AULAS DE BIOQUÍMICA

METABOLISMO DOS GLÚCIDOS (cont.)

Descarboxilação oxidativa do piruvato. Balanço energético. Regulação do complexo piruvato desidrogenase. Ciclo de Krebs. Sua natureza anfibólica, reacções anapleróticas e reacções catapleróticas. Pontos de ligação importantes com outras vias metabólicas. Balanço energético. Regulação. Fosforilação a nível do substrato. Ciclo do glioxilato (fundamentos). Material de estudo: diapositivos das aulas e bibliografia recomendada.

Glicólise, neoglucogénese e via das pentoses-fosfato permitem ajustar às necessidades celulares, os teores de NADPH, ATP, ribose-5-P, ácido pirúvico, glucose

Estudámos:

Utilização de glúcidos como fonte de energia

- •Glicólise e formação do ácido pirúvico
- Utilização do ácido pirúvico em anaerobiose
- •A utilização da glucose em reacções e oxidação

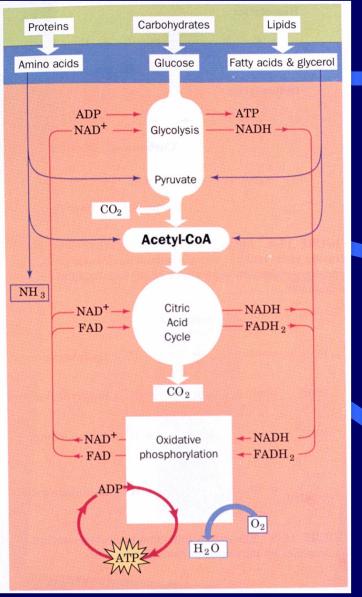
- E em aerobiose?

- E a oxidação da glucose é total?

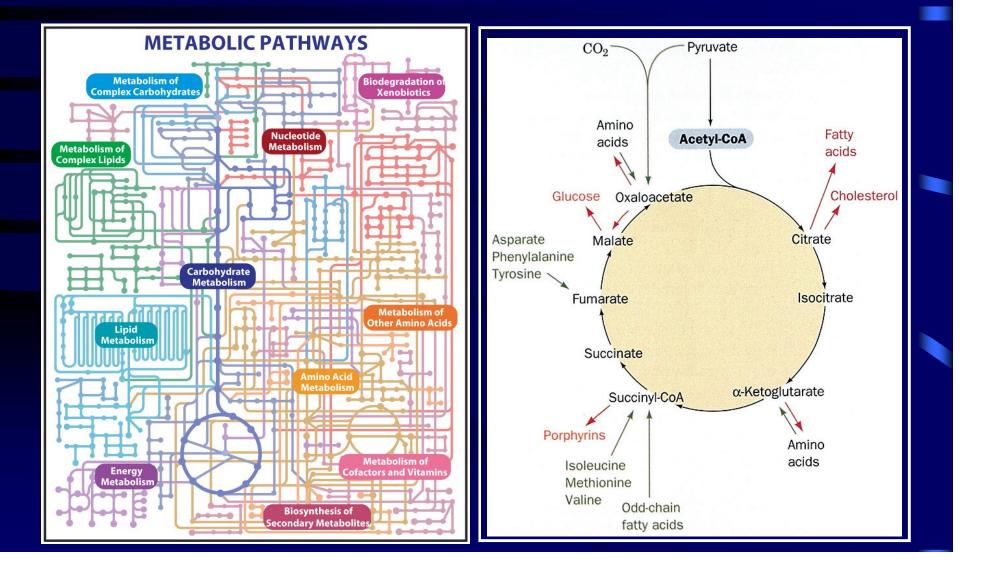
Em anerobiose não ocorre oxidação total das moléculas orgânicas

Em aerobiose pode ocorrer oxidação total das moléculas orgânicas com formação de CO₂ e água

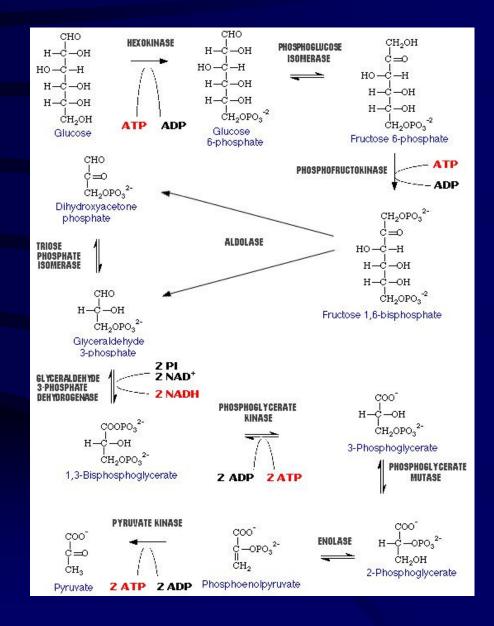
- O₂ é o aceitador final dos electrões, formando-se água
- Forma-se CO₂ resultante do carbono existente nos glúcidos
- Grande parte da energia química contida nos glúcidos é "guardada" na forma de ATP



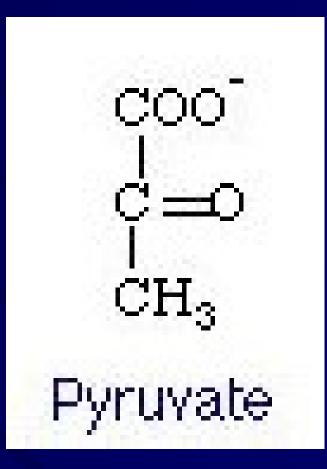
Transporte electrónico e reoxidação das coenzimas reduzidas NADH e FADH₂


> Fosforilação oxidativa ADP→ATP

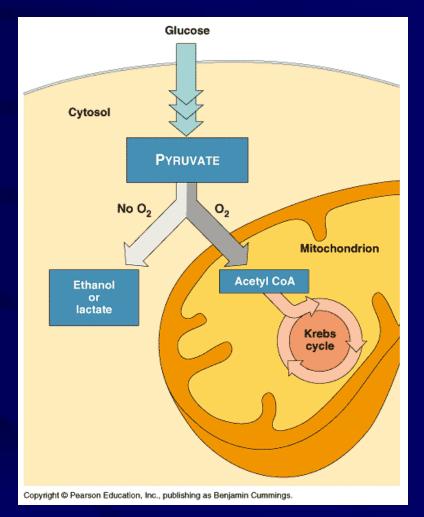
The Citric Acid Cycle


- In aerobic organisms, pyruvate (formed through glycolysis) oxidized to CO₂ and acetyl-CoA using coenzyme A
- Subsequent oxidation of acetyl group carried out using the *citric acid cycle*
- Citric acid cycle is amphibolic
 - Catabolic and anabolic
 - Aerobic catabolism of carbohydrates, lipids, and amino acids merge at citric acid cycle
 - Oxidized acetyl-CoA formed from metabolism of all three
 - Intermediates of citric acid cycle are starting points for many biosynthetic pathways

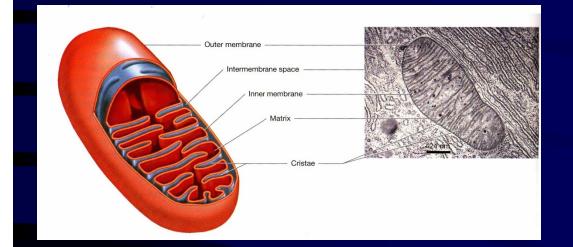
The amphibolic Citric Acid Cycle



Review of Glycolysis


The Fate of Pyruvate

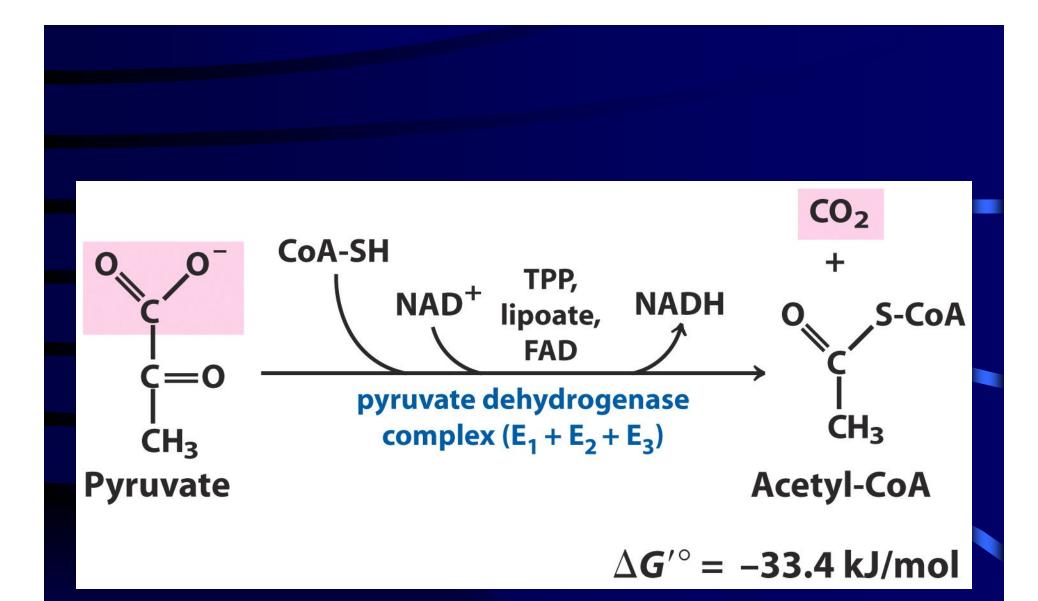
 In the ABSENCE of oxygen - pyruvate gets fermented to oxidize NADH to NAD so that glycolysis (ATP production can continue.



The Fate of Pyruvate

In the PRESENCE of oxygen - Pyruvate gets turned into Acetyl CoA and then added to other molecules in order to liberate CO₂ (the Calvin Cycle - backwards).

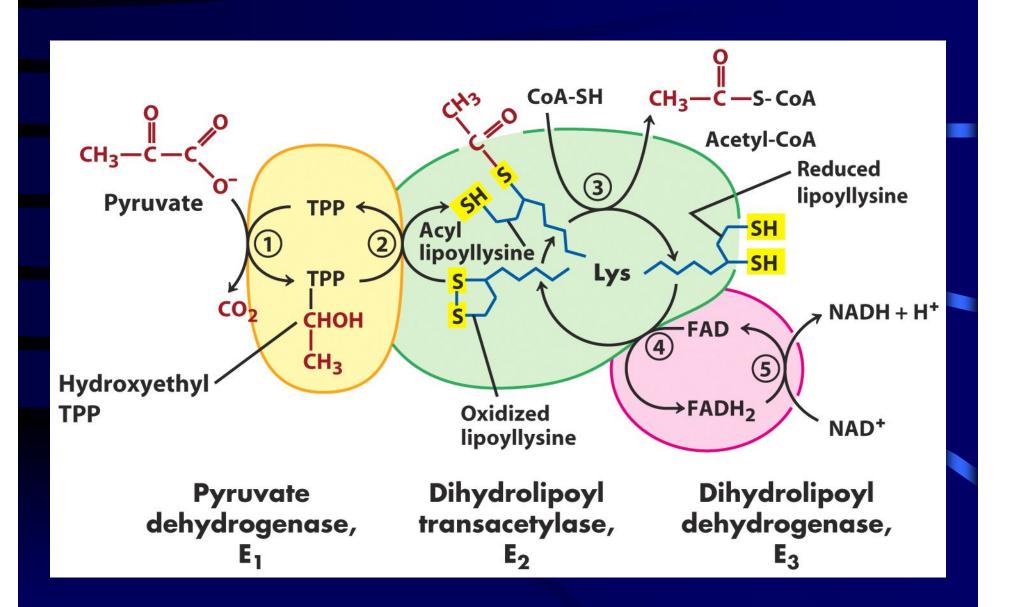
The Assault on Pyruvate


• Pyruvate moves easily passed the porous outer mitochondrial membrane and is then transported through the inner membrane where it encouters...

The Pyruvate Dehydrogenase Multienzyme Complex

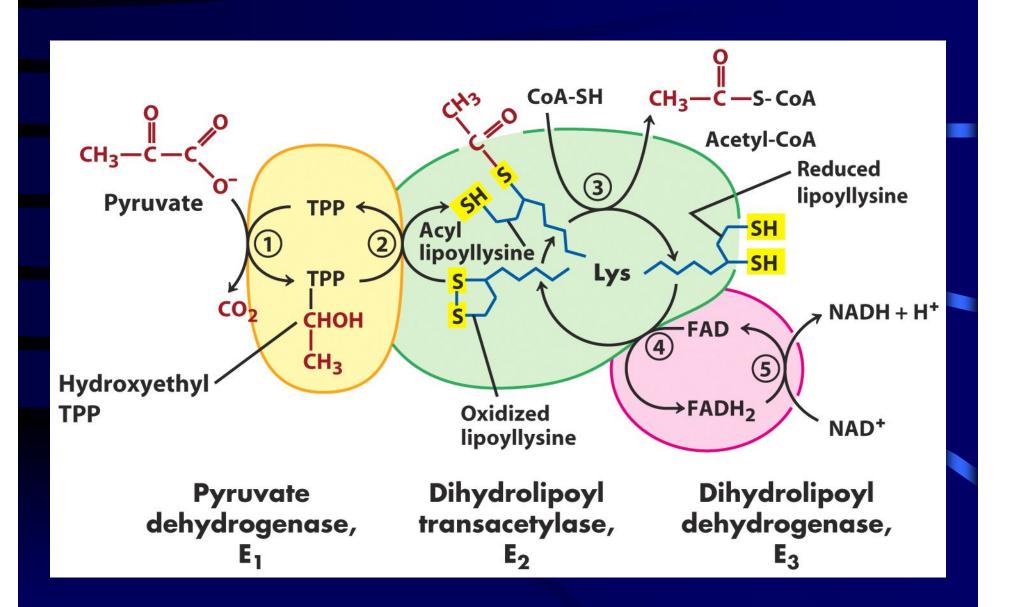
Pyruvate dehydrogenase

- Catalyzes the overall reaction: pyruvate + CoA + NAD+ \rightarrow acetyl-CoA + CO₂ + NADH
- Sometime referred to as a "multi-vitamin pill", because of all of the cofactors it utilizes.

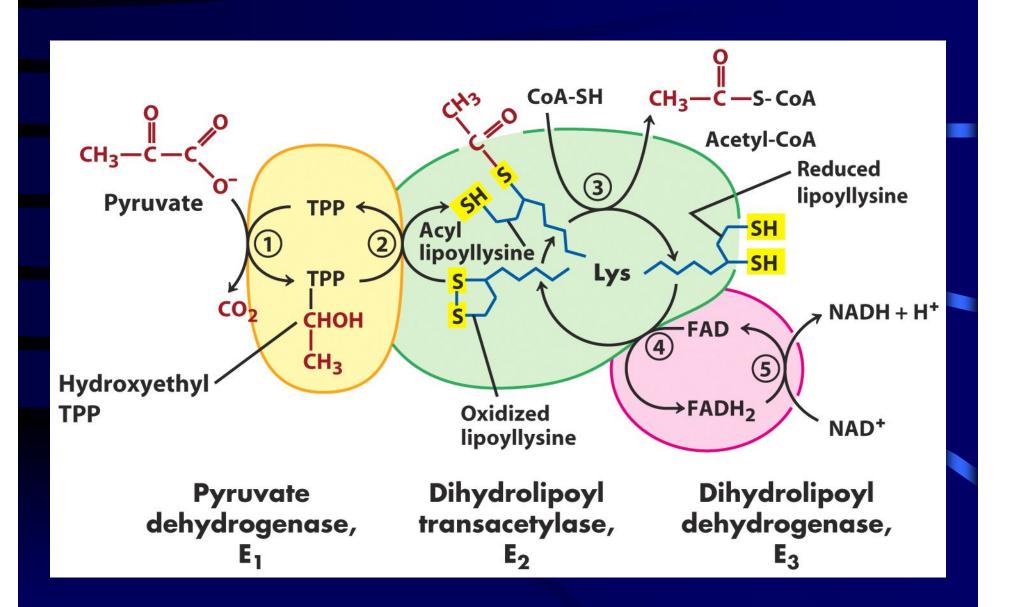


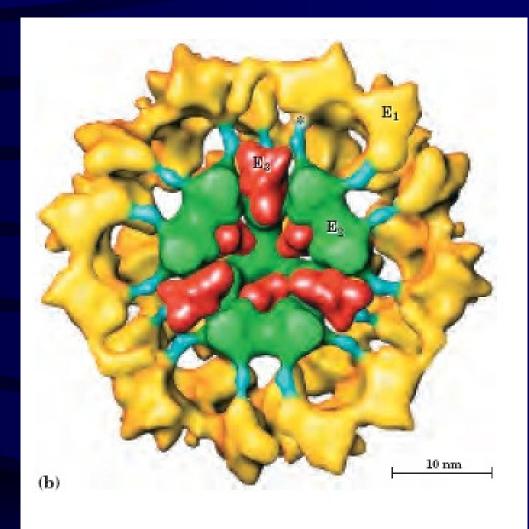
Pyruvate d	ehydrogenase complex:
E ₁ pyr	uvate dehydrogenase
Es E ₂ dihy	drolipoyl transacetylase
E ₃ dih	ydrolipoyl dehydrogenase
	thiamine pyrophosphate, TPP
(VB ₁)	
	HSCoA (pantothenic acid)
cofactors	lipoic Acid
	NAD+ (Vpp)
	FAD (VB ₂)

Back to Pyruvate Dehydrogenase


- This is a complex enzyme. It is composed of multiple copies of 3 different polypeptides:
- E1: pyruvate dehydrogenase Contains TPP at active site and catalyzes pyruvate + TPP(E1)

 $\rightarrow CO_2 + hydroxyethyl-TPP(E1)$ hydroxyethyl-TPP(E1) + lipoate(E2) $\rightarrow TPP(E1) + acetyl-lipoate(E2)$


Back to Pyruvate Dehydrogenase


- This is a complex enzyme. It is composed of multiple copies of 3 different polypeptides:
- E2: dihydrolipoyl transacetylase
 Each polypeptide contains 3 covalently-linked lipoic acids. It catalyzes:
 acetyl-lipoate(E2) + CoA-SH
 → acetyl-CoA + dihydrolipoate(E2)

Back to Pyruvate Dehydrogenase

- This is a complex enzyme. It is composed of multiple copies of 3 different polypeptides:
- E3: dihydrolipoyl dehydrogenase Contains FAD at active site and catalyzes: dihydrolipoate(E2) + FAD(E3) \rightarrow lipoate(E2) + FADH₂(E3) FADH₂(E3) + NAD⁺ \rightarrow FAD(E3) + NADH + H⁺

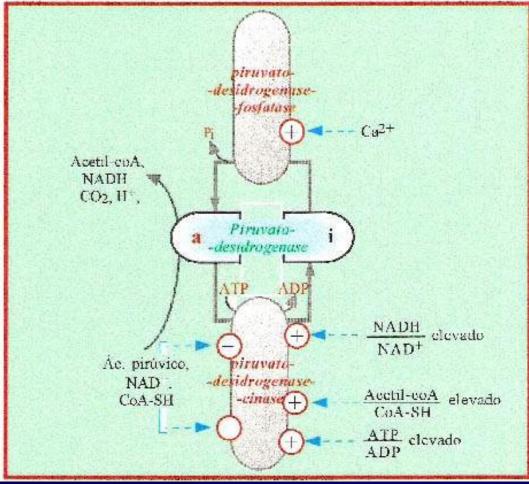
The structure of pyruvate dehydrogenase complex

Pyruvate Dehydrogenase

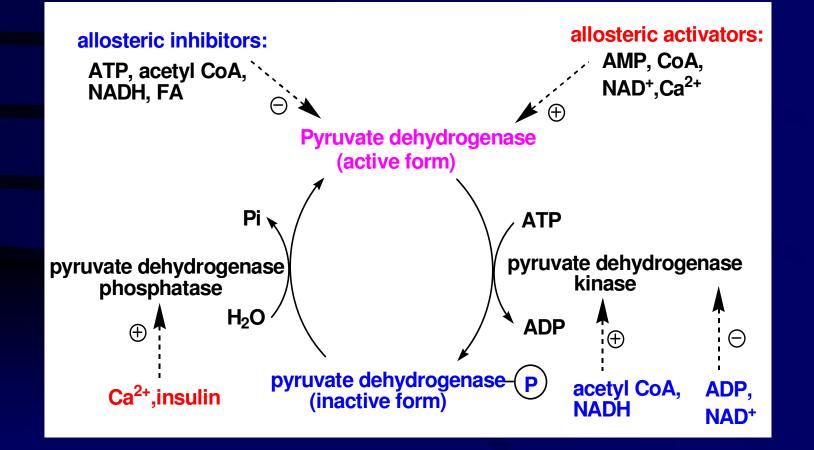
Logic of the Pyr DH reaction:

- Thiamine allows the oxidative α -decarboxylation of pyruvate to occur, but it cannot serve as the electron acceptor.
- Neither can Coenzyme A, although it will serve as the acceptor of the acetyl moiety.
- Lipoic acid serves as the go-between, ferrying the acetyl group from TPP to CoA, but it keeps the 2 electrons.
- The electrons are transferred to NADH via the flavin.
- Thus, each cofactor has an essential role to play in this complicated dance, suited to its chemical properties.

Pyurvate dehydrogenase complex


A large, highly integrated complex of three kinds of enzymes Pyruvate + CoA + NAD⁺ \Rightarrow acetyl CoA + CO₂ + NADH

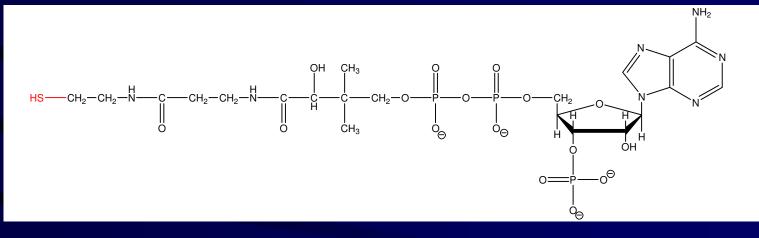
NBLE 17.1 Pyruvate dehydrogenase complex of <i>E. coli</i>					
Enzyme	Abbreviation	Number of chains	Prosthetic group	Reaction catalyzed	
Pyruvate dehydrogenase component	E ₁	24	TPP	Oxidative decarboxylation of pyruvate	
Dihydrolipoyl transacetylase	E_2	24	Lipoamide	Transfer of the acetyl group to CoA	
Dihydrolipoyl dehydrogenase	E ₃	12	FAD	Regeneration of the oxidized form of lipoamide	


Groups travel from one active site to another, connected by tethers to the core of the structure

Regulação da descarboxilação do ácido piruvico nas células:

(intracelular)

Regulação da descarboxilação do ácido piruvico nas células: (intracelular)

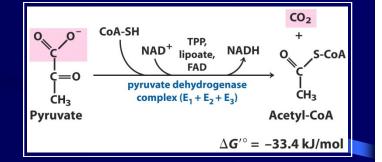

Rendimento energético:

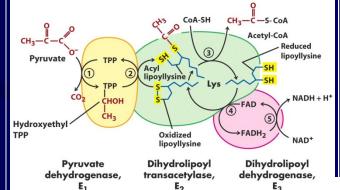
1 piruvato \Rightarrow 1 acetil-coA \Rightarrow 1 NADH \Rightarrow 2,5 ATP

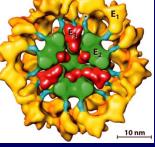
1 Glucose \Rightarrow 2 piruvato \Rightarrow 2 acetil-coA \Rightarrow 2 NADH \Rightarrow 5 ATP

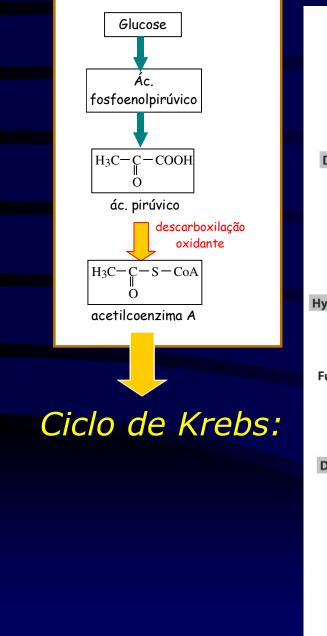
- E o acetil-coA formado ainda pode ser oxidado?

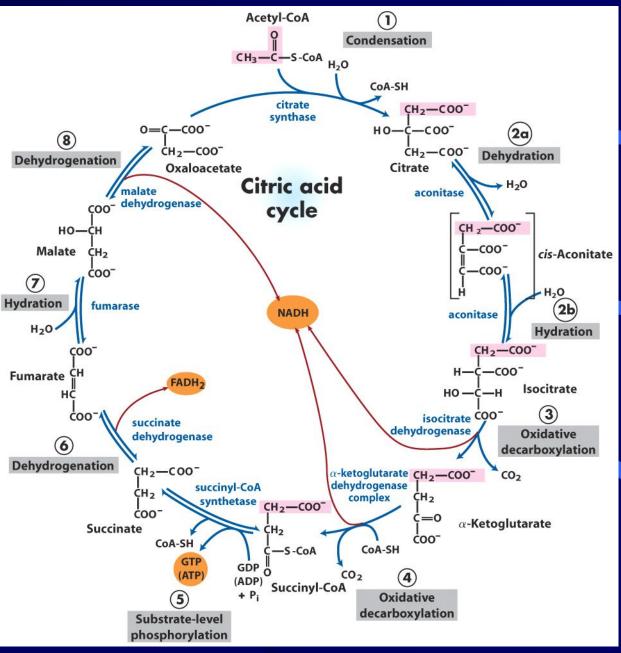
Synthesis of acetyl-CoA

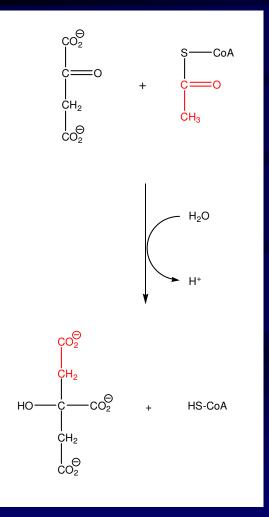

- Not part of cycle, but must occur first
- First step: entry of pyruvate into the mitochondrian
 - In aerobic cells, all enzymes of the citric acid cycle are located within the mitochondrion
 - Mitochondrion enclosed by a double membrane
 - Pyruvate passes through outer membrane via aqueous channels formed by transmembrane proteins (porins)
 - Pyruvate translocase is a protein embedded in the inner mitochondrial membrane which transports pyruvate from the intermembrane space to the mitochondrial matrix (interior space of the mitochondrion)

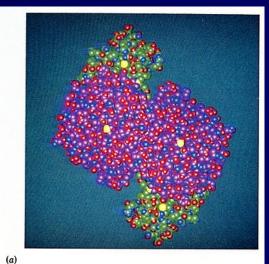

Conversion of pyruvate to acetyl-CoA

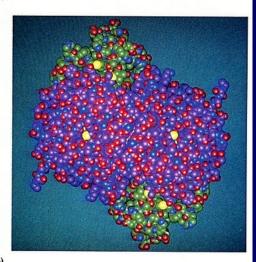

• Oxidative decarboxylation


- Series of 5 reactions
- Irreversible
- Mechanism is highly complicated
- Catalyzed by complex of enzymes and cofactors
 - Pyruvate dehydrogenase complex
 - Multi-enzyme structure located in mitochondrial matrix
 - Contains multiple copies of three non-covalently associated enzymes and five coenzymes
 - E1 and E3 surround core of 24-60 E₂ chains
 (# chains depends on type of cell)
- Overall reaction:

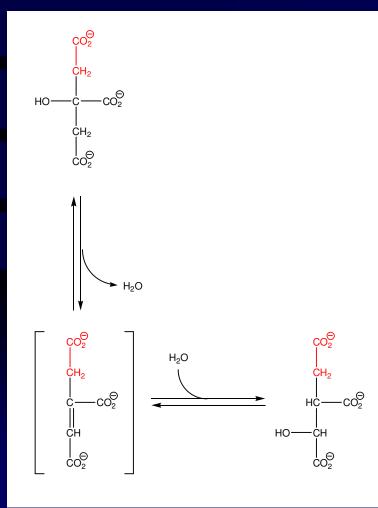

 $CH_3C(O)CO_2^- + NAD^+ + CoASH \rightarrow CH_3C(O)-SCoA + NADH + CO_2$



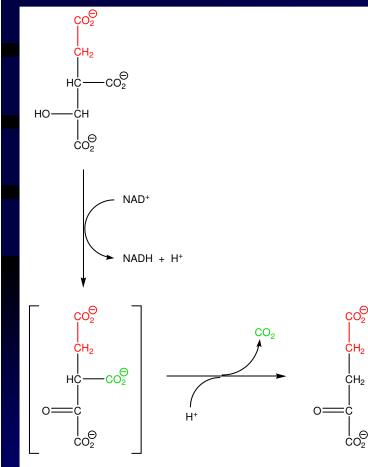

1. Formation of citrate



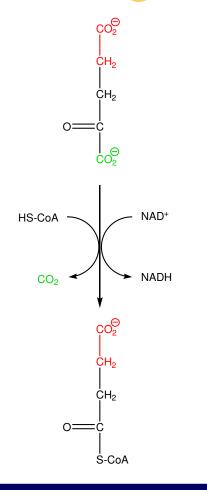
- Oxaloacetate reacts with acetyl-CoA to form citrate and coenzyme A
- Aldol condensation
 - Only C-C bond-forming reaction in cycle
- Irreversible
- Enzyme = citrate synthase


Citrate synthase

- Dimer of two identical subunits
- Changes in conformation
 - Binding of oxaloacetate
 - Domains move closer to form binding site for acetyl-CoA
 - Formation of intermediate
 - Enzyme closes around intermediate
 - Prevent side reactions by shielding thiol ester linkage of acetyl-CoA from hydrolysis by solvent
 - Intermediate hydrolyzed by bound water molecule
 - Enzyme opens and products leave active site



2. Isomerization of citrate to isocitrate


- Citrate is a 3° alcohol
 - Cannot be oxidized to keto acid
- Isocitrate is a 2° alcohol
 - Easily oxidized
- Mechanism:
 - First step: elimination of H₂O to from alkene intermediate (*cis*-aconitate)
 - Second step: stereospecific addition of water to form (2*R*, 3*S*)-isocitrate
 - Reaction near equilibrium
- Enzyme = aconitase
 - aka aconitate hydratase
 - Named for intermediate
 - Binds C3 carboxylate and hydroxyl groups
 - Substrate positioning essential for stereospecificity

3. Oxidative decarboxylation of isocitrate to form α -ketoglutarate

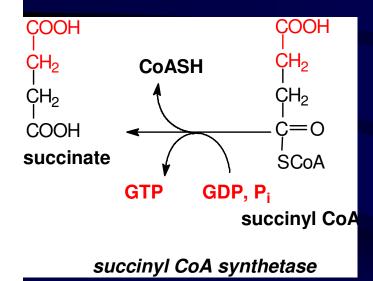
- First of four oxidation-reduction reactions
 - NAD⁺ is oxidizing agent
- Mechanism:
 - First step: alcohol oxidized by transfer of H:⁻ from C2 to NAD⁺
 - Intermediate = oxalosuccinate, an unstable β-keto acid
 - First molecule of NADH formed
 - Second step: intermediate undergoes βdecarboxylation to form an α-keto acid, which is released from enzyme
 - First molecule of CO₂ produced
 - Irreversible
 - One of rate-limiting steps in cycle
- Enzyme = isocitrate dehydrogenase

4. Oxidative decarboxylation of α -ketoglutarate to form succinyl-CoA

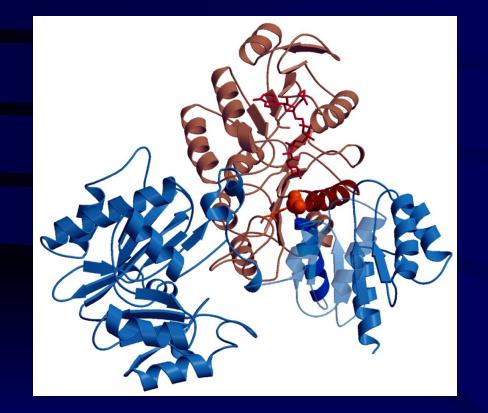
- Catalyzed by multi-enzyme α-ketoglutarate dehydrogenase complex
 - α -ketoglutarate dehydrogenase (E₁)
 - Dihydrolipoamide succinyltransferase (E_2)
 - Dihyrdolipoamide dehydrogenase (E_3)
 - Analogous to pyruvate-to-acetyl-CoA reaction catalyzed by pyruvate dehydrogenase complex
 - Same coenzymes
 - Similar complicated mechanism
- Product is high-energy thioester
- Key regulatory step of citric acid cycle
- Second molecule of NADH produced
- Second molecule of CO₂ produced

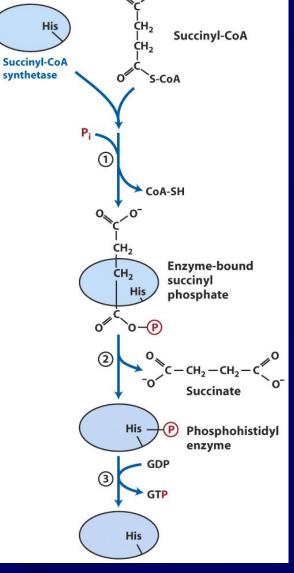
Halfway through the cycle...

- So far...
 - Net oxidation of two carbon atoms to produce two molecules CO₂
- In the next four reactions...
 - Four-carbon succinyl group of succinyl CoA converted back to oxaloacetate
 - As oxaloacetate is regenerated, additional acetyl- CoA enters the citric acid cycle to be oxidized


5. Conversion of succinyl-CoA to

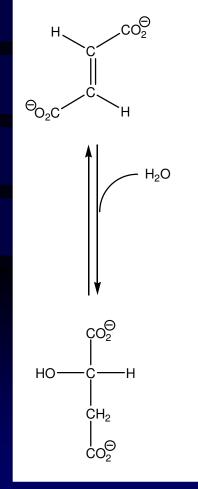
succinate


- Substrate-level phosphorylation
 - Cleavage of high-energy thioester bond

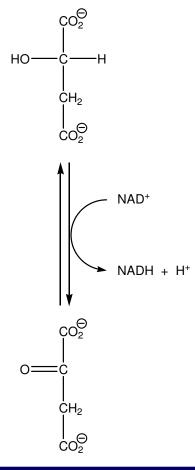


- GTP in mammals
- ATP in plants and bacteria
- GDP regenerated and ATP produced from the reaction of GTP with ADP
 - GTP + ADP GDP + ATP
 - Nucleoside diphosphate kinase
- Enzyme = succinyl-CoA synthetase
 - aka succinate thiokinase
- Mechanism:
 - Phosphate displace CoA from bound succinyl-CoA molecule
 - Phosphoryl group transfers to His residue of enzyme
 - Succinate released
 - Phosphoryl group transferred to GDP (or ADP)

Succinyl-CoA synthetase mechanism

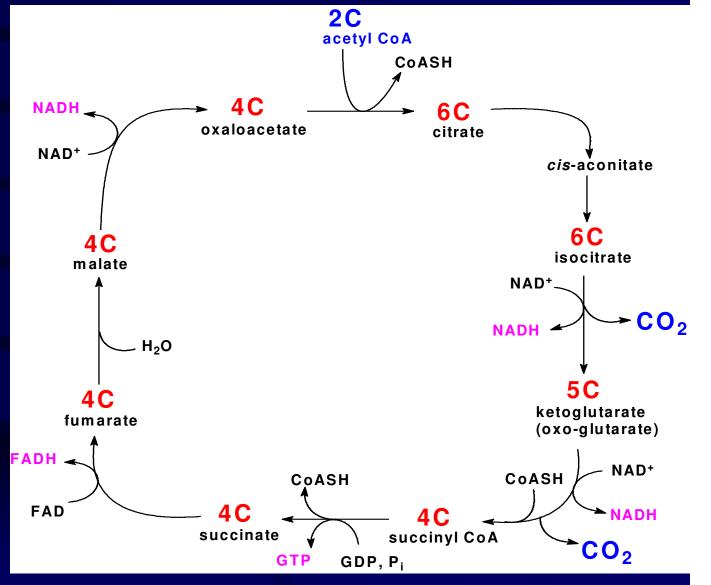


6. Oxidation of succinate to fumarate

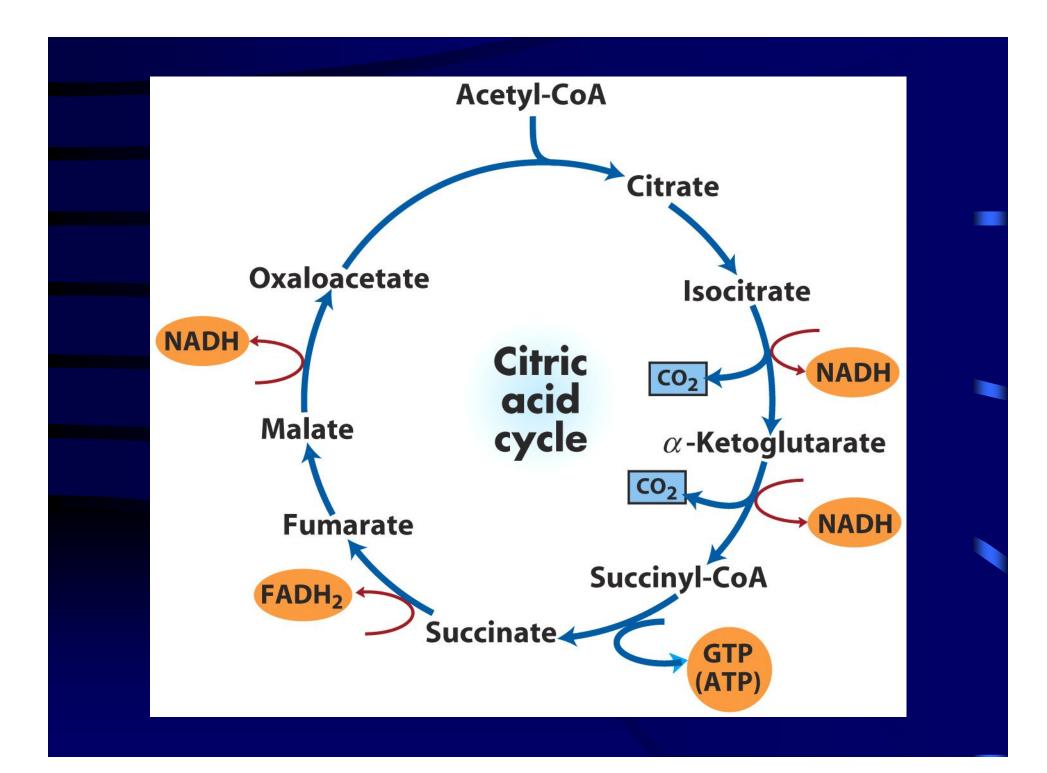

		Dehydrogenation (loss of H_2 ; oxidation)
		 Stereospecific to form <i>trans</i> double bond only
	•	Catalyzed by succinate dehydrogenase complex
		– aka succinate dehydrogenase
		– aka Complex II
СООН		 Embedded in inner mitochondrial membrane, rather than in mitochondrial matrix
Сн Сн	•	Oxidation of alkane requires stronger oxidizing agent than NAD ⁺ (hence FAD)
соон		 FADH₂ produced is re-oxidized by
fumarate		coenzyme ubiquinone (Q) to reform
		FAD and ubiquinol (QH ₂)
1	соон •	Competitive inhibitor = malonate
FADH 🔫		$- {}^{-}O_{2}C-CH_{2}-CO_{2}^{-}$
λ	CH ₂	– Binds to active site through carboxylate groups
FAD	CH ₂	– Cannot undergo dehydrogenation
suppinate debydrogenace	COOH	 Inhibition reactions used by Krebs to determine
succinate dehydrogenase	uccinate	citric acid cycle reaction sequence
	•	Symmetrical molecule evenly distributes carbons
		in remainder of products throughout the cycle

7. Hydration of fumarate to form Lmalate

- Reversible reaction, near equilibrium
- Stereospecificity
 - *trans* addition of water to double bond of fumarate
 - 2. Only *trans* double bond will react
- Enzyme = fumarase
 - aka fumarate hydratase


8. Oxidation of L-malate to regenerate oxaloacetate

- Formation of third molecule of NADH
- Reaction is endergonic, and concentration of product is low at equilibrium
 - Next reaction in cycle (1) is highly exergonic
 - Product used immediately
- Enzyme = malate dehydrogenase


TCA Cycle Summary

1 acetate through the cycle produces 2 CO₂, 1 GTP, 3NADH, 1FADH₂

Net profit of aerobic metabolism

- For each acetyl group that enters the TCA cycle as acetyl-CoA, 2 CO₂ are produced along with:
 - 3 NADH
 - 1 FADH₂ (succinate DH)
 - 1 GTP
- Oxidation of NADH yields 2.5 ATP
- Oxidation of FADH₂ yields 1.5 ATP
- Thus, oxidation of the 2 carbons of acetyl-CoA will produce 10 ATP.

Aerobic Nature of the Cycle

NADH and FADH₂ must be reoxidized by the electron transport chain.

Succinate Dehydrogenase is part of electron transport chain in the inner membrane of mitochondria.

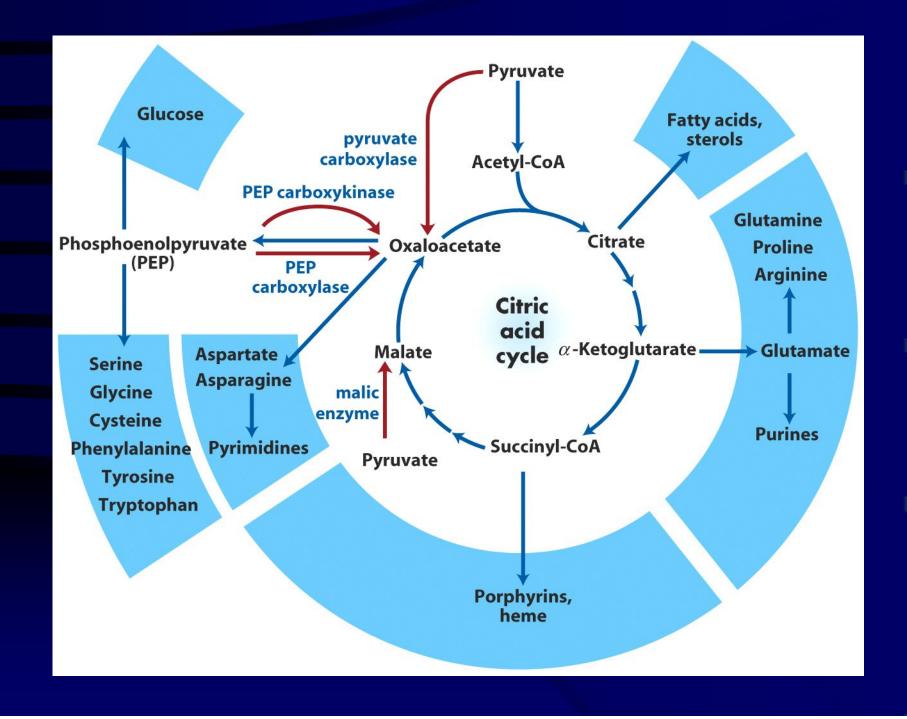
Net profit of aerobic metabolism

If we start from glucose:

- Glycolysis to 2 pyruvate yields:
 - 2 ATP
 - -2 NADH (= 5 ATP)
- Pyruvate DH converts 2 pyruvate to 2 ac-CoA + 2 CO₂
 2 NADH (= 5 ATP)
- Oxidation of the 2 ac-CoA to 2 CO₂ by TCA yields
 20 ATP

The net yield is **32** ATP per glucose oxidized to CO_2 . (Compare this to fermentation's yield of 2 ATP.)

TABLE 16-1Stoichiometry of Coenzyme Reduction and ATP Formation in the Aerobic Oxidation of Glucose viaGlycolysis, the Pyruvate Dehydrogenase Complex Reaction, the Citric Acid Cycle, and Oxidative Phosphorylation


Reaction	Number of ATP or reduced coenzyme directly formed	Number of ATP ultimately formed*
Glucose \longrightarrow glucose 6-phosphate	-1 ATP	-1
Fructose 6-phosphate \longrightarrow fructose 1,6-bisphosphate	-1 ATP	-1
2 Glyceraldehyde 3-phosphate \longrightarrow 2 1,3-bisphosphoglycerate	2 NADH	3 or 5†
2 1,3-Bisphosphoglycerate \longrightarrow 2 3-phosphoglycerate	-2 ATP	-2
2 Phosphoenolpyruvate \longrightarrow 2 pyruvate	-2 ATP	-2
2 Pyruvate \longrightarrow 2 acetyl-CoA	-2 NADH	-5
2 Isocitrate \longrightarrow 2 α -ketoglutarate	2 NADH	-5
2 α -Ketoglutarate \longrightarrow 2 succinyl-CoA	2 NADH	-5
2 Succinyl-CoA \longrightarrow 2 succinate	2 ATP (or 2 GTP)	-2
2 Succinate \longrightarrow 2 fumarate	2 FADH ₂	-3
2 Malate \longrightarrow 2 oxaloacetate	2 NADH	- 5
Total		30-32

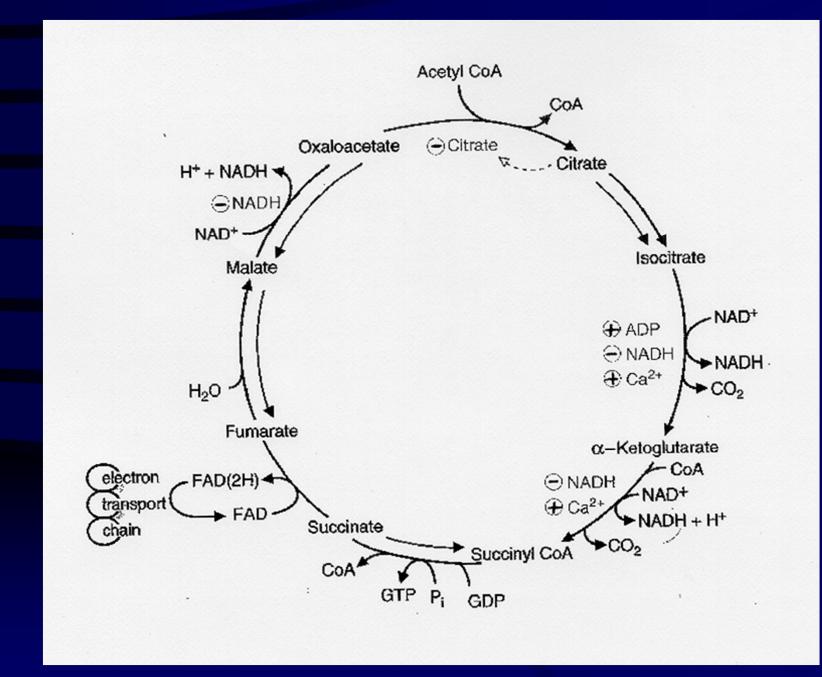
* This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH₂. A negative value indicates consumption.

[†] This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix; see Figures 19–27 and 19–28.

Amphibolic nature of the TCA cycle

- The TCA cycle is used for: catabolism – generation of most cellular ATP anabolism – provides precursors for amino acids, nucleic acids, *etc*.
- Adequate levels of the TCA cycle intermediates must be maintained to keep the cycle going.
- The beauty of a cycle is that you can take any of the 7 intermediates from the cycle that you want and replenish it with any of the other 6.

The Pyruvate Partition

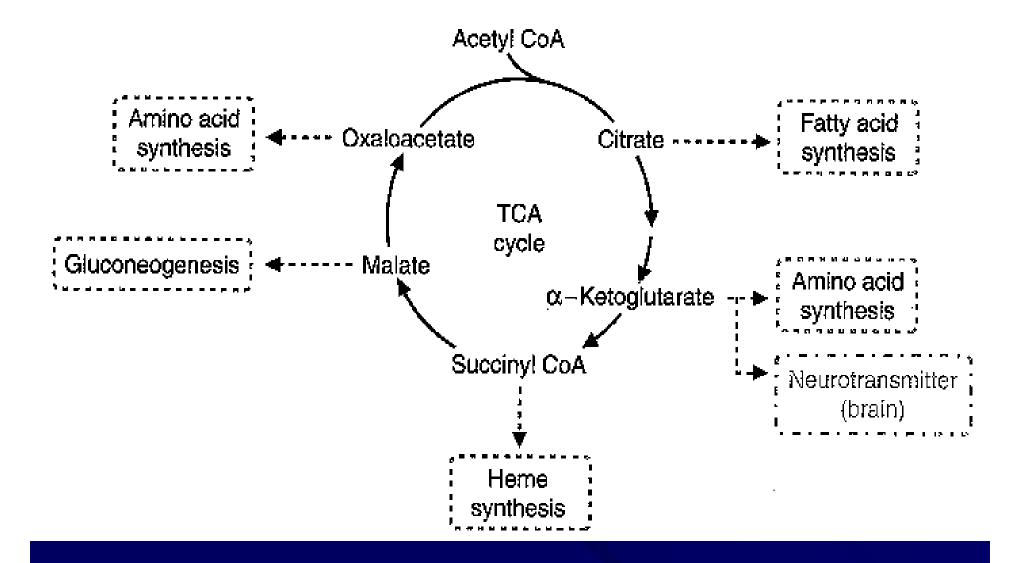

- The main TCA cycle intermediate used to replenish the cycle is **oxaloacetate** (OAA).
- The main source of OAA in eukaryotic cells that are metabolizing carbohydrates is the **pyruvate carboxylase** reaction: pyruvate + $HCO_3^- + ATP \rightarrow OAA + ADP + P_i$

(You saw this reaction used in gluconeogenesis.)

The Pyruvate Partition

Thus, pyruvate entering the mitochondria can be partitioned into one of 2 paths:

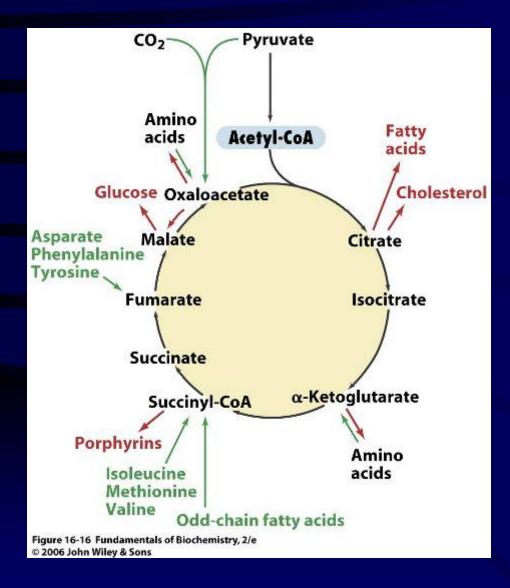
- **1.** acetyl-CoA: 2-carbon, destined to be completely oxidized to CO_2
- 2. OAA: 4-carbon, TCA cycle intermediate, precursor to carbohydrates (PEP), amino acids, etc.
- The relative levels of these 2 pathways depend upon the needs of the cell and they are tightly regulated.



Anaplerotic reactions

 Anaplerotic (filling up) reactions <u>replenish</u> citric acid cycle intermediates

 Amphibolic Nature of TCA Cycle means it both Anabolic and Catabolic. TCA cycle provides several of Intermediates for Biosynthesis



Anaplerotic reactions

- PEP carboxylase converts PEP to oxaloacetate, Anaplerotic reaction in plants and bacteria
- Pyruvate carboxylase converts pyruvate to oxaloacetate, a major anaplerotic reaction in <u>mammalian</u> tissues
- Malic enzyme converts pyruvate into malate

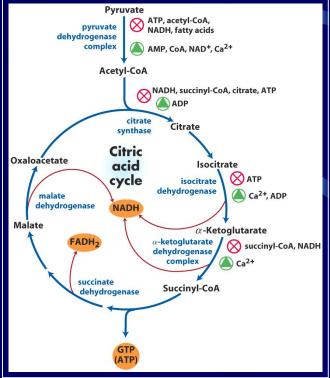
The citric acid cycle is amphibolic

Green: Anaplerotic reactions (replenish)

Red: Cataplerotic reactions (drain)

Regulation of the TCA Cycle

Again, 3 irreversible reactions are the key sites


 Citrate synthase - regulated by availability of substrates - acetyl-CoA and oxaloacetate, citrate is a competitive inhibitor;

Allosteric: - NADH, ATP, succinyl-CoA

- Isocitrate dehydrogenase NADH, ATP inhibit, ADP and NAD⁺ Ca⁺⁺ activate
- α -Ketoglutarate dehydrogenase NADH and succinyl-CoA inhibit, AMP Ca⁺⁺activate

Regulation of the Citric Acid Cycle

- Achieved by the modulation of key enzymes and the availability of certain substrates
- Recall that build-up of citrate slows glycolysis/production of pyruvate
- Regulation also depends on continuous supply of acetyl-CoA (from pyruvate), NAD⁺, FAD, and ADP
- Regulated enzymes in the citric acid cycle:
 - Citrate synthase (reaction 1)
 - Allosterically inhibited by high concentrations of citrate, succinyl-CoA, NADH, ATP
 - Isocitrate dehydrogenase (reaction 3)
 - Activity stimulated by ADP, NAD⁺, and Ca²⁺ (muscle)
 - Inhibited by ATP and NADH
 - α -Ketoglutarate dehydrogenase (reaction 4)
 - Inhibited by ATP, GTP, NADH and succinyl-CoA
 - All three of these enzymes catalyze reactions that represent important metabolic branch points

Allosteric control (TCA cycle)

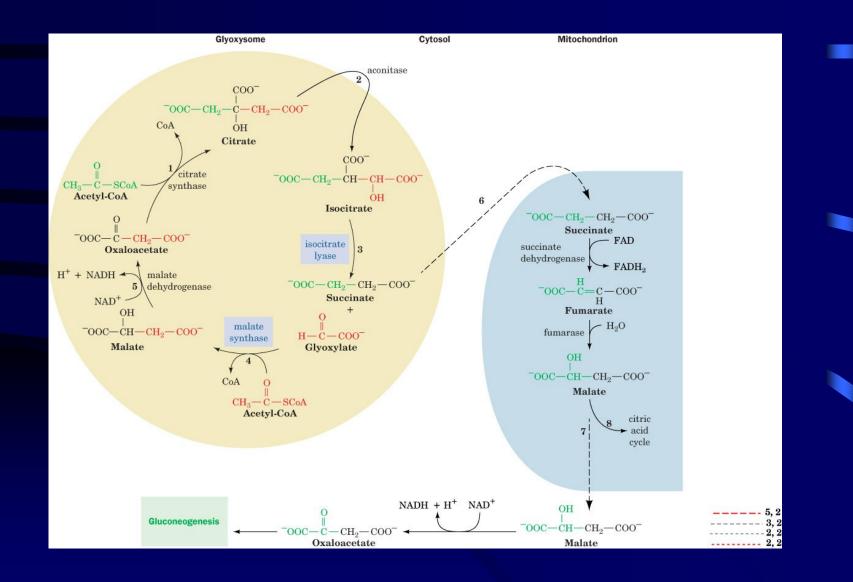
Enzyme	Activated by	Inhibited by
Pyruvate dehydrogenase	AMP, NAD ⁺ , CoA, (Ca ²⁺)	ATP, NADH, acetyl-CoA, FA's
Pyruvate carboxylase	acetyl-CoA	
Citrate synthase	ADP	ATP, NADH, succinyl-CoA, citrate
Isocitrate dehydrogenase	ADP, NAD ⁺ , (Ca^{2+})	ATP, NADH
α-ketoglutarate dehydrogenase	(Ca ²⁺)	NADH, succinyl-CoA

The Glyoxylate cycle

An Anabolic Variant of the Citric Acid Cycle for plants and bacteria . The glyoxylate cycle is a metabolic pathway occurring in plants and several bacteria, but not animals.

. The glyoxylate cycle allows these organisms to use fats for the synthesis of carbohydrates, a task which vertebrates, including humans, cannot perform. Isocitrate --> succinate + glyoxylate (O=CH-COO⁻)+acetyl-CoA--> malate-->> glucose . When fatty acids are consumed by vertebrates they are degraded to many copies of small 2-carbon acetyl compounds.

This acetyl group binds to the active thiol group of coenzyme A and enters the citric acid cycle, where it is fully oxidized to carbon dioxide, which is released into the environment.


. This pathway allows the cell to obtain energy from fat.

In plants the glyoxylate cycle occurs in special peroxisomes which are called glyoxysomes.

Glyoxysomes are membrane-bound organelles found in plants, particularly in the fat storage tissues of germinating seeds.

. The glyoxylate cycle involves 5 enzymes, 3 of which also participate in the citric acid cycle: citrate synthase, aconitase and malic dehydrogynase.

The other 2 enzymes are unique to the glyoxylate cycle: isocitrate lyase and malate synthase.

•The glyoxylate cycle converts 2 Acetyl-CoA ---> succinate instead of $2CO_2$ (as occurs in the Citric acid cycle).

•Succinate can be transported to mitochondria and enter the Citric acid cycle, or it can be transported to the cytosol where it is trans-formed to oxaloacetate and enters the gluconeogenesis pathway.

Overall: 2Acetyl-CoA+2NAD++FAD----> oxaloacetate+ 2CoA+2NADH+FADH₂+2H⁺
germinating seeds convert stored tryglycerides to glucose.

Why is this cycle important?

- Especially important to seeds which can use their fatty acids (oxidation-> acetyl-CoA) for synthesizing ATP and glucose.
- Germination depends on carbohydrates which can not be formed from photosynthesis in the dark.
- The two initial stages of this cycle are identical to those of the citric acid cycle: acetate -> citrate -> isocitrate.
- The next step is different: isocitrate is cleaved into succinate and glyoxylate.

- Succinate is channeled directly into the citric acid cycle and eventually forms oxaloacetate.
- Glyoxylate condenses with acetyl-CoA, yielding malate.
- Both malate and oxaloacetate can be converted into phosphoenolpyruvate and gluconeogenesis can be initiated.
- The net result of the glyoxylate cycle is the production of glucose from fatty acids.

The glyoxylate cycle.

The overall reaction of the glyoxylate cycle is the net formation of oxaloacetate from 2 molecules of acetyl-CoA:

2 AcetyICoA+2NAD⁺+FAD --> oxaloacetate + 2CoA+ 2NADH+FADH₂+2H⁺.

Summary

- Pyruvate is converted to acetyl-CoA by the action of pyruvate dehydrogenase complex, a huge enzyme complex.
- Acetyl-CoA is converted to 2 CO_2 via the eightstep citric acid cycle, generating three NADH, one FADH₂, and one ATP (by substrate-level phophorylation).
- Intermediates of citric acid cycle are also used as biosynthetic precursors for many other biomolecules, including fatty acids, steroids, amino acids, heme, pyrimidines, and glucose.
- Oxaloacetate can get replenished from pyruvate, via a carboxylation reaction catalyzed by the biotin-containing pyruvate carboxylase.

- The activity of pyruvate dehydrogenase complex is regulated by allosteric effectors and reversible phosphorylations.
- Net conversion of fatty acids to glucose can occur in germinating seeds, some invertebrates and some bacteria via the *glycoxylate cycle*, which shares three steps with the citric acid cycle but bypasses the two decarboxylation steps, converting two molecules of acetyl-CoA to one succinate.
- Acetyl-CoA (isocitrate) is partitioned into the glyoxylate cycle and citric acid cycle via a coordinately regulation of the isocitrate dehydrogenase and isocitrate lyase.