ISA 2014/2015 UCs de Geomática e SIGDR Aula prática sobre imagens multiespectrais

Objectivo do exercício: visualizar e interpretar imagens multiespectrais obtidas por satélite.

Os dados estão disponíveis em:

\\dspace\home\cadeiras\Geomatica\geom1415\Landsat8_reflectancias
Dados:

• Ficheiros em formato GTiff denominados LC82030332014151.tif e LC82030332014167.tif correspondentes respectivamente a uma data em Maio de 2014 e em Junho de 2014 que resultaram do recorte de imagens multiespectrais Landsat 8, colecção CDR (*Climate Data Record*), convertidas para valores de reflectância (multiplicados por 10000). A fonte dos dados é http://earthexplorer.usgs.gov/. Cada imagem multiespectral corresponde às bandas 1 a 7 do sensor OLI instalado no satélite Landsat 8, cuja resolução espectral é descrita na figura abaixo:

Band	Description	Wavelength (micrometers)	Resolution (meters)
1*	Violet-Deep Blue	0.43 - 0.45	30
2*	Blue	0.45 - 0.51	30
3*	Green	0.53 - 0.59	30
4*	Red	0.64 - 0.67	30
5	Near Infrared	0.85 - 0.88	30
6	Shortwave Infrared	1.57 - 1.65	30
7	Shortwave Infrared	2.11 - 2.29	30
8*	Panchromatic	0.50 - 0.68	15
9	Cirrus clouds	1.36 - 1.38	30
10**	Thermal infrared	10.62 - 11.19	30
11**	Thermal infrared	11.50 - 12.51	30

- Compreender o significado do nome do ficheiro LC82030332014151.tif: LC8 indica que os dados provêm de Landsat 8, *Climate Data Record*; 203033 indica a localização da imagem descarregada no sistema WRS, em que 203 é o índice de *path*, e 033 é o índice de *row*; 2014151 indica a data de aquisição da imagem pelo sensor, isto é, o dia 151 do ano 2014.
- 2. Interpretar os valores de metadados associados às imagens, e disponibilizados em http://earthexplorer.usgs.gov/, nomeadamente a data e hora de aquisição da imagem, a geometria de observação e de iluminação, e a magnitude dos erros posicionais (erros na direcção do x e do y):

Data Set Attribute	Attribute Value	Data Set Attribute	Attribute Value
Landsat Scene Identifier	LC82030332014151LGN00	Landsat Scene Identifier	LC8203033201
WRS Path	203	WRS Path	203
WRS Row	033	WRS Row	033
Target WRS Path	203	Target WRS Path	203
Target WRS Row	033	Target WRS Row	033
Nadir Off Nadir	NADIR	Nadir Off Nadir	NADIR
Full or Partial Scene	FULL	Full or Partial Scene	FULL
Data Category	NOMINAL	Data Category	NOMINAL
Bias Parameter File Name OLI	LO8BPF20140531104328_20140531111649.01	Bias Parameter File Name OLI	L08BPF20140
Bias Parameter File Name TIRS	LT8BPF20140531103934_20140531111742.01	Bias Parameter File Name TIRS	LT8BPF201406
Calibration Parameter File	L8CPF20140401_20140630.01	Calibration Parameter File	L8CPF2014040
RLUT File Name	L8RLUT20130211_20431231v09.h5	RLUT File Name	L8RLUT201302
Roll Angle	001	Roll Angle	001
Station Identifier	LGN	Station Identifier	LGN
Day/Night	DAY	Day/Night	DAY
Data Type Level 1	L1T	Data Type Level 1	L1T
Sensor Identifier	OLI_TIRS	Sensor Identifier	OLI_TIRS
Date Acquired	2014/05/31	Date Acquired	2014/06/16
Start Time	2014:151:11:07:40.1548670	Start Time	2014:167:11:0
Stop Time	2014:151:11:08:11.9248630	Stop Time	2014:167:11:08
Image Quality	9	Image Quality	9
Scene Cloud Cover	2.43	Scene Cloud Cover	.63
Sun Elevation	66.17401902	Sun Elevation	66.77032217
Sun Azimuth	129.05722206	Sun Azimuth	125.43546907
Geometric RMSE Model X	4.972	Geometric RMSE Model X	4.568
Geometric RMSE Model Y	5.167	Geometric RMSE Model Y	4.763
Browse Exists	Y	Browse Exists	Y
Processing Software Version	LPGS_2.3.0	Processing Software Version	LPGS_2.3.0
Center Latitude	38*54'15.30"N	Center Latitude	38°54'16.38"N
Center Longitude	7*19'51.56"W	Center Longitude	7*19'55.63'W

- 3. Abrir a imagem de Maio (dia 2014151) no QGIS. Qual é o sistema de coordenadas de referência associado à imagem? Qual é a resolução espacial? Qual é o valor numérico associado a *No Data*?
- 4. Qual é a composição colorida que é apresentada por omissão? Construir uma composição colorida em cor verdadeira RGB=432. Para ajustamento do contraste use o critério mean +/- standard deviation * 3. Qual é a cor da vegetação nesta composição colo-

rida?

- 5. Construir uma composição colorida em falsa cor RGB=543 de forma análoga. Qual é agora a cor da vegetação? Verificar que as zonas de regadio (pivots) têm uma cor avermelhada muito marcada. Com a ferramenta identify results, recolher uma assinatura espectral para um pixel com essa coloração e interpretar os valores à luz conhecimentos sobre a assinatura espectral típica de vegetação verde (por exemplo escolha o pixel de coordenadas x = 645060, y = 4239147). Comparar com a assinatura espectral de um pixel numa zona urbana.
- 6. Use a banda 5 da imagem para obter uma estimativa da área inundada correspondente à Albufeira do Alqueva. Sugestão: use **raster calculator** para criar um novo cdg matricial apenas com essa banda; observe o histograma desse cdg (altere o máximo e mínimo no histograma se necessário) para determinar um "ponto de corte" entre água e outro tipo de coberto; faça uma reclassificação do cdg e uma conversão para formato vectorial.
- 7. Construir em raster calculator o índice de vegetação

$$NDVI = \frac{IVP - V}{IVP + V}$$

em que V e IVP representam respectivamente as reflectâncias na região do vermelho do infra-vermelho próximo. Apresente o resultado como um mapa com legenda de cores entre vermelho (valores mais baixos) e verdes (valores mais elevados). Comente.