
Balanço hídrico do solo com rega

O calculo das necessidades hídricas é baseado numa aproximação simplificada do balanço hídrico do solo, considerando este um reservatório que recebe água através da precipitação, da rega ou da ascensão capilar e que perde água através da evapotranspiração das culturas, do escoamento superficial ou da drenagem profunda.

A capacidade máxima é a sua **Reserva Utilizável** (mm), calculada quando a humidade à capacidade de campo (CC) e ao coeficiente de emurchecimento (CE) são expressos pela sua % em volume, através da expressão:

$$RU = (CC - CE) \times 10 \times z$$

em que z (m) é a profundidade do sistema radicular

Como apenas uma parte desta água é utilizada em situação de conforto hídrico das culturas, estabelece-se uma **Reserva Facilmente Utilizável** calculada como um fracção da Reserva Utilizável.

Esta fracção denomina-se fracção facilmene utilzável, p.

$$RFU = RU \times p$$

Pode então definir-se o *Imite da reserva facilmente utilizável* (Lrfu) como o valor mínimo da água útil no solo, R, abaixo do qual a planta entra em situação de carência hídrica, e calcula-se pela expressão:

$$Lrfu = RU - RFU = RU(1-p)$$

$$RU = (CC - CE) \times 10 \times z = (22 - 10) * 10 * 0.9 = 108 \text{ mm}$$

$$RFU = RU \times p = 108 \times 0.4 = 43.2 \text{ mm}$$

Ficam assim delimitadas:

- a) uma zona de saturação, em que a água não é imediatamente utilizável, acima da capacidade de campo,
- b) uma zona de conforto hídrico entre a capacidade de campo e o Lrfu, onde se considera que a cultura se desenvolve em condições óptimas,
- c) uma zona de carência hídrica entre este limite e o coeficiente de emurchecimento, em que se reduz a evapotranspiração cultural de acordo com a diminuição do teor de água no solo, e uma zona de água não utilizável abaixo deste valor.
- A variável R (*reserva útil do solo*) mostrada na 1ª Figura, representa o valor da água armazenada no solo a uma tensão superior à do coeficiente de emurchecimento permanente.

Considerando apenas o conforto hídrico das culturas a rega deveria ser feita para que a água no solo se mantivesse sempre na zona de conforto hídrico (entre a reserva utilizável do solo, correspondente ao valor de água útil armazenado à capacidade de campo) e o limite da reserva facilmente utilizável.

Para um determinado intervalo de tempo *t* (dias) a equação de balanço pode escrever-se do seguinte modo:

$$\Delta R = (P - ETc + Rg - Es + Ac - Dr) \times \Delta t$$

Com P, ETc, Rg, Es, Ac e Dr expressos em mm/dia

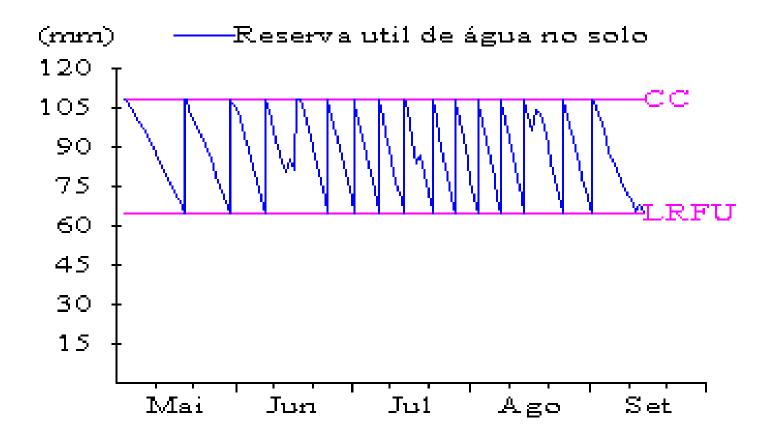
Considerando que a precipitação efectiva (Pe) pode ser definida por:

$$Pe = P - Es$$

$$\Delta R = (Pe - ETc + Rg + Ac - Dr) \times \Delta t$$

a) Na zona de conforto hídrico

Nesta zona é: *Dr*=0, porque se está abaixo da capacidade de campo; A evapotranspiração *ETc* é constante e igual ao seu valor máximo, visto que a cultura está numa situação de conforto hídrico; e *Ac*=0, porque não se estabelece o gradiente necessário para provocar a ascensão capilar. Assim, a equação simplifica-se:


$$\Delta R = (Pe - ETc) \times \Delta t$$

Tomando diferenciais e integrando em ordem ao tempo, considerando as condições limites enunciadas para a zona de rendimento máximo, fica:

$$R(t) = R_i + (Pe - ETc) \times t$$

em que *Ri* representa o volume de água utilizável armazenado pelo solo no início do intervalo e R(t) é o volume de água utilizável ao fim de um instante t.

A equação anterior é a equação de uma reta que passa pela valor de R_i e tem um declive positivo quando P>ETc, isto é, quando a entrada de água no solo é superior à saída.

b) Na zona de carência hídrica

Na zona de carência hídrica, a planta diminui o seu poder evapotranspirante, diminuindo ET_L à medida que o solo vai perdendo água.

Assim, introduzindo a hipótese de linearidade é:

$$ETc_{aj} = \frac{ETc}{R \min}R$$

Em que **ET**_{caj} é o valor ajustado da evapotranspiração cultural num determinado instante considerando situações de stress hídrico e **Rmin** é o ponto da linha Limite da Reserva Facilmente Utilizável nesse instante (dia). Então de acordo com a definição de coeficiente cultural (K_c), o coeficiente de stress Ks calcula-se por:

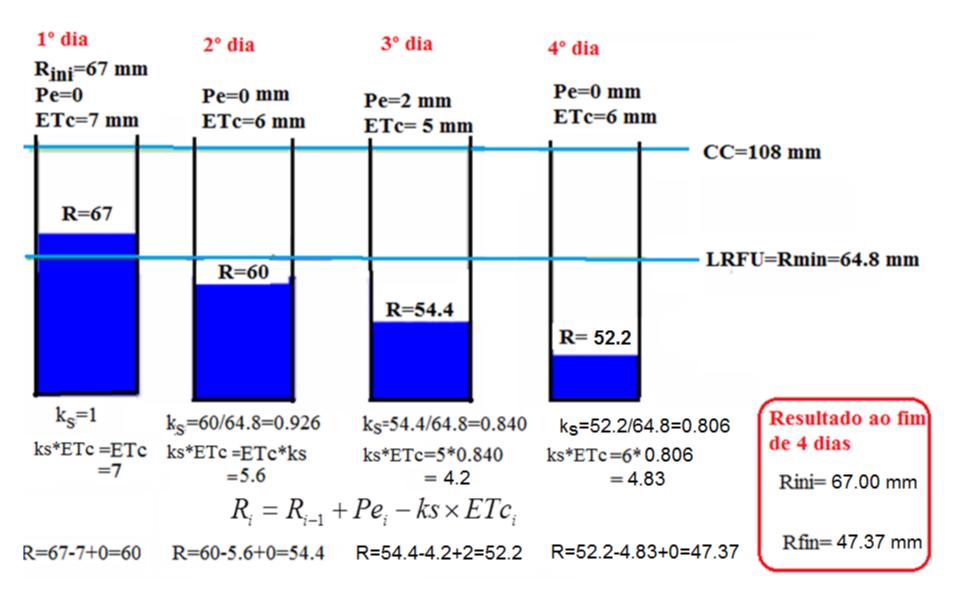
$$K_S = \frac{R}{R \text{ min}}$$
 $ETc_{aj} = k_s \times ETc$

Nota: **Rmin** é o valor mínimo da água utilizável em que a planta ainda não está em stress, sendo portanto igual, em cada dia, ao valor que nesse dia tem o Limite da Reserva Facilmente Utilizável

a) Na ausência de uma toalha freática próximo da superfície

Ac=0

E a equação do balanço passa a ser escrita da seguinte forma:


$$\Delta R = \left(Pe - \frac{ETc}{R \min}R\right) \Delta t = \left(Pe - ks \times ETc\right) \Delta t$$

$$R = R_0 + (Pe - ks \times ETc)\Delta t$$

Como agora Ks é uma função da variável R a equação diferencial não é de variáveis separáveis e tem que ser integrada doutro modo.

A forma mais simples de a resolver é fazer integração dia a dia considerando Ks constante em cada dia (i), calculado a partir do valor da reserva de água no solo obtido para o final do dia anterior (i-1).

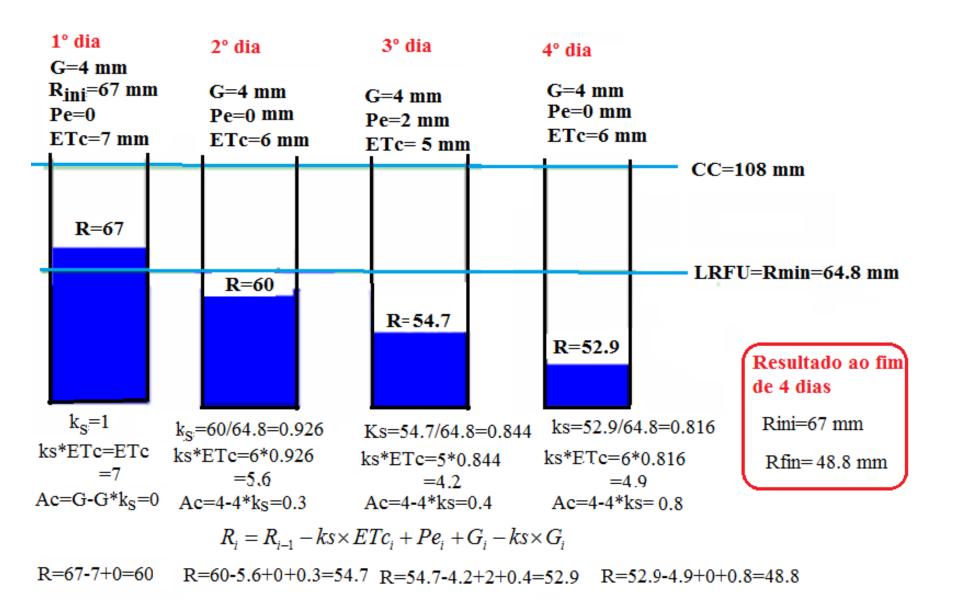
$$R_{i} = R_{i-1} + Pe_{i} - ks \times ETc_{i} \qquad ks = \frac{R_{i-1}}{R \min}$$

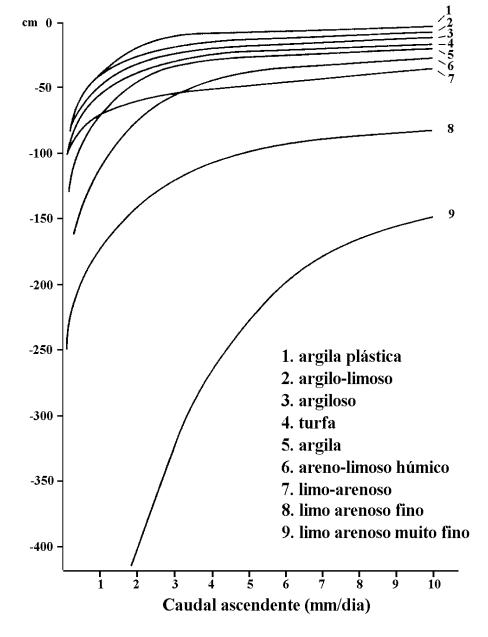
b) Quando está presente uma toalha freática próximo da superfície Na zona de carência hídrica *Ac* é inversamente proporcional ao teor de água no solo, atingindo o seu valor máximo (*potencial de ascensão capilar G*

quando *R*=0, ou seja, quando o teor de humidade do solo é igual ao coeficiente de emurchecimento permanente (*CE*).

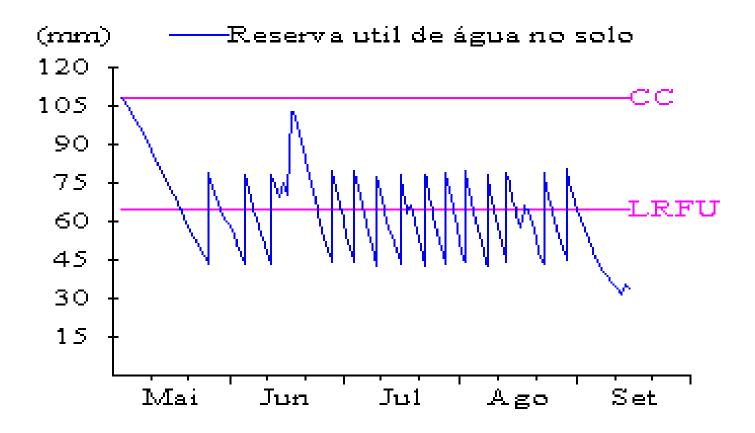
Nestas condições, a equação que permite, em cada instante, calcular *Ac* em função de *R*, é:

$$Ac = G - \frac{G}{R \min} R = G - ks \times G$$


A equação do balanço hídrico passa agora a ter a seguinte expressão:

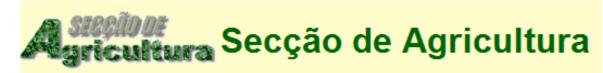

$$\Delta R = \left(Pe - \frac{R}{R\min}ETc + G - \frac{R}{R\min}G\right) \times \Delta t$$

$$\Delta R = (Pe - ks \times ETc + G - ks \times G) \times \Delta t$$


Como a ETc e a Ac dependem do valor de R, a equação pode ser resolvida como no caso anterior, fazendo intervalos de tempo pequenos (1 dia) e considerando que o valor de ETc e de Ac a utilizar nesse dia (i) são função do valor de R obtido no final do dia anterior (i-1).

$$R_{i} = R_{i-1} - ks \times ETc_{i} + Pe_{i} + G_{i} - ks \times G_{i} \qquad ks = \frac{R_{i-1}}{R \min}$$

Potencial de ascensão capilar em função do tipo de solo e da profundidade da toalha freática (Extraído de Doorenbos e Pruitt, 1977).


Programas de simulação

- Programa ISAREG Faz a simulação da rega com dados meteorológicos históricos. Utiliza-se para planeamento e projecto.
- Programa RELREG Faz a simulação com dados meteorológicos actuais e é utilizado para fazer a condução da rega em tempo real.

Estes programas estão disponíveis em:

http://www.isa.utl.pt/der/JLTeixeira/SoftWare/ISAREG/index.htm

Dados meteorológicos

Dados Meteorológicos

- Aquas de Moura.xls
- Alcacer do Sal.xls
- Alcobaca.xls
- Alcobaca Escola Agricola.xls
- Almeirim.xls
- Alvalade.xls
- Alvega.xls
 Alverca.xls

http://agricultura.isa.utl.pt/agribase_temp/solos/default.asp

- Ameixial.xls
- ANADIA.XLS
- Beja.xls
- Benavila.xls
- Bigorne.xls
- Braga.xls
- Braganca.xls
- Cabo Carvoeiro.xls
- Cabo da Roca.xls
- Caldas da Rainha.xls
- Campo Maior.xls
- Caramulo.xls
- Castelo Branco.xls
- Castelo Branco 1.xls
- Castelo Branco 2.xls
- Castro Verde.xls

A	А	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q
1	Estação	Ano	Mês	T9	T	Tmax	Tmin	Tamax	Tamin	Vento	HR9	I	R	R01	R1	R10	Geada
2	Bragança	1959	1	4.2	6	9.1	2.9	14.4	-4.6		91	85.3	74.6	18	12	3	0
3	Bragança	1959	2	2.1	5.9	10.9	1	16	-2		86	200.7	26.1	8	5	0	25
4	Bragança	1959	3	6.1	8.3	11.7	5	19.6	-0.2		88	107.4	103	24	15	3	2
5	Bragança	1959	4	5.9	9.8	14.6	5	21	2		86	221.8	86.6	13	8	2	4
6	Bragança	1959	5	8.8	13.4	18.5	8.4	24.6	1.1		90	243.9	83.4	16	12	2	3
7	Bragança	1959	6	12	17.3	23.4	11.2	27	4		87	336.9	71.4	7	4	2	0
8	Bragança	1959	7	15.8	22.7	30.2	15.1	37	10.4		78	397.1	31.1	6	4	1	0
9	Bragança	1959	8	14.2	20.3	27	13.7	32.8	10.1		85	328.6	47.3	7	4	2	0
10	Bragança	1959	9	12.8	17.1	22.1	12.2	26.4	8.4		91	198.5	74.5	15	10	3	0
11	Bragança	1959	10	9.1	12.6	17.4	7.7	23.2	1.2		91	195.3	79.7	17	10	5	0
12	Bragança	1959	11	5	7.2	10.8	3.5	18	0		92	127.4	129.9	20	11	5	4
13	Bragança	1959	12	6.3	5.9	8.8	2.9	13	-1.6		91	87	191.6	28	18	7	3
14	Bragança	1960	1	3.4	5	8.2	1.8	16.3	-5.5		91	126.8	105.2	21	8	6	14
15	Bragança	1960	2	3.2	5.3	8.4	2.2	19.4	-4.8		92	86.6	161.8	22	16	6	7
16	Bragança	1960	3	5.7	8.2	12	4.4	21	1.2		89	132.8	111.8	20	14	3	2
17	Bragança	1960	4	5.8	11.1	17	5.1	23	-0.8		85	281.2	25.4	5	3	1	6
18	Bragança	1960	5	10.1	14.6	20	9.3	29.8	5.4		87	275.8	61.6	10	6	3	0
19	Bragança	1960	6	13.9	19.5	25.9	13.1	33	7.8		80	368.3	39.9	5	3	1	0
20	Bragança	1960	7	13.3	19.6	26.6	12.7	34.6	7.4		77	389.8	21	4	3	0	0
21	Bragança	1960	8	12.2	18	24.6	11.3	30.2	7.4		71	338.1	22.4	6	3	1	0
22	Bragança	1960	9	11.7	17.1	23.4	10.8	32	5		78	225.5	51.5	10	7	2	0
23	Bragança	1960	10	7.7	10.2	13.6	6.7	18	8.0		94	123.6	225.4	23	19	8	2
24	Bragança	1960	11	6.5	7.7	10.8	4.6	14	0		91	102.9	175.8	25	18	6	6
25	Bragança	1960	12	2.5	4	7.1	0.9	11.8	-2.2		88	126.1	77.5	20	11	3	18
26	Bragança	1961	1	2.3	3.8	7.1	0.4	12.6	-5.2		90	110.8	60	26	12	1	15
27	Bragança	1961	2	5.2	8.6	13.5	3.7	17.4	0.7		88	187.3	36.5	11	5	1	10