Exercícios - Estatística e Delineamento - 2015/16

1 Testes χ^2 baseados na estatística de Pearson

- 1. Galinhas homozigóticas de penas brancas são cruzadas com galos homozigóticos de penas pretas, produzindo uma primeira geração em que a conjugação dos dois alelos (de penas brancas e de penas pretas) produz penas de côr azul. Na segunda geração (F₂), e segundo a teoria genética, seria de esperar que 1/4 dos pintos tenha penas brancas, 1/4 tenha penas pretas e 2/4 tenha penas azuis. Foi realizada uma experiência nos moldes acima indicados, verificando-se na segunda geração 36 pintos de penas brancas, 32 pintos de penas pretas e 73 de penas azuis. Verifique se estes valores observados são compatíveis com a teoria genética (utilize um nível de significância α = 0.05).
- 2. Um investigador afirma que numa determinada cultivar de videira, com um esquema de condução padronizado, o número médio de cachos por pé é igual a 4. É sugerido que se modele o número de cachos por pé através duma distribuição de Poisson com parâmetro $\lambda=4$. A fim de avaliar essa hipótese, foram amostrados 200 pés e contados os cachos em cada pé, tendo sido obtidos os resultados indicados na tabela. Teste a hipótese indicada com base nestes resultados.

No. cachos	0	1	2	3	4	5	6	7	8	>8
No. de pés	2	20	29	47	54	29	14	4	1	0

3. Uma determinada cultura encontra-se atacada pelo fungo F. Foram seleccionadas aleatoriamente 100 plantas e classificadas quanto à intensidade da infestação. A intensidade da infestação é medida da seguinte forma: a planta é dividida em quatro partes iguais e conta-se o número de partes onde se manifesta a infestação. No quadro figuram o número de plantas classificadas em cada uma das classes de intensidade. Teste se é admissível considerar que uma distribuição Binomial é um modelo aceitável para descrever a intensidade do ataque do referido fungo. Utilize os níveis de significância 0.05 e 0.01, comentando os resultados nos dois casos. Discuta o valor de prova (p-value) associado ao valor da estatística. Comente.

Grau de ataque	0	1	2	3	4
No. de plantas	15	20	40	18	7

4. A porosidade de cascas de ovo pode ser medida em termos do número de poros por mm^2 de superfície. Uma experiência aleatória selecciona 320 bocados de casca e procede-se à contagem do número de poros em $1\,mm^2$ de cada bocado. Os resultados obtidos são dados na tabela de frequências. Será admissível considerar que a variável aleatória que indica o número de poros por milímetro quadrado de casca segue uma distribuição de Poisson? Justifique adequadamente. Calcule o valor de prova associado ao valor calculado da estatística.

No. de poros	0	1	2	3	4	5
Frequência	18	74	139	70	17	2

5. Em estudos relativos à distribuição espacial de insectos é frequente dividir uma determinada zona numa grelha de quadrados de área pré-fixada, procedendo-se à contagem do número de insectos (da espécie sob estudo) por quadrado. Em certos casos, verifica-se que é possível modelar este tipo de experiências considerando que a variável aleatória X, que representa o número de insectos

por quadrado, segue uma distribuição de probabilidades Binomial Negativa. Esta distribuição de probabilidades tem dois parâmetros, m e p, e a função de probabilidades que a caracteriza é:

$$P[X=j] = (1-p)^j p^m \binom{m+j-1}{j} \quad \forall j \in \mathbb{N}_0.$$

Numa experiência deste tipo inspeccionaram-se 100 quadrados, e anotaram-se as contagens de insectos por quadrado, dadas no quadro. Perante estes dados, considera adequada a hipótese de o número de insectos por quadrado ser modelado pela distribuição Binomial Negativa com parâmetros p=0.8 e m=5?

No. de insectos	0	1	2	3	≥ 4
Frequência	35	29	21	8	7

6. A descendência resultante dum cruzamento de ervilheiras heterozigóticas relativamente à côr da semente e tipo de superfície foi a indicada na tabela seguinte.

	Superfície				
Côr	Lisa	Rugosa			
Amarelas	556	184			
Verdes	193	61			

Segundo a teoria genética, a côr amarela é dominante da verde e a superfície lisa é dominante da enrugada. Admitindo a segregação independente dos dois genes (isto é, que o alelo herdado do gene da côr é independente do alelo herdado do gene que controla o tipo de superfície), desse cruzamento seriam esperadas as proporções de 9/16 de ervilheiras amarelas lisas, 3/16 amarelas rugosas, 3/16 verdes lisas e 1/16 verdes rugosas. Verifique se os resultados obtidos são compatíveis com estas hipóteses, ao nível de significância $\alpha = 0.10$.

7. Cruzaram-se duas linhas puras de cobaias, sendo os progenitores masculinos de pelos curtos e côr amarela e os progenitores femininos de pelos longos e côr branca. A característica pelos curtos é dominante relativamente a pelos longos. Quanto à côr, um genótipo híbrido (isto é, com um alelo de côr amarela e outro de côr branca) terá a côr creme. Admitindo a segregação independente de cada gene, a teoria genética prevê que numa segunda geração (F₂) do referido cruzamento, seriam de esperar as seguintes proporções: 6/16 de cobaias de pelo curto e côr creme; 3/16 de pelo curto e côr amarela; 3/16 de pelo curto e côr branca; 2/16 de pelo longo e côr creme; 1/16 de pelo longo e côr amarela; e 1/16 de pelo longo e côr branca.

Uma experiência realizada nestas condições produziu os seguintes resultados:

		Côr	
Pelo	Creme	${ m Amarelo}$	Branco
Curto	178	93	89
Longo	62	29	31

Verifique se estes resultados são compatíveis com a teoria genética, ao nível de significância $\alpha = 0.05$.

8. Considere a experiência descrita no Exercício 3 dos Exercícios Introdutórios, e referente ao enraizamento de estacas semi-lenhosas de oliveiras, submetidas a quatro diferentes tratamentos. Em cada tratamento, foram ensaiadas 60 estacas. Os resultados obtidos foram os seguintes:

Tratamento	Morte	Com calo	${ m Enraizamento}$	Total
Sem incisão/sem boro	26	18	16	60
Com incisão/sem boro	32	22	6	60
Sem incisão/com boro	24	24	12	60
Com incisão/com boro	39	19	2	60
Total	121	83	36	240

- (a) Teste se é possível admitir que a distribuição das observações pelas três categorias é igual para os quatro tratamentos.
- (b) Em caso de concluir que diferentes tratamentos estão associados a diferentes distribuições dos resultados, identifique quais as combinações de tratamento/resultado que mais contribuem para essas diferenças. Interprete e comente.
- 9. Pretende-se determinar se a distribuição de frutos por várias classes de calibre difere em três regiões nacionais de produção desses frutos: Bombarral, Alentejo e Setúbal. Foram definidas oito classes de calibre, e utilizaram-se no estudo os frutos de cada região que estavam disponíveis: 19 do Bombarral, 155 do Alentejo e 100 de Setúbal. Obtiveram-se as seguintes distribuições:

		Calibre							
Região	≤ 40	$40 - 45^{+}$	$45 - 50^+$	$50 - 55^+$	$55 - 60^+$	$60 - 65^+$	$65 - 70^+$	> 70	Total
Bombarral	0	0	0	3	4	6	5	1	19
Alentejo	0	7	37	59	36	15	1	0	155
Setúbal	2	40	45	10	3	0	0	0	100
Total	2	47	82	72	43	21	6	1	274

- (a) Teste se é possível considerar que a distribuição de calibres nas três regiões é idêntico.
- (b) Caso opte por admitir diferenças nas distribuições, identifique as combinações de calibres e regiões mais responsáveis por essas diferenças e interprete os seus resultados.
- 10. Na região escocesa de Caithness, 5387 pessoas foram classificadas de acordo com a sua côr de cabelo (5 classes) e de olhos (4 classes). A tabela de contingências resultante está disponível numa data frame de nome caith, no pacote MASS do R. Efectue um teste χ^2 para estudar se existe independência entre estes dois factores de classificação. Comente os resultados do teste.
- 11. Uma direcção regional necessita identificar, na sua região, três tipos de ocupação de solo agrícola: cultura de sequeiro, cultura de regadio e não cultivado. Para tal, envia equipas ao terreno para obter essa informação, o que acarreta custos elevados. Uma pequena empresa propõe fornecer, por um preço muito menor, um mapa de ocupação do solo, obtido por análise de imagens de satélite. Para avaliar se o mapa da empresa é útil, os técnicos da direcção regional escolhem ao acaso 100 parcelas de terreno da região e comparam na tabela abaixo a classificação realizada pelas equipas no terreno (linhas) e a classificação fornecida pelo mapa da empresa (colunas).

	não cultivado	$_{ m sequeiro}$	regadio
não cultivado	16	15	4
$_{ m sequeiro}$	15	22	3
$_{ m regadio}$	0	5	20

Efectue um teste de independência à tabela e comente os seus resultados.