymer of 

 

β

 

-1,4-linked 

 

N

 

-acetyl-

 

D

 

-
glucosamine residues, is the major cell wall component in
filamentous fungi (BeMiller, 1965). The concentration of chitin
in the cell walls of these organisms (~10%) is significantly higher
than in yeasts (2%) (Theis and Stahl, 2004). In Oomycetes, chitin
is only a minor component of their cell walls (Barkai-Golan

 

et al

 

., 1978; Schoffelmeer 

 

et al

 

., 1999). Therefore, it is not surpris-
ing that plants synthesize a large number of defence proteins
capable of binding to chitin and chitin oligosaccharides. Most but
not all of these proteins bind to chitin through a conserved amino
acid sequence known as the chitin-binding domain (Chrispeels
and Raikhel, 1991). Many chitin-binding proteins have been
isolated from numerous plant species, especially from their seeds.
Examples are class I chitinases (Gomes 

 

et al

 

., 1996; Leah 

 

et al

 

., 1991),
lectins such as wheat (

 

Triticum aestivum

 

) germ agglutinin (WGA)
(Broekaert 

 

et al

 

., 1987; Wright 

 

et al

 

., 1991), and antimicrobial
peptides such as hevein (Broekaert 

 

et al

 

., 1992).
One in six aminosaccharide chitin residues can be devoid of an

acetyl group (Blackwell, 1988). Deacetylation is a common process
involved in chitin–protein interaction and leads to chitosan forma-
tion (Blackwell, 1988), another structural polysaccharide found
in fungal cell walls. Plant antifungal proteins have been described
exhibiting chitosanase activity.

Glucans are the second major component of the fungal cell
wall. Apart from 

 

β

 

-1,3-glucan, which is the primary glucan,
several other linkages such as 

 

α

 

-1,3, 

 

α

 

-1,4, 

 

β

 

-1,4 and 

 

β

 

-1,6 have
also been detected in fungal cell walls.

 

The fungal membrane

 

The fungal plasma membrane is the target for the largest group
of antifungal and antimicrobial proteins (Theis and Stahl, 2004).
Over 500 naturally occurring proteins have been reported that
are believed to interact with the fungal membrane, leading to
pore formation, efflux of cellular components and changes in the
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membrane potential (Tossi 

 

et al

 

., 2000). They exhibit an enormous
diversity of structures but share at least two common features
(Tossi 

 

et al

 

., 2000): a positive net charge under physiological
conditions, which promotes interaction with negatively charged
microbial surfaces; and an amphipathic structure (i.e. a structure
with two faces, one being positively charged and the other
neutral or hydrophobic) that allows incorporation into pathogen
membranes. A striking difference between higher eukaryotes
and fungal membranes concerns the embedded sterols. The
plasma membrane of higher eukaryotes contains cholesterol,
sitosterol and/or campesterol, whereas fungal membrane
ergosterol comprises ~2% of the fungal dry weight (Brennan

 

et al

 

., 1974; Rattray 

 

et al

 

., 1975). It is noteworthy to mention that
ergosterol is a non-specific fungal elicitor that induces expression
of a specific set of plant defence-related genes (Lochman and
Mikes, 2006).

 

Intracellular targets

 

To enter fungal cells, plant antifungal proteins must pass through
the fungal cell wall and membrane. This may explain the low number
of reports on plant defence proteins interacting with the plethora
of potential fungal intracellular targets.

 

PREFORMED VERSUS INDUCIBLE DEFENCE 
MECHANISMS

 

Plants have evolved a network of intricate and elaborate defence
systems that mediate their interaction with the environment. In
what concerns the challenge by fungal pathogens, their resistance
is determined by an impressive combination of both constitutive
and inducible defence mechanisms that involve a vast array of
proteins and other organic molecules produced prior to infection
or during pathogen attack (Dixon and Harrison, 1990). For example,
the completion of the Arabidopsis genome sequence showed that
this plant species has a few hundred open reading frames that
encode potential surveillance proteins (Dangl and Jones, 2001).

Preformed or passive defences are the first obstacle an
invading pathogen has to overcome before disease is established.
The typical preformed, constitutive defences are morphological,
structural and chemical barriers. A recognized example of a
morphological barrier is the height of lips of stomatal guard cells
(Keen, 1999a). As shown by Hoch 

 

et al

 

. (1987), certain fungal rust
pathogens possess exquisite detection mechanisms that sense
the height of stomatal guard cell lips encountered on susceptible
plants. Thus, when the hyphae find a lip of the proper height, they
are programmed to undergo a developmental process resulting
in the formation of invasive structures that enter the stomata and
begin colonization of the leaf interior.

Structural barriers, such as waxes, cutin, suberin, lignin, cellulose,
callose and cell wall proteins, are often rapidly reinforced upon

the infection process. In addition, plants constitutively produce a
plethora of secondary metabolites and antifungal proteins, many
of which can act as antimicrobial compounds during defence
against microorganisms. These include phenolics of varying
structural sophistication, saponins, terpenoids and steroids. Some
preformed compounds are directly toxic, whereas others occur as
conjugates such as glycosides that are not toxic 

 

per se

 

, but become
poisonous following disruption of the conjugate. Plant glycosides,
for instance, are often hydrolysed by vacuolar glycosidases follow-
ing pathogen invasion, releasing aglycones that may be quite toxic,
not only to the invader but also to neighbouring plant cells (Keen,
1999a). By contrast, some plant preformed compounds are toxic
as glycosides, but lose toxicity when deglycosylated. The growth
of the wheat root-infecting fungus 

 

Gaeumannomyces graminis

 

var. 

 

tritici

 

 is inhibited by avenacin. Therefore, oat (

 

Avena sativa

 

)
plants producing this preformed triterpene saponin glycoside
exhibit resistance to the pathogen. However, the related oat root
pathogen 

 

G. graminis

 

 var. 

 

avenae

 

 produces a glycosidase that
removes the sugar residue from avenacin, effectively detoxifying
it. Therefore, this strain is not inhibited by avenacin and oat plants
are susceptible to it (Osbourn 

 

et al

 

., 1994). A mutation in the
glycosidase gene rendered 

 

G. graminis

 

 var. 

 

avenae

 

 sensitive
to avenacin and incapable of infecting oat plants (Bowyer 

 

et al

 

.,
1995). By contrast, engineered oat plants that lack or have only
trace amounts of avenacin are compromised for disease resistance
against the non-host fungal pathogens 

 

G. graminis

 

 var. 

 

tritici

 

 and

 

Fusarium culmorum

 

 (Papadopoulou 

 

et al

 

., 1999).
Besides constitutive defences, an important plant strategy is

to initiate defences in response to pathogen attack (Karban
and Baldwin, 1997). Inducible resistance mechanisms are active,
energy-requiring systems typified by specific recognition of an
invader that ultimately leads to the production of proteins or
metabolites that are antagonistic to the invader (Keen, 1999a).
They are considered the second obstacle an invading pathogen
has to face when attempting infection. Inducible defences may
have several advantages such as reducing biosynthetic costs of
defence or avoiding the fact that other organisms may exploit the
defence to their own benefit (Cipollini 

 

et al

 

., 2003; Karban and
Baldwin, 1997; Zangerl, 2003). In addition, the variation in plant
genotype that is caused by inducible defences may reduce the
chances that attackers adapt to plant defences (Agrawal and
Karban, 1999). Inducible or active defence mechanisms mainly
involve the oxidative burst, localized cell death, accumulation of
phytoalexins, synthesis of pathogenesis-related (PR) proteins
and cell wall strengthening proteins such as hydroxyproline-rich
glycoproteins, and enhanced transcription of genes encoding
enzymes involved in the flow of carbon from the primary to the
secondary metabolism of plants, such as peroxidases, lipooxy-
genases, superoxide dismutases and phenylalanine ammonia lyase
(PAL), a key enzyme in the biosynthesis of phenolic compounds with
antimicrobial activity (Montesinos, 2000).



 

680

 

R. B. FERREIRA 

 

et al.

 

  

 

MOLECULAR PLANT PATHOLOGY

 

 (2007)  

 

8

 

(5 ) , 677–700 © 2007 BLACKWELL  PUBL ISH ING LTD

 

Besides chemical, structural inductive mechanisms are mostly
related to the plant cell wall. Modification of the plant cell wall
was recognized as a potential resistance mechanism more than
80 years ago (Young, 1926). Lignification and other chemical
modifications of plant cells around the sites of infection lead to
wall thickening and the formation of local additions or callosities
in the paramural space (i.e. the space between the cell wall
and the plasma membrane). Nevertheless, formation of the cell
wall apposition (CWAs) or papillae is usually accompanied by
the induction of co-localized chemical responses (Bestwick 

 

et al

 

.,
1998; Matern 

 

et al

 

., 1995; McLusky 

 

et al

 

., 1999; Nicholson and
Hammerschmidt, 1992; Schmelzer, 2002; Thordal-Christensen

 

et al

 

., 1997).
Plant cytoskeleton also plays a significant role in inducible

disease resistance. Plant actin microfilaments have been
implicated in defence against fungal penetration and their
disruption leads to the loss of non-host resistance against
several non-host pathogens (Kobayashi 

 

et al

 

., 1992). Treatment
of several non-host plants (e.g. barley and wheat) with cytocha-
lasins, specific inhibitors of actin polymerization, allows several
non-host fungi to penetrate the cells of these plants (Kobayashi

 

et al

 

., 1997).
The inducible responses are turned on systematically in the

plant in response to attempted infection. First, in the localized
response, a spatially confined necrosis is frequently induced that
results either from cell death caused by the action of the pathogen
in a compatible interaction or from an endogenous plant cell
death response following recognition of the pathogen by the
host in an incompatible interaction—the hypersensitive response
(HR) (Maleck and Dietrich, 1999). The HR is a pathogen-induced,
rapid and localized cell suicide at the spot of infection in which
the plant cells react to the invading pathogen by a kind of
programmed cell death consisting of electrolyte leakage from the
cytoplasm and oxidative burst (Montesinos, 2000). As a result,
the pathogen remains confined to necrotic lesions near the site
of infection. Thus, as described by Chester (1933), HR is a type of
blocking necrosis often developed by non-host plants against
many plant pathogens that invade their tissues. The knowledge
on signal transduction in the HR is still rather incomplete, but
several interesting genes have already been identified, including
protein kinases and phosphatases, calmodulin genes and others
of unknown biochemical function that ultimately activate transcrip-
tion of defence response genes. Localized acquired resistance in
a ring of cells surrounding necrotic lesions ensure that they become
fully refractory to subsequent infection (Bonas and Lahaye, 2002;
Fritig 

 

et al

 

., 1998). Experiments performed in Tetep, a rice (

 

Oryza
sativa

 

) cultivar resistant to both 

 

Cochliobolus miyabeanus

 

 and

 

Magnaporthe grisea

 

, showed that inoculation with either pathogen
triggered the HR. However, in rice cv. Nakdong, susceptible to both
fungi, 

 

M. grisea

 

 did not cause HR whereas 

 

C. miyabeanus

 

 caused
rapid cell death (Ahn 

 

et al

 

., 2005).

Within a few hours of the localized necrosis, the plant begins
to express a set of defence genes both locally, at the point of
infection, and systemically, throughout the rest of the plant (Antoniw

 

et al

 

., 1980a; van Loon, 1985). Thus, local HR often triggers a
systemic signal that transduces non-specific resistance throughout
the plant, leading to systemic acquired resistance (SAR), which
confers long-lasting, enhanced resistance against subsequent
infections by a broad spectrum of pathogens (Durrant and Dong,
2004; Ryals 

 

et al

 

., 1996; Somssich, 2003; Sticher 

 

et al

 

., 1997).
In contrast to HR, the development of SAR is slow and gradual
(Scheel, 1998). In this systemic defence, the signal spreads from
the place of plant–pathogen interaction and is mediated by an
interacting set of endogenous defence signalling molecules that
have been identified as messengers in plants, including salicylic
acid (SA), jasmonic acid (JA), ethylene (ET), nitric oxide (NO) or
reactive oxygen species (ROS) (Baker 

 

et al

 

., 1997; Beckers and
Spoel, 2006; Montesano 

 

et al

 

., 2003). These messengers interact
with specific binding proteins, which are involved in the transcrip-
tional activation of pathogen-responsive genes. These SAR genes
are thought to be responsible for the increased resistance of the
non-infected, secondary plant tissues to subsequent infections by
the same or even unrelated pathogens (Maleck and Dietrich,
1999; Montesano 

 

et al

 

., 2003).
Increasing evidence suggests the existence of cross-talk among

the induced defence mechanisms (Beckers and Spoel, 2006).
Apparently, these are not controlled by independent linear
signalling cascades, but components of one pathway may affect
the signalling through other pathways (Maleck and Dietrich,
1999). Several examples have been reported on antagonistic or
synergistic interactions between defence responses. Current know-
ledge suggests that plants do not activate a stereotypic defence
response against all pathogen attacks, but rather appear to
recognize a multitude of components from a particular pathogen
to fine-tune a specific response. Experiments performed under
laboratory conditions have shown that elicitors, avirulence
factors and mechanical stress each only induce a subset of the
plant response to pathogens (Gus-Mayer 

 

et al

 

., 1998).

 

PLANT DEFENSIVE WEAPONARY AGAINST 
FUNGAL PATHOGENESIS

 

A plant–pathogen interaction may be regarded as an open
warfare, whose weapons are proteins and low-molecular-mass
compounds synthesized by both organisms. The outcome of each
battle results in the establishment of resistance or pathogenesis.
This is readily illustrated by the following example.

Plant cell walls, essentially composed of polysaccharides and
proteins, are attacked by a range of degrading enzymes liberated
by many pathogenic fungi. These hydrolases fragment the plant
cell wall polymers releasing oligosaccharides and facilitating
colonization of the host cells. The oligosaccharides not only
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provide the fungus with a carbon source but are also perceived
by and elicit the plant defensive mechanisms. Thus, for example,
pectin, a major component of the cell walls in many plants, is
cleaved by fungal endopolygalacturonases (EPGs) with the tran-
sient formation of elicitor-active oligogalacturonides (OGAs) with
degrees of polymerization between 9 and 15. For this reason,
OGAs are rapidly converted to smaller, biologically inactive frag-
ments by the EPGs.

To increase the lifetime of the biologically active oligosaccha-
rides, plants release inhibitors of fungal glycanases. These include
inhibitors of pectin-degrading enzymes such as polygalacturo-
nases, pectin methyl esterases and pectin lyases, and cross-linking
glycan (known earlier as hemicelluloses)-degrading enzymes
such as endoxylanases and xyloglucan endoglucanases (Juge,
2006). For example, plant polygalacturonase-inhibiting proteins
(PGIPs) are glycoproteins present in the apoplast of many plants
that form reversible high-affinity complexes with fungal EPGs,
reducing their catalytic activity by one or two orders of magni-
tude. By limiting EPG activity, the lifetime and concentration of
OGAs are increased, prolonging or enhancing plant defence
responses (Desiderio 

 

et al

 

., 1997; Powell 

 

et al

 

., 1995).
Conversely, fragmentation of the fungal cell wall by plant-

derived chitinases and 

 

β

 

-1,3-glucanases also generates oligosac-
charides that induce plant defence responses. In return, fungi
produce glucanase inhibitor proteins (GIPs) that prevent degra-
dation of their own cell wall, thus limiting their perception by the
plants (Albersheim and Valent, 1974). Major groups of proteins
involved in plant defence are the pathogenesis-related proteins
and the antifungal proteins, both of which are treated in the next
sections of this article. However, plants also produce lower
molecular mass defensive compounds. Selected examples, con-
sidered below, are ROS and phytoalexins.

ROS, such as superoxide anions, hydroxyl radicals and hydro-
gen peroxide, play an important role in plant defence during
plant–pathogen interactions (Wu 

 

et al

 

., 1997). ROS are directly
toxic to microbial invaders, catalyse oxidative cross-linking of the
cell wall at the site of attempted infection and participate in sig-
nalling the onset of other defence responses (Nurnberger 

 

et al

 

.,
2004). Thus, hydrogen peroxide is produced by plant cells in
response to infection (Baker and Orlandi, 1995), triggering the
HR (Tenhaken 

 

et al

 

., 1995), strengthening cell walls (Brisson

 

et al

 

., 1994) and enhancing lignin formation (Wu 

 

et al

 

., 1995).
In addition, H

 

2

 

O

 

2

 

 directly inhibits pathogen growth (Wu 

 

et al

 

.,
1995) and induces the synthesis of PR proteins, phytoalexins,
SA and ethylene (Chamnongpol 

 

et al

 

., 1998; Mehdy, 1994; Wu

 

et al

 

., 1997).
Phytoalexins are low-molecular-mass secondary metabolites

of a non-proteinaceous nature which are produced by a broad
range of plant species. They display an enormous chemical diver-
sity, exhibit antimicrobial and antifungal activities, are induced
by pathogen infection and elicitors (Grayer and Kokubun, 2001;

Hammerschmidt, 1999), and are synthesized through complex
biochemical pathways such as the shikimic acid pathway (Dixon

 

et al

 

., 1996).
As for chitinases and glucanases, it has been difficult to demon-

strate a direct role for phytoalexins in plant resistance to pathogen
attack (Punja, 2001). Wild-type 

 

Arabidopsis thaliana

 

 is resistant
to 

 

Alternaria brassicicola

 

, exhibiting a typical HR in response
to inoculation with this fungus (Thomma 

 

et al

 

., 1998). 

 

pad3-1

 

, an
Arabidopsis phytoalexin-deficient (pad) mutant, is compromised
for non-host resistance against 

 

A. brassicicola

 

 (Thomma 

 

et al

 

.,
1999). pad3-1 is required for the biosynthesis of the phytoalexin
camalexin and encodes a putative cytochrome P450 monooxygenase
(Zhou et al., 1999).

Phytoalexins from Vitis species, for example, belong to the
stilbene family of phenolic compounds and derive from trans-
resveratrol (3,5,4′-trihydroxy stilbene) (Jeandet et al., 2002). Trans-
resveratrol has been shown to be excreted from grapevine
cell cultures. Among the viniferins, considered as oligomers of
resveratrol, ε-viniferin (a cyclic resveratrol dehydrodimer) and
α-viniferin (a cyclic resveratrol dehydrotrimer), have been reported
to accumulate in grapevine in response to pathogen attack or
stress (Jeandet et al., 1997; Langcake and Pryce, 1977; Pryce and
Langcake, 1977). ε-Viniferin, for example, increases intracellularly
in response to endopolygalacturonase I (elicitor) from Botrytis
cinerea and to UV-light irradiation. Other stilbenes detected in
grapevine include trans-pterostilbene, a dimethylated resveratrol
derivative (3,5-dimethoxy-4′-hydroxystilbene), trans- and cis-piceid,
a 3-O-β-D-glucoside of resveratrol, trans- and cis-astringin, a 3-O-
β-D-glucoside of 3′-hydroxyresveratrol, and trans- and cis-resveratrol-
oside, a 4′-O-β-D-glucoside of resveratrol (Jeandet et al., 2002).

PATHOGENESIS-RELATED PROTEINS

The concept of pathogenesis-related protein (abbreviation: PR)
was introduced in 1980 to designate any protein coded for by the
host plant but induced only in pathological or related situations
(Antoniw et al., 1980b), including viral, fungal or bacterial infections,
parasitic attack by nematodes, phytophagous insects and other
higher forms of animals such as herbivores. Abiotic stresses and
disorders were not considered inducers of PR proteins, although
certain non-infectious physiological conditions (e.g. toxin-induced
chlorosis or necrosis) often trigger induction of certain PR proteins
(Jayaraj et al., 2004). More recent reports have shown the induc-
tion of PR proteins as a result of colonization by non-pathogenic/
beneficial fungi and bacteria (Blilou et al., 2000; Coventry and
Dubery, 2001; Yedidia et al., 2000; Zehnder et al., 2001). The major
criterion for inclusion among the PR is that the protein (or protein
isoform) concerned is newly expressed upon infection, although
not necessarily in all pathological conditions (van Loon, 1999).
According to this definition, proteins that are constitutively
present in low but detectable amounts in healthy tissues but which
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are induced under pathological conditions are not considered
PR proteins. These concepts were initially based on experiments
performed in the 1970s on tobacco (Nicotiana tabacum) leaves
reacting hypersensitively to tobacco mosaic virus (van Loon and
van Kammen, 1970).

PR proteins were initially found to be typically acidic, of low
molecular mass, highly resistant to proteolytic degradation and
to low pH values, and localized predominantly extracellularly in the
intercellular space of leaves. Following infection, they accumulate
in leaves and other organs, where they may comprise more than
10% of the total soluble protein.

The term PR-like protein was proposed to accommodate proteins
that are present in healthy plants, being induced essentially in
a developmentally controlled, tissue-specific manner. These
proteins, which are not synthesized in response to pathogen
infection or related stresses, are predominantly basic and
localized intracellularly in the vacuole (van Loon et al., 1994).
As new proteins are discovered, a clear distinction between PR
and PR-like proteins is sometimes difficult to establish. This is the
case, for example, of basic chitinase and glucanase from mature
leaves, which can be expressed in a developmentally controlled
manner or induced in response to infection in the same organs;
and also for acidic and basic glucanase and chitinase, which
may be expressed constitutively in floral organs and inducible by
pathogens in leaves (van Loon, 1999).

The distinction between PR proteins and PR-like proteins
became blurred by the discovery of specific PR proteins in healthy
tissues and the induction of PR-like proteins upon pathogen
attack. Contrary to the initial definition of PR protein, many
authors subsequently considered as PR proteins many proteins
whose synthesis is induced in response to biotic stress. Recently,
van Loon et al. (2006) introduced the general term ‘inducible
defence-related proteins’ to include proteins that are mostly
non-detectable in healthy tissues and for which induction at the
protein level has been demonstrated after pathogen infection.
Therefore, this general term encompasses both known PR protein
families and non-classified proteins meeting the above criteria
but fails to include many proteins that are present in healthy
tissues and are induced upon microbial infection.

The induction of some PR proteins under pathological conditions
suggests, but does not prove, a role for these proteins in plant
defence (van Loon, 1990). Therefore, these proteins have been
generally considered as defence proteins, functioning in preventing
or limiting pathogen invasion and spread. However, their contribu-
tion to resistance against the initial infection is usually poor.
Nevertheless, if they are already present in a tissue, or if they
have been induced in non-infected, distant tissues as a result of
primary infection in the vicinity, then they confer an enhanced
level of protection.

PR proteins are produced by plants during normal development
or as part of an induced defence from fungal pathogens, against

which they exert biocontrol. Therefore, their biosynthesis and
accumulation is considered a major defence mechanism of plants
against fungal pathogens (Odjakova and Hadjiivanova, 2001;
Somssich and Hahlbrock, 1998). Not only do some of these
proteins exhibit antifungal properties in vitro, but also they have
been shown to be induced in vivo in a very large number of
plants in response to fungal attack. A large group of PR proteins
has been shown to be rapidly and massively induced both locally
around infection sites and systemically (Kombrink and Somssich,
1997). PR proteins are also induced in response to various environ-
mental stress factors, such as drought, salinity, wounding, heavy
metals, endogenous and exogenous elicitor treatment, and
plant growth regulators (Derckel et al., 1996; Xie et al., 1999; Yu
et al., 2001).

The PR proteins encompass several different groups of
structurally and functionally unrelated proteins, which have been
grouped into protein families according to coding sequence
similarities, serological relationships, and/or enzymatic or biological
activities, although additional pathogen-induced proteins with
potential antipathogenic action are consistently being described
(Fritig et al., 1998; Somssich and Hahlbrock, 1998). Initially, four
protein components were detected in hypersensitive tobacco plants,
which were designated I, II, III and IV based on their increasing
order of electrophoretic mobility (van Loon and van Kammen, 1970).
Subsequently, these proteins were classified into five groups, PR-1
to PR-5. Each of these five classical groups of PR proteins com-
prised two subclasses: an acidic subclass, usually encountered in
the extracellular space, whose members are induced by salicylic
acid, and a basic subclass, found in the plant cell vacuole, whose
members are induced by ethylene or jasmonic acid (Boller et al., 1983;
Hamel and Bellemare, 1995; Samac et al., 1990; Selitrennikoff,
2001; Thomma et al., 1998). Seventeen classes are now con-
sidered, numbered in the order in which they were discovered,
from PR-1 to PR-17 (Table 1). The families are numbered and the
different members of the same family are assigned letters according
to the order in which they were described. The function of many
PR proteins remains a mystery. However, members of several of
these families were demonstrated to have damaging actions on
the structures of the parasite, thus exhibiting antifungal activity,
in in vitro bioassays and supporting a possible role for these
proteins in plant defence (Kombrink and Somssich, 1997; Odjakova
and Hadjiivanova, 2001). These include PR-1 and PR-5 (thaumatin-
like proteins and osmotins), which are thought to create transmem-
brane pores and have therefore been termed permatins; PR-2
(β-1,3-glucanases) and PR-3, 4, 8 and 11 (chitinases), which attack
β-1,3-glucans and chitin, respectively, components of the cell walls
in most higher fungi (Honée, 1999). In most cases, an assortment
of PR proteins belonging to diverse subclasses are induced, rather
than a single member of a single family of PR proteins (Datta
et al., 1999). It is also common for some PR proteins to display
synergism. Because chitin and β-1,3-glucan are synthesized
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simultaneously in the apex of growing hyphae of filamentous fungi,
the effectiveness of a hydrolase may depend on the simultaneous
action of another one to hydrolyse mixed chitin–glucan fibres
(Stintzi et al., 1993). Thus, for example, class II β-1,3-glucanases
only show antifungal activity in vitro when they are applied in
combination with chitinases or class I β-1,3-glucanases (Theis
and Stahl, 2004). For these reasons, a genetic engineering strategy
involving constitutive, high-level expression of combinations of
PR proteins with different modes of action against target organisms
may provide broad-spectrum, durable resistance to a variety of
diseases and pests. Several reports have demonstrated that trans-
genic plants over-expressing constitutively some PR genes show
enhanced resistance to fungal pathogens. Examples include over-
expression of chitinases, glucanases and ribosome-inactivating
proteins (RIPs) (Alexander et al., 1993; Hong and Hwang, 2006;
Jach et al., 1995; Mauch et al., 1988), osmotin (Liu et al., 1994)
and others. This strategy ensures that PR proteins are present in
the host plant at levels required for effective resistance before the
pathogen attack. For example, transgenic tomato plants express-
ing only a chitinase transgene or a β-1,3-glucanase transgene were
susceptible to Fusarium oxysporum, but plants expressing both
genes had significantly higher resistance than the plants express-
ing only one of these two enzymes (Jongedijk et al., 1955).

There is also evidence that at least some members of the other
PR protein families display a role against pathogen attack or
predation. Thus, members of the PR-1 family have been associated
with activity against oomycetes (van Loon et al., 2006). PR-6
proteins (proteinase inhibitors) may target nematodes and
herbivorous insects, whereas the PR-7 protein (an endoproteinase)
may be involved in microbial cell wall dissolution (Jordá et al.,

2000). The peroxidase activity of the PR-9 family may act in cell
wall reinforcement by catalysing lignification, leading to enhanced
resistance against multiple pathogens (Passardi et al., 2004),
whereas some members of the PR-10 family exhibit a weak
ribonuclease activity, suggesting a role in defence against
viruses (Bufe et al., 1996; Park et al., 2004a). Members of the PR-12
(defensins), PR-13 (thionins) and PR-14 (lipid transfer proteins)
families display antibacterial and antifungal activities (Bohlmann,
1994; Epple et al., 1997; Garcia-Olmedo et al., 1995; Lay and
Anderson, 2005; Thomma et al., 2002). PR-15 (oxalate oxidases)
and PR-16 (oxalate oxidase-like proteins) proteins generate hydrogen
peroxide that may be toxic to attackers or stimulate plant defence
responses (Bernier and Berna, 2001; Donaldson et al., 2001; Hu
et al., 2003). PR-17 proteins, as yet uncharacterized, have been
detected in infected tobacco, wheat and barley (Christensen
et al., 2002).

Let us consider, for example, the case study of grapevine
(Vitis vinifera). A considerable number of studies have now been
published on the induction of PR proteins in vine plants and on
their inevitable accumulation in grapes during the growing
season (Tattersall et al., 2001). This may occur in healthy grape
berries during the normal fruit development, with véraison (the
French term used by viticulturalists to denote the inception of
ripening) apparently being the trigger for gene expression, or as
a part of an induced defence against the classical PR protein
gene inducers, stress and pathogenic attack. Taken together, these
processes modulate the levels and proportions of the PR proteins
in grapes, in a way that seems to depend on the cultivar, region,
climate and agricultural practices (Ferreira et al., 2001, 2004). For
these reasons, the precise pattern of PR proteins that accumulate

Table 1 Families of pathogenesis-related proteins.

Family Type member Biochemical properties Molecular mass range (kDa)

PR-1 Tobacco PR-1a Unknown 15–17
PR-2 Tobacco PR-2 β-1,3-glucanase 30–41
PR-3 Tobacco P,Q Chitinase class I, II, IV, VI, VII 35–46
PR-4 Tobacco R Chitin-binding proteins 13–14
PR-5 Tobacco S Thaumatin-like 16–26
PR-6 Tomato inhibitor I Proteinase inhibitor 8–22
PR-7 Tomato P69 Endoproteinase 69
PR-8 Cucumber chitinase Chitinase class III 30–35
PR-9 Tobacco ‘lignin forming peroxidase’ Peroxidase (POC) 50–70
PR-10 Parsley ‘PR-1’ ‘Ribonuclease-like’ 18–19
PR-11 Tobacco class V chitinase Chitinase class V 40
PR-12 Radish Rs-AFP3 Defensins 5
PR-13 Arabidopsis THI-2.1 Thionins 5–7
PR-14 Barley LTP4 Lipid transfer proteins 9
PR-15 Barley OxOa (germin) Oxalate oxidases 22–25
PR-16 Barley OxOLP Oxalate oxidase-like protein 100 (hexamer)
PR-17 Tobacco PRp27 Unknown ?

Source: modified from van Loon et al. (2006).
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in mature berries is determined by the precise environmental and
pathological conditions that prevail during vegetative growth
(Monteiro et al., 2003b).

ANTIFUNGAL PROTEINS

Introduction

Antifungal proteins, as their name implies, serve a protective
function against fungal invasion. They are involved in constitutive
and induced resistance to fungal attack and are produced
by a multitude of organisms including flowering plants, gymno-
sperms, fungi, bacteria, insects, molluscs and mammals (Ng,
2004; Selitrennikoff, 2001). Plant seeds are especially rich in
antimicrobial proteins, with levels that are several fold higher
than those present in leaves or flowers (Wang et al., 2001).

A spectacular diversity of amino acid sequences has been
reported for antifungal proteins, with hundreds of them already
known and with more being discovered almost daily (Ng, 2004;
Selitrennikoff, 2001). C. P. Selitrennikoff considered 13 classes of
antifungal proteins (see Table 2), which were named primarily
on the basis of their mechanisms of action (e.g. chitinases, β-
glucanases), their structure (e.g. glycine rich) or their similarity to

a known type of protein (e.g. thaumatin-like protein) (Selitrennikoff,
2001; Theis and Stahl, 2004; Wang et al., 2005). Nevertheless,
several proteins may be and have been classified into more than
one group.

A comparison between Tables 1 and 2 illustrates the corre-
spondence that occurs between the 13 classes of antifungal
proteins proposed by C. P. Selitrennikoff (Selitrennikoff, 2001)
and the 17 families of PR proteins established by van Loon and
colleagues (van Loon et al., 2006). There is partial overlap but not
a complete match between the terms antifungal proteins on the
one hand and PR proteins or inducible defence-related proteins
on the other. However, several of the 17 families of PR proteins
do not exhibit any known antifungal activity, whereas many
antifungal proteins described in the literature are not PR proteins.
The most important difference that emerges between antifungal
proteins and PR proteins is that the latter are induced in plants
in response to infection (and are not necessarily antimicrobial),
whereas the former can be present in any kind of organism (and
are not necessarily induced).

It is important to note that there is a substantial variation in
the effectiveness of closely related proteins against different fungi,
even within individual classes or families of both PR proteins and
antifungal proteins. Thus, for example, PR-1 proteins and chitinases

Table 2 Classes of antifungal proteins.

Class Occurrence Major characteristics Mechanism of action

PR-1 proteins Plants Molecular masses of 15–17 kDa. Homology to the 
superfamily of cysteine-rich proteins

Unknown

β-Glucanases Microorganisms, plants, invertebrates 
and vertebrates

1,3-β-Endoglucanase activity Hydrolysis of the structural 1,3-β-
glucan present in the fungal cell wall

Chitinases Viruses, bacteria, fungi, snails, fish, 
plants, insects, mammals and amphibians

Chitinase activity. Molecular masses of 26–43 kDa Cleave cell wall chitin polymers in situ

Chitin-binding proteins Bacteria, plants, insects and crustaceans Molecular masses of 3.1–20 kDa. Chitin-binding 
proteins

Binding to chitin (?)

Thaumatin-like proteins Plants Molecular masses ~22 kDa. Share significant 
amino acid homology to thaumatin

Not completely understood. Some 
cause fungal cell permeability changes, 
others bind to 1,3-β-glucan and 
exhibit 1,3-β-glucanase activity

Defensins/thionins Mammals, fungi, insects and plants Low-molecular-mass, cysteine- rich proteins Fungal inhibition probably occurs 
through an ion efflux mechanism

Cyclophilin-like proteins Bacteria, plants, animals and fungi Example: mungin Unknown
Glycine/histidine-rich 
proteins

Insects Extremely rich in glycine and histidine, which may 
comprise as much as 80% of the amino acids

Unknown

Ribosome-inactivating 
proteins (RIPs) 

Fungi and plants RNA N-glycosidases that depurinate rRNA Inactivate fungal ribosomes in vitro 
and, presumably, in situ

Lipid transfer proteins 
(LTPs)

Mammals, plants, fungi and bacteria Molecular masses of ~8.7 kDa Unknown

Killer proteins (killer 
toxins)

Yeasts Yeast cells secreting a killer toxin are resistant to 
their own toxin but are sensitive to other toxins

Varied mechanisms of action

Protease inhibitors Plants, animals and microorganisms Protein inhibitors of serine and cysteine proteases Unknown
Other proteins Plants Examples: viridin and snakin-1 Unknown
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have been described which are totally devoid of antifungal activity.
Moreover, more than a 100-fold difference in anti-oomycete activity
has been reported for various PR-1 proteins.

The target structures of the antifungal proteins range from
the outermost part of the fungal cell, the cell wall, to the plasma
membrane and finally to several intracellular targets (Theis and
Stahl, 2004). Therefore, these proteins exhibit a very wide diversity
of action mechanisms, including, for example, inhibition of the
synthesis of the fungal cell wall or disruption of its structure
and/or function, membrane channel and pore formation, damage
to cellular ribosomes, inhibition of DNA synthesis and inhibition
of the cell cycle. Nevertheless, the mode of action of most of these
proteins remains to be elucidated (Ng, 2004; Selitrennikoff, 2001).

PR-1 proteins

The PR-1 family is often the most abundant group of proteins and
is induced to very high levels upon infection, reaching up to 1–2%
of the total leaf protein (Jayaraj et al., 2004). This family is strongly
conserved and has been detected in every plant species examined
to date. Homologues have been encountered in fungi, insects and
vertebrates, including humans (van Loon and van Strien, 1999).

Although the biological function of PR-1 proteins has not yet
been established and their mechanism of action is not understood,
plant PR-1 proteins exhibit antifungal activity both in vitro and in
planta (e.g. in transgenic plants over-expressing tobacco PR-1)
(Niderman et al., 1995; Tahiri-Alaoui et al., 1993). An association
between PR-1 proteins and enhanced resistance against oomycetes
has been suggested. However, not enough data have been reported
in the available literature to rule out a direct role of PR-1
against non-oomycete pathogens (van Loon et al., 2006).
Notably, the prominent PR-1 proteins are often used as markers
of the enhanced defensive state conferred by pathogen-induced
SAR (van Loon et al., 2006).

PR-1 proteins may be divided into two groups, one being acidic
and the other basic (sequence similarity between the two groups
is about 65%) (Jayaraj et al., 2004). In tobacco, at least 16 PR-1-
type genes were detected (Cornelissen et al., 1987). Three acidic
proteins (1a, 1b and 1c) and one basic (1g) protein were found
to be induced upon tobacco mosaic virus infection (van Loon et al.,
1994). The fully sequenced genomes of Arabidopsis and rice
include 22 and 39 PR-1-type genes, respectively (van Loon et al.,
2006). In Arabidopsis, a single PR-1 gene is activated upon
infection, insect attack or chemical treatment, but ten and eight
different PR-1-type genes are constitutively expressed in roots
and pollen, respectively (van Loon et al., 2006).

ββββ-Glucanases

Laminarinases (β-1,3-endoglucanases; EC 3.2.1.6) are present
in a wide variety of plants (including vegetative parts and seeds),

animals (vertebrates and invertebrates) and microorganisms
(Jwanny et al., 2001).

Plant β-1,3-glucanases are referred to as PR-2 proteins and
are subdivided into three classes. Class I glucanases are basic
proteins of about 33 kDa and are localized in the plant vacuole
(Bulcke et al., 1989). Classes II and III include acidic, extracellular
proteins of about 36 kDa (Theis and Stahl, 2004). They participate
in several physiological and developmental plant processes. In
addition, class I β-1,3-glucanases exhibit antifungal activity both
in vitro and in planta, using transgenic plants over-expressing
a PR-2 protein (Joshi et al., 1998; Mauch et al., 1988). Class II
β-1,3-glucanases exhibit in vitro antifungal activity only if applied
in combination with chitinases or class I β-1,3-glucanases (Theis
and Stahl, 2004).

Chitinases

Chitinases (EC 3.2.1.14) constitute the second largest group of
antifungal proteins. They catalyse the hydrolytic cleavage of the
β-1,4-glycoside bond present in biopolymers of N-acetyl-D-
glucosamine, mainly in chitin. Chitinases can be grouped in two
categories: exochitinases, acting on non-reducing ends of the
chitin chain, and endochitinases, which hydrolyse internal bonds
(Kasprzewska, 2003). In general, these enzymes catalyse chitin
degradation, acting most often as endochitinases and producing
chito-oligosaccharides of 2–6 N-acetyl-D-glucosamine residues in
length (Stintzi et al., 1993).

Chitinases are classified in families 18 and 19 of the 57 families
in which O-glycoside hydrolases are presently subdivided
(Henrissat and Bairoch, 1996). Higher plants synthesize seven
different classes of chitinases which differ in protein structure,
substrate specificity, mechanism of catalysis and sensitivity to
inhibitors (Brunner et al., 1998). For example, unlike classe II
chitinases, class I chitinases contain a chitin-binding, hevein-like
domain identical to that of chitin binding proteins (Theis and
Stahl, 2004). These classes are grouped into three families of PR
proteins (Neuhaus et al., 1996; Table 1): chitinases of classes Ia,
Ib, II, IV, VI and VII belong to the PR-3 family, whereas those of
classes III and V are included in the PR-8 and PR-11 families,
respectively. Additionally, some proteins with low endochitinase
activity occur in the PR-4 family (chitin-binding proteins) (Melchers
et al., 1994). Acidic chitinases belonging to classes Ib, II, III, IV
and VI are secreted to the apoplast, whereas basic chitinases
included in classes Ia, III and VI are located in vacuoles (Arie
et al., 2000).

Chitinases have been found in a very wide range of organisms,
containing or not containing chitin, such as viruses, bacteria, fungi,
plants (gymnosperms and angiosperms) and animals (insects, snails,
fish, amphibians and mammals) (Goormachtig et al., 1998). For
example, a 30.8-kDa chitinase with antifungal activity has been
isolated from mung bean (Phaseolus mungo) seeds (Wang et al.,
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2005), whereas two 28-kDa chitinases designated chitinase A
and chitinase B also exhibiting antifungal activity were characterized
in maize (Zea mays) seeds (Huynh et al., 1992). Interestingly, some
chitinases such as dolichin (28 kDa; Graham and Sticklen, 1994;
Ye et al., 2000a), delandin (28 kDa; Ye and Ng, 2002a) and
pananotin (35 kDa; Lam and Ng, 2002), present in field bean
(Dolichos lablab) and ricebean (Delandia umbellata) seeds and
sanchi ginseng (Panax notoginseng) roots, respectively, exhibit
antifungal activity and also cell-free translating inhibiting
activity and inhibitory activity against HIV-1 reverse transcriptase
(Ng, 2004).

Chitinases, as with many other PR proteins, may be synthesized
in both a constitutive and an inducible manner. Some chitinase
forms, both apoplastic and vacuolar, are synthesized constitutively
in healthy plants in a developmentally and tissue- and organ-
specific mode. In addition, chitinases, again as with many other
PR proteins, are also up-regulated by biotic and abiotic stresses,
such as fungal challenge, wounding, drought, cold, ozone, heavy
metals, excessive salinity and UV-light, and treatment with
phytohormones such as ethylene, jasmonic acid and salicylic acid
(Kasprzewska, 2003).

Chitinases are apparently involved in numerous physiological
processes, including development and growth. In those organisms
that contain chitin, they are presumably required for morphogenesis
of cell walls and exoskeleton (Gooday, 1971). For instance, in
yeast and various fungi they take part in remodelling cell wall
structure and daughter cell separation (Cohen-Kupiec and Chet,
1998; Patil et al., 2000; Shimono et al., 2002). A role in nutrition
is fulfilled in some bacteria species that secrete chitinases and
are able to grow on chitin as their only carbon source (Wang and
Chang, 1997; Wang et al., 2002; Watanabe et al., 1999). Even in
plants, chitinases have been reported to play a role in growth and
development, during the nodulation process or in programmed
cell death (Collinge et al., 1993; Cullimore et al., 2001; De Jong
et al., 1992; Goormachtig et al., 1998; Helleboid et al., 2000; van
Hengel et al., 1998; van der Holst et al., 2001; Passarinho et al.,
2001; Regalado et al., 2000). A chitinase from Musa spp.
behaves as a fruit-specific vegetative storage protein (Peumans
et al., 2002), whereas chitinases from monocotyledonous plants
have been reported to display antifreeze activity, suggesting a
role in plant frost resistance (Yeh et al., 2000). Chitinases
exhibiting aspartic protease inhibitor activity (in Solanum tuberosum
tubers; Guevara et al., 1999) or α-amylase inhibitor activity (Coix
lochrymajobi; Ary et al., 1989) have also been reported.

Plant chitinases that hydrolyse chitin inhibit the growth of fungi
and generate chitin oligosaccharides that act as elicitors. In
addition, many chitinases are induced by pathogen attack and
some isoforms exhibit in vitro antifungal properties. For these
reasons, chitinases are believed to play a major role in plant
host defence against pathogens. Nevertheless, their precise role
in plant disease resistance has been difficult to establish in non-

transgenic plants because chitinases are often present in both
resistant and susceptible tissues and their expression is triggered
by many inducers other than pathogen attack (Punja and Zhang, 1993).
Based on early work on the characterization of plant chitinases
made by Thomas Boller and Fred Meins (Neuhaus et al., 1991),
Collinge et al. (1993) and Kasprzewska (2003) suggested that
chitinases fulfil a double function in the protection against
fungal colonization. Apparently, apoplastic chitinases function in
the early stages of pathogenesis in the signalling process that
informs plants about the attack. Indeed, partial digestion of
chitin releases oligosaccharides that are perceived by the plant
cells as elicitors which, in turn, switch on the active plant defence
mechanisms. During the subsequent phases of pathogenesis that
follow fungal penetration, vacuolar chitinases released by hyphae-
induced, protoplast burst directly repress fungal growth by degrading
the newly synthesized chitin chains. This hypothesis is supported
by the substrate specificity of cell wall and vacuolar enzymes
(Collinge et al., 1993).

It should be noted, however, that many chitinases do not show
any antifungal activity in vitro. For example, of the two chitinases
present in chickpea (Cicer arietinum) cell-suspension cultures, only
the basic form possessed antifungal activity (Vogelsang and Barz,
1993). In addition, bacterial family 18 chitinases do not have
antifungal activity (Theis and Stahl, 2004).

The antifungal activity displayed by many chitinases was initially
assumed to derive from their ability to digest chitin, leading to a
weakened fungal cell wall and subsequent cell lysis. However,
recent evidence indicates that the mechanisms by which chitinases
inhibit fungal growth seem to be more dependent on the
presence of a chitin-binding domain than on chitinolytic activity.
Thus, the antifungal activity of a tobacco class I chitinase is three
times higher when a chitin-binding domain is present (Iseli et al.,
1993), whereas a mutant class I chitinase from chestnut (Castanea
sativa) seeds displaying no chitinolytic activity exhibits as much
antifungal activity as the wild-type chitinase (Garcia-Casado et al.,
1998). By contrast, a mutant class II chitinase from barley show-
ing no chitinolytic activity possesses only 15% of the antifungal
activity displayed by the wild-type chitinase (Andersen et al., 1997).
Also, a class I chitinase from rye (Secale cereale) contains a chitin-
binding domain devoid of antifungal activity and a catalytic
domain capable of inhibiting fungal growth (Taira et al., 2001).

Chitin and β-1,3-glucan are synthesized simultaneously in the
apex of growing hyphae of filamentous fungi (Theis and Stahl,
2004). Therefore, it is not surprising the number of studies that
have reported a synergistic action between chitinases and β-1,3-
glucanases in the hydrolysis of mixed chitin-glucan fibres, both in
vitro and in vivo (Jach et al., 1995; Stintzi et al., 1993). In fact, the
double function proposed by Kasprzewska (2003) for the antifungal
activity of chitinases may well be extended to β-1,3-glucanases,
with an indirect antifungal activity resulting from partial digestion
of chitin and glucans and the corresponding release of elicitors,
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and a direct antifungal activity derived from digestion of mixed
chitin–glucan fibres and the resulting weakening of fungal cell
walls (Ryan and Farmer, 1991).

Chitin-binding proteins

Plant chitin-binding proteins have been classified as PR-4 proteins
(Theis and Stahl, 2004; Tables 1 and 2) and are usually subdivided
into two classes: class I PR-4 proteins contain a chitin-binding
domain similar to a domain present in hevein (a protein from
rubber latex; Parijs et al., 1991) and belong to the superfamily of
chitin-binding lectins; class II PR-4 proteins lack the chitin-
binding hevein domain (Selitrennikoff, 2001; Theis and Stahl,
2004). A chitin-binding protein, inducible by ethylene, has been
purified from the leaves of guilder rose (Hydrangea macrophyla)
(Yang and Gong, 2002).

The antifungal activity of chitin-binding proteins is mainly due
to their ability to bind fungal cell wall chitin, which results in
disruption of cell polarity and consequent inhibition of growth by
mechanisms that have not been elucidated (Bormann et al., 1999).
It is possible that the antifungal activity of at least some chitin-
binding proteins is just a side-effect (Theis and Stahl, 2004).

Chitin-binding proteins that exhibit antifungal activity but that
are not PR-4 proteins have been isolated from a number of sources
including bacteria, plants, insects and crustaceans (Selitrennikoff,
2001). In addition, chitin-binding peptides (hevein- and knottin-
type, 36–40 residues in length) have been found in several plant
seeds (Punja, 2001).

One particular case of chitin-binding proteins that deserves
special mention are the vicilins. Indeed, a considerable number of
reports indicate that vicilins may be considered as class II chitin-
binding proteins, but not class II PR-4 proteins.

The most abundant proteins in legume seeds are the globulins,
which comprise the legumins (11S) and the vicilins (7S) and
usually account for approximately 80% of the total protein in
their mature seeds (Derbyshire et al., 1976). Therefore, vicilins
are seed storage proteins of the 7S globulin family, which are
present in the seeds of leguminous and other plants (Casey et al.,
1986; Derbyshire et al., 1976). They are oligomeric proteins (150–
170 kDa) with variable degrees of glycosylation, composed of
three similar subunits of ~40–70 kDa, with no disulphide linkages
and stabilized by non-covalent forces (Casey et al., 1986; Shutov
et al., 1995). The combination of multiple structural genes and
extensive post-translation processing (proteolysis and glycosyla-
tion) results in a high degree of subunit polymorphism for these
proteins (Higgins, 1984). Nevertheless, vicilins from different
legume seeds exhibit a considerable amount of sequence homology
and have similar three-dimensional protein structures (Argos et al.,
1985; Ko et al., 1993; Lawrence et al., 1990, 1994).

Vicilins isolated from the seeds of the legumes cowpea (Vigna
unguiculata), adzuki bean (Vigna angularis), jack bean (Canavalia

ensiformis), soybean (Glycine max), common bean (Phaseolus
vulgaris) and lima bean (Phaseolus lunatus) were shown to be
immunologically related and to bind strongly to chitin, chitosan
and fully acetylated chitin (Firmino et al., 1996; Gomes et al.,
1998a; Sales et al., 1996). Association of vicilin to chitin has been
shown to be dependent on tryptophan residues in the molecule
(Miranda et al., 1998).

Vicilins from different legume seeds have detrimental effects on
development of the cowpea weevil (Callosobruchus maculatus),
a bruchid insect which is a pest of cowpea seeds (Macedo et al.,
1993; Yunes et al., 1998). Although the mechanism of action
of vicilins upon bruchids is not yet completely understood, these
effects have been attributed to the binding of vicilins to the
chitinous structures present in the mid-gut of insects (Firmino
et al., 1996; Sales et al., 2001). Interestingly, vicilins from all non-
host seeds, including those of the C. maculatus-resistant cowpea
line, strongly inhibit larval development. However, vicilins from
C. maculatus-susceptible cowpea line and adzuki bean seeds are
the exception.

In addition, vicilins from V. unguiculata and other legume seeds
interfere with the germination of spores or conidia of phytopath-
ogenic fungi and bind to fungal structures, possibly chitin-
containing structures of the cell wall (Gomes et al., 1997). For
example, V. unguiculata vicilins affect growth and inhibit spore
germination of the pathogens Fusarium solani, Fusarium oxysporum,
Collectotricum musae, Phytophthora caprici, Neurospora crassa
and Ustilago maydissporidia, bind to chitin-like structures of
Saccharomyces cerevisiae and lead to abnormal development
(sporulation) of yeast cells (Gomes et al., 1998a,b). Vicilin-related
basic proteins isolated from cotton (Gossypium hirsutum) seeds
have also been shown to inhibit the growth of various filamentous
fungi (Chung et al., 1997).

A common property of seed storage proteins is that they are
synthesized in high levels in certain developmental stages and
accumulate in discrete vesicles called protein storage vacuoles.
Therefore, they act as a reserve for surplus organic carbon, nitrogen
and sulphur (Pernollet, 1978). Some storage proteins had already
been reported to contribute to plant defence mechanisms
(Shewry et al., 1995). Nevertheless, it was unexpected to find the
vicilins as a group of defensive proteins. Vicilins may therefore be
considered multifunctional proteins, functioning as a source of
amino acids for the plant during germination and subsequent
growth and at the same time being toxic to fungi and insects
(Macedo et al., 1993; Sales et al., 2000; Shutov et al., 1995).

Thaumatin-like proteins

Osmotin and thaumatin-like (TL) proteins are basic, 24-kDa proteins
belonging to the PR-5 family and sharing significant sequence
homology to thaumatin, a sweet-tasting (to humans) protein
from the South African Ketemfe berry bush (Thaumatococcus
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danielli) (van der Wel and Loeve, 1972). TL proteins have been
detected in a vast number of plants. For example, a 24-kDa TL
protein is abundantly expressed in grapevine fruits not only in a
berry- and ripening-specific manner (Tattersall et al., 1997) but
also in response to Erysiphe necator infection (Monteiro et al.,
2003a). TL proteins have been isolated from the intercellular fluid
of lupin (Lupinus albus) leaf, stem and root tissues (Regalado and
Ricardo, 1996) and from the intercellular fluid of chickpea leaves
(Hanselle et al., 2001). TL proteins are also produced in plants
under different stress conditions (Zhu et al., 1995).

Osmotin and TL proteins induce fungal cell leakiness presumably
through a specific interaction with the plasma membrane that
results in the formation of transmembrane pores (Kitajima
and Sato, 1999; Roberts and Selitrennikoff, 1990). These proteins
have also been reported to possess β-1,3-glucanase activity
(Grenier et al., 1999) or bind to actin (Takemoto et al., 1997).
Tobacco osmotin stimulates a mitogen-activated protein kinase,
subverting a signal transduction pathway to enhance fungal cell
susceptibility (Grenier et al., 1999; Yun et al., 1998). The proteins
exhibit antifungal activity in vitro (Liu et al., 1994; Melchers
et al., 1993; Woloshuk et al., 1991) and show enhanced lytic
activity when tested in combination with chitinases and/or β-1,3-
glucanases (Lorito et al., 1996). Furthermore, the simultaneous
presence of both osmotin and TL protein from grapevine displays
a synergistic antifungal effect (Monteiro et al., 2003a).

Defensins/thionins

Defensins and thionins are families of low-molecular-mass (about
5 kDa), cysteine-rich peptides (45–54 amino acid residues in
length) that form a prominent group of membrane-acting proteins
found in mammals, insects, plants and fungi (Theis and Stahl,
2004). Plant defensins (PR-12 proteins) and thionins (PR-13
proteins), present in both monocotyledonous and dicotyledonous
plants, are toxic to fungi (Bohlmann, 1994; Broekaert et al., 1995;
Evans and Greenland, 1998). Broekaert et al. (1997) suggested
that these peptides play a role in protecting seeds from infection
by pathogens.

The mode of action of plant defensins has not yet been
properly elucidated. These peptides induce a prompt potassium
efflux, calcium uptake, alkalinization of the medium and membrane
potential changes in Neurospora crassa (Theis and Stahl, 2004).
In contrast to other membrane-acting proteins, plant defensins
do not form pores on artificial membranes (Thevissen et al., 1996).
Indeed, selective calcium uptake through activated ion channels,
but not membrane permeabilization, is thought to be a major
component of plant defensin antifungal action (Theis and Stahl,
2004). A specific, high-affinity binding site for a plant defensin on
N. crassa has been found (Thevissen et al., 1997). The defensin
Dm-AMP1 from dalhia (Dalhia merckii ) has been shown to
interact specifically with a sphingolipid from Saccharomyces

cerevisiae. Yeast mutants lacking the sphingolipid are highly
resistant to the defensin (Thevissen et al., 2000).

Differential antifungal activity has been detected among
structurally related plant defensins. MsDef1, a seed defensin
from alfalfa (Medicago sativa), inhibits the growth of Fusarium
graminearium in vitro. However, MtDef2 from Medicago trunculata,
which shares 65% amino acid sequence identity with MsDef1, lacks
antifungal activity towards F. graminiarum (Spelbrink et al., 2004).

Cyclophilin-like proteins

Cyclophilins are a highly conserved group of proteins that function
as intracellular receptors for cyclosporin. Mungin, for example, is
an 18-kDa protein present in mung bean which shows a signifi-
cant homology to cyclophilins and inhibits α- and β-glycosidases
in vitro (Ye and Ng, 2000). Unguilin, another example, is an 18-kDa
cyclophilin-like protein isolated from the seeds of the black-eyed
pea (Vigna unguiculata) that exhibits antimitogenic, antiviral and
antifungal activities towards fungi, including Coprinus comatus,
Mycosphaerella arachidicola and Botrytis cinerea.

Glycine/histidine-rich proteins

These are antifungal insect proteins whose mechanism of action
remains to be elucidated. Glycine and histidine may comprise up
to 80% of their amino acid residues.

Ribosome-inactivating proteins

A prominent intracellular target for antifungal proteins is ribosomes.
RIPs are a group of cytotoxic N-glycosidases that specifically
cleave nucleotide N–C glycosidic bonds (Park et al., 2004b). They
are enzymes with RNA N-glycosidase activity, which depending
on their specificity, can inactivate non-specific or foreign ribosomes,
thereby shutting down protein synthesis (Punja, 2001). Regardless
of the activity type, ribosome damage (i.e. depurination) occurs
at the sarcin/ricin loop, a highly conserved sequence of the 28S
rRNA gene (Endo and Wool, 1982). Some RIPs consist of a single
polypeptide chain (type I), whereas others are dimeric proteins
with one catalytic polypeptide chain and another responsible for
translocation into cells via recognition of protein receptors
(type II). In type III RIPs, both domains are contained in a single
polypeptide (Peumans et al., 2001; Stirpe et al., 1992).

Plant RIPs inhibit mammalian, plant, fungal and bacterial
protein syntheses, either in vivo or in vitro (Iglesias et al., 1993). How
plants protect themselves from their own RIPs has been under
investigation. For example, type I RIP from the endosperm of cereal
grains does not act on plant ribosomes but affects foreign ribosomes
such as those of fungi (Hartley et al., 1996; Stirpe et al., 1992).

Although RIPs were first identified more than 100 years ago,
their biological function(s) still remains open to speculation (Park
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et al., 2004b). Several independent studies suggest that their
antimicrobial activity and their inhibitory mechanism against HIV
replication are separate from their host-ribosome-inactivating
activity. It has also been reported that their ribosome-inactivating
activity does not account for their cytotoxicity (Park et al., 2002b).
Increasing evidence suggests that RIPs can target non-ribosomal
substrates. Thus, for example, RIPs may regulate protein expression
by targeting mRNA instead of ribosomes (Park et al., 2004b).

Examples of plant RIPs are ricin from castor bean (Ricinus
communis) (Endo et al., 1987), ME1+2 from Mirabilis expansa
(Vivanco et al., 1999), RIP1 from maize (Nielsen et al., 2001), PAP-H
from pokeweed (Phytolacca americana) (Park et al., 2002a),
α- and β-pisavins from pea (Pisum sativum) seeds (Lam et al.,
1998) and ebulin1, a type II RIP from Sambucus ebulus (Girbes
et al., 1993). Hispin is a 21-kDa RIP from hairy melon seeds (Ng
and Parkash, 2002), whereas luffacylin is an arginine- and
glutamate-rich RIP from loofah (Luffa cylindrical) (Parkash et al.,
2002). A 30-kDa RIP was isolated from dehursked barley grains
(Roberts and Selitrennikoff, 1986).

Lipid transfer proteins

Plant lipid transfer proteins (LTPs; PR-14) are small, basic proteins,
stabilized by four disulphide bonds, which transfer phospholipids
between membranes. LTPs contain typically an internal, tunnel-
like hydrophobic cavity that runs through the molecule (Cheng
et al., 2004; Selitrennikoff, 2001). The mechanism responsible for
their antifungal activity remains unknown, although it was
suggested that these proteins insert themselves into the fungal
cell membrane with their central hydrophobic cavity forming
a pore, allowing efflux of intracellular ions and leading to fungal
cell death (Selitrennikoff, 2001). Unlike the non-specific LTPs
(nsLTPs) from raddish (Raphanus sativus) and maize seeds,
Ace-AMP1, a 10-kDa LTP from onion (Allium cepa) seeds, is
incapable of phospholipid transfer from liposomes to mitochondria
(Ng, 2004). Expression of Ace-AMP1 in transgenic wheat has been
shown to enhance antifungal activity and defence responses (Roy-
Barman et al., 2006). A putative LTP from Arabidopsis has been
implicated in the transport of the systemic signal in SAR, leading
to enhanced resistance to subsequent attack by a broad range
of normally virulent pathogens (Maldonado et al., 2002). Other
LTPs have recently been characterized in the seeds of cowpea and
motherwort (Leonurus japonicus) (Carvalho et al., 2006; Yang
et al., 2006).

Killer proteins

Killer proteins or killer toxins are secreted by several yeasts and
bind to specific surface receptors in sensitive fungal cells. They
are subsequently internalized and can disrupt cell wall synthesis,
DNA synthesis and K+ channel activity, inhibit β-1,3-glucan

synthesis and arrest the cell cycle, leading to inhibition of fungal
growth and fungal cell death (Ahmed et al., 1999; Eisfeld et al.,
2000; Kimura et al., 1997, 1999; Suzuki and Shimma, 1999). A
Kluyveromyces yeast killer toxin has been shown to share
homology with chitinases from plant, yeast and bacterial sources
(Bradshaw, 1990; Kuranda and Robbins, 1991; Stark et al., 1984).
Perhaps, the secreted Saccharomyces chitinase exhibiting homology
with the killer toxin plays a dual role by selectively modifying the
yeast cell wall and also suppressing the growth of other micro-
organisms (Kuranda and Robbins, 1991).

Protease inhibitors

One of the major classes of proteins present in some plant tissues,
with correspondence to the PR-6 family, include inhibitors of
metal, aspartic, serine and cysteine proteases (Kassel, 1970).
Inhibitors of serine proteases, such as trypsin and chymotrypsin,
are sometimes considered bifunctional proteins because they
also inhibit other enzymes such as α-amylase and fungal growth
(Selitrennikoff, 2001). A 7.5-kDa antifungal, Bowman–Birk-type
trypsin–chymotrypsin inhibitor was isolated from broad bean
(Vicia faba) seeds (Ye et al., 2001a), whereas an antifungal,
sporamin-type trypsin inhibitor was purified from wampee (Clausena
lansium) seeds (Ng et al., 2003). Plant antifungal cysteine protease
inhibitors, termed phytocystatins, have been isolated from many
plants (Joshi et al., 1998; Park et al., 2000; Soares-Costa et al.,
2002).

Other antifungal proteins

As new antifungal proteins continue to be discovered, an increas-
ing number of them do not fall clearly into any of the previous
12 classes. Among them are well-known proteins such as lectins,
ribonucleases, deoxyribonucleases and peroxidases. Selected
examples are viridin, present in the culture medium of Trichoderma
viride, and snakin-1 isolated from potato (Solanum tuberosum).

Lectins with antifungal activity have been reported in the red
kidney bean (Phaseolus vulgaris) (Ye et al., 2001b), stinging
nettle (Urtica dioica) (Broekaert et al., 1989), potato tuber
(Gozia et al., 1995) and slender amaranth (Amaranthus viridis)
(Kaur et al., 2006). A role in plant defence against fungi was
proposed for the cotyledonary Lutzelburgia auriculata agglutinin
(LAA). This lectin is located in the periphery of the cotyledon and
is released during germination into the surrounding medium.
Inclusion of LAA in the culture medium inhibits growth of
Colletrotichum lindemuthianum, Fusarium solani, Aspergillus niger
and Saccharomyces cerevisiae. LAA was found to bind reversibly
to yeast cells (Melo et al., 2005).

Quinqueginsin and panaxagin are two antifungal proteins
exhibiting ribonuclease activity that have been purified from the
roots of the American ginseng (Panax quinquefolium) and the
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Chinese ginseng (Panax ginseng), respectively. Quinqueginsin
possesses specific ribonucleolytic activity towards poly C (Ng and
Wang, 2001; Wang and Ng, 2000b). In addition, a deoxyribonu-
clease with antifungal activity was extracted from asparagus
(Asparagus officinalis) seeds (Wang and Ng, 2001), whereas an
antifungal peroxidase was reported in french bean (Phaseolus
vulgaris) legumes (Ye and Ng, 2002b).

The storage 2S albumin proteins have also been reported to
display antifungal activity in passion fruit (Passiflora edulis),
radish (Raphanus sativus) and oilseed rape (Brassica napus)
(Agizzio et al., 2003; Pelegrini et al., 2006; Terras et al., 1993). In
addition, the puroindolines, endosperm-specific proteins involved
in wheat seed hardness or texture (Morris, 2002), have been
shown to play a role in plant defence (Giroux et al., 2003). Indeed,
rice plants, which normally lack puroindolines, were transformed
to express constitutively puroindoline genes. The transgenic rice
showed significantly increased tolerance to Magnaporthe grisea,
with a 29–54% reduction on symptoms, and to Rhizoctonia solani,
with an 11–22% reduction in symptoms (Krishnamurthy et al., 2001).

Ginkbilobin is a 13-kDa antifungal protein from maidenhair
tree (Ginkgo biloba) seeds with sequence similarity to embryo-
abundant protein (Wang and Ng, 2000a). Hypogin is an allergen-
like, antifungal protein from peanut (Arachis hypogaea) with
sequence similarity to peanut allergen (Ye and Ng, 2000).
Pisumin, an antifungal protein with a novel N-terminal sequence,
and sativin, a miraculin-like antifungal protein, have been
characterized in legumes of the sugar snap pea (Pisum sativum
var. macrocarpon) (Ye et al., 2000b).

Germin-like oxalate oxidases (proposed PR-15 and PR-16
families) are stable glycoproteins that were initially discovered in
cereals. They are present during seed germination and are induced
in response to fungal infection (Dumas et al., 1995; Zhang et al.,
1995). The hydrogen peroxide produced as a result of their
activity upon the substrate oxalic acid induces plant defence
responses and enhances cell-wall strengthening (Brisson et al.,
1994; Mehdy, 1994).

Antifungal peptides

Although there is not a generalized consensus concerning where
a peptide ends and a protein begins, it may be arbitrarily assumed
that proteins possess molecular masses greater than 5 kDa or
about 50 amino acid residues in length. Therefore, some groups
of antifungal compounds, such as plant defensins, include both
proteins and peptides.

An enormous variety of peptides with antifungal activity are
produced by mammals (e.g. defensis, protegrins, gallinacins,
tritrpticin, lactoferricin, and BPI protein domain III analogues),
insects (e.g. cecropins, drosomycin, antifungal peptide, holotricin
3 and thanatin), amphibians (e.g. magainins and dermaseptin),
bacteria and fungi (e.g. iturins, syringomycins and related

peptides, nikkomycins, polyoxins, echinocandins and echinocandin
analogues, pneumocandins and pneumocandin analogues,
aculeacins, mulundocandins, aureobasidins, Bacillus licheniformis
peptides, schizotrin A, cepacidines, leucinostatin-trichopolyn group,
and helioferins) and plants (e.g. plant defensins, lipid transfer proteins,
zeamatin and cyclopeptides) (De Lucca and Walsh, 1999).

Antifungal peptides are classified according to their mode of
action. One large group, including many amphipathic lytic
peptides, act by cell lysis, which operate via a number of different
mechanisms (Shai, 1995). Another group interferes with cell wall
synthesis or with the biosynthesis of essential cell components,
such as glucan or chitin (Debono and Gordee, 1994).

Antifungal peptides are continuously being discovered in plants.
Thus, for example, cicerin and arietin were detected in the seeds
of chickpea (Ye et al., 2002). The 8-kDa angularin was purified
from red beans (Ye and Ng, 2002c). A 30-amino acid residue
peptide containing six cysteine and seven glycine residues and
exhibiting sequence homology to the chitin-binding domain of
chitin-binding chitinases and a higher affinity to chitin than
chitin-binding chitinases has been isolated from the intercellular
washing fluid from sugar beet (Beta vulgaris) leaves (Kristensen
et al., 2001; Nielsen et al., 1997). A 1.244-kDa chitin-binding
peptide with an amino acid sequence and a cystein/glycine-rich
chitin-binding domain typical of many chitin-binding proteins
was characterized in Ginkgo biloba leaves (Huang et al., 2000).

Plant defensins that are not related to either mammalian or
insect defensins have been characterized in plant tissues. This is
the case, for example, of Ib-AMP3, a highly basic, icosapeptide
produced by garden balsam (Impatiens balsamina) (Tailor et al.,
1997). Zeamatin is a 27-amino-acid residue peptide produced by
maize seeds. However, peptides from the zeamatin family are
also present in oat, sorghum and wheat seeds (De Lucca and
Walsh, 1999). Examples of plant cyclopeptides, recently reviewed
by Tan and Zhou (2006), are frangufoline, amphibine H, rugosanines
A and B, and nummularines B, K, R and S (Panday and Devi, 1990).

STRATEGIES EMPLOYED BY FUNGI TO AVOID 
PLANT DETECTION OR DEFENCE

Emerging evidence demonstrates that the molecular interac-
tion between plant and pathogen is far more elaborate than the
straightforward production of attack molecules by the pathogen
and the corresponding response of defensive molecules by the
host. Plant pathogens use several strategies to avoid detection by
the host plant or to escape the plant defence responses.

One of the strategies involves protection of fungal structures
from plant defence mechanisms. Thus, for example, the attack of
fungal cell walls by plant chitinases is an important plant defence
to fungal infection because it liberates elicitor-active chitin
oligomers and weakens the fungal cell wall (van den Burg et al.,
2003). The antifungal activity of most plant chitinases derives
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from the presence of a non-catalytic, plant-specific chitin-binding
domain (ChBD). The race-specific elicitor avr4, an extracellular avr
protein produced by the leaf mould fungus Cladosporium fulvum
and detected by the tomato Cf-4 LRR-RLP protein, protects the
fungus against degradation by tomato chitinases because it con-
tains a novel type of ChBD (Jones and Takemoto, 2004). However,
the binding site of avr4 is larger than that of a plant ChBD. In
other words, avr4 interacts only with chitotriose whereas a plant
ChBD also interacts with the monomer N-acetyl-glucosamine.
Binding additional avr4 molecules to chitin occurs through posi-
tive cooperative protein–protein interactions. These observations
suggest that avr4 shields fungal cell wall chitin from the action
of plant chitinases (van den Burg et al., 2004).

During invasive growth of biotrophic rust fungi, chitin is exclu-
sively present in the cell walls of exterior infection structures, i.e.
germ tubes and appressoria. Instead of this elicitor-active
molecule, the surface hyphae that grow within host leaves
contain chitosan, a deacetylation product of chitin possibly
generated by the enzymatic activity of a differentiation-induced
fungal-chitin deacetylase (Deising and Siegrist, 1995; El Gueddari
et al., 2002). The observation that chitosan lacks elicitor activity
led Schulze-Lefert and Panstruga (2003) to speculate that the
‘wolf intrudes in sheep’s clothing’.

The tobacco pathogen Alternaria alternata synthesizes and
secretes the reactive oxygen quencher mannitol as a means of
suppressing reactive oxygen-mediated plant defences (Jennings
et al., 2002). Interestingly, the non-mannitol-containing host
tobacco plants respond by expressing a pathogen-induced
mannitol dehydrogenase that catabolizes mannitol of fungal
origin. Indeed, constitutive expression of a celery (Apium graveolens)
mannitol dehydrogenase cDNA in tobacco plants conferred
enhanced resistance to A. alternata, but not to the non-mannitol-
producing fungal pathogen Cercospora nicotianae (Jennings
et al., 2002).

Another strategy is associated with inhibition of elicitor-induced
plant defence responses. Oligomers of galacturonic acid released
from plant cell walls during pathogenesis may function as plant-
derived suppressors of defence responses. In fact, the simultaneous
addition of oligogalacturonides and the glycoproteogalactan
elicitor isolated from germ tubes of the wheat stem rust fungus
Puccinia graminis f. sp. tritici suppresses the elicitor-induced
disease resistance reactions in wheat leaves (Moerschbacher
et al., 1999).

Yet another strategy concerns the suppression of plant defences.
An increasing body of evidence suggests that infecting fungal
pathogens may modulate host gene expression to their own
benefit, either by suppressing inducible plant defence responses
in physical proximity to infection sites and/or by inducing specific
host genes required for infection. An example of fungal-induced
plant defence suppression is provided by the infection of barley
coleoptile cells by the grass powdery mildew fungus Blumeria

graminis f. sp. hordei. Barley cells penetrated by the fungus or in
close proximity to haustoria exhibit induced susceptibility to
subsequent attack by the non-host pathogen Erysiphe pisi or by
a second challenge with B. graminis (Kunoh et al., 1985, 1991).
These observations suggest that B. graminis suppresses defence
gene activation of barley cells by an as yet unknown mechanism
that is effective against race-specific, race-non-specific and non-
host resistance (Schulze-Lefert and Panstruga, 2003).

CONCLUDING REMARKS

The continuous increase in the human population and in public
concern over the generalized use of chemical fungicides, associated
with the increasing number of obsolete fungicides that derive
from the development of fungal resistance, demand alternative
ways for disease control. These may include the development of
new, effective and environmentally friendly fungicides. However,
emerging evidence suggests that during a plant–fungus interac-
tion, the pathogen may take over selected aspects of plant gene
expression to its own benefit. Therefore, it is expected that the
fungus may induce the expression of some components required
for the infection or development processes or repress components
of the host defence system. In this context, a detailed under-
standing of the molecular events that take place during a plant–
pathogen interaction is a prerequisite for boosting the natural
inherent defences of plants, and to transfer defensive traits into
the genome of economically important crops.
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