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Linear Mixed Models

Summary:

1. Motivation:  some typical examples involving mixed models

2. The general linear mixed model: description and properties

3. Inference in linear mixed models: estimation of covariance
parameters, estimation of fixed effects and prediction of random
effects; hypothesis tests for covariance parameters, fixed and
random effects; model selection (model comparison via likelihood
ratio tests and via information criteria)

5. Some applications: exercises
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Fitting linear mixed models 
Packages usually used

Library nlme,         (http://www.R-project.org)

Library lme4,         (http://www.R-project.org)

 Library varComp ,    (http://www.R-project.org)

Proc mixed do SAS (SAS Institute, Inc.)

Library ASREML-R,        (VSN International) (mainly
focused in aninal and plant breeding)
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• Models in which the only effects are fixed effects
are called fixed effects models.

• Models that contain both fixed and random effects
are called mixed models.

• A special case of a mixed model is when there are
no fixed effects (except a general mean common to
all observations, 𝜇), that is, a model having only
random effects. It is called a random model.

What is a mixed model?
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When the levels of the factor have been selected at random from a
population of possible levels and we want to obtain information
about the parameters of the distribution of those levels.

The main goals of the analysis of random effects models are :
Estimate covariance parameters
Test hypotheses about the parameters or functions of the

parameters
Calculate predictors (BLUP) of the realized values of the random

effects
Compare treatment means

What are random effects?
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Some typical examples involving mixed models

Motivation

7



 The RCB is the standard design for agricultural 
experiments. 

 The field is divided into units to account for any 
variation in the field (by accounting for spatial 
effects). Blocks are groups of units that are formed 
so that units within the blocks are as nearly 
homogeneous as possible. 

 The levels of the factor being investigated, called 
treatments, are randomly assigned to units within 
the blocks (each treatment once per block).

 The number of blocks is the number of 
replications.

 Any treatment can be adjacent to any other 
treatment, but not to the same treatment within 
the block. 

BLOCK I

BLOCK II

BLOCK III

BLOCK IV

Example: each row 
represents a block. There are 

4 blocks (I-IV) and 4 
treatments (different colors)

The randomized block design is just the begining with mixed models. 

Blocking is a research technique that is used to diminish the effects of variation among 
experimental units. The units can be people, plants, animals, etc..

The Randomized Complete Block design (RCB)
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• Usually, the primary objectives are to estimate and compare
treatment means. In most cases, the treatment effects are
considered fixed because the treatments in the experiment are the
only ones to which inference is to be made.

• Block effects are usually considered random because the blocks in
the experiment constitute only a small subset of the larger set of
blocks over which inferences about treatment means are to be
made.

The model for data from a randomized blocks design usually contains a
fixed effects factor and random effects for blocks, making it a mixed
model

The Randomized Complete Block design (RCB)
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RCB repeated at more than one location
• Blocks are laid out at more than one location. Treatments 
are assigned at random to those blocks. 
• Treatments are assigned at random within blocks, each 
treatment once per block.
• The number of blocks is the number of replications.
• Any treatment can be adjacent to any other treatment, 
but not to the same treatment within the block. 

BLOCK I

BLOCK II

BLOCK III

BLOCK IV

BLOCK I

BLOCK II

BLOCK III

BLOCK IV

BLOCK I

BLOCK II

BLOCK III

BLOCK IV

BLOCK I

BLOCK II

BLOCK III

BLOCK IV

Location I

Location II

Location IV

Location III

 Usually, the treatment effects are considered fixed.
 Usually, location effects are considered random 

because the locations constitute only a small subset 
of the larger set of locations over which inferences 
about treatment means are to be made. 

 Block effects nested within location are usually 
considered random.

Example: there are 4 treatments (different colors), 
4 locations and 4 blocks per location

The model for data from this type of design contains 
a fixed effects factor and random effects factors, 

it is a mixed model
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• The split plot design has an agricultural heritage, with the
whole plots usually being large areas of land and the subplots
being smaller areas of land within the large areas.

Example: several varieties of a crop could be planted in diferente fields (whole plots),
one variety to a field. Then each field could be divided into several subplots, and each
subplot could be treated with a diferente type of fertilizer..

• Despite its agricultural basis, the split-plot design is useful in
many other scientific areas.

The split-plot design
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• Main treatments (levels of factor A) are assigned at random within blocks, each treatment 
once per block; they are divided further into additional independent units (subplots) to which 
another set of treatments (levels of factor B) are randomly assigned. 
• The number of blocks is the number of replications.
• Any main treatment can be adjacent to any other treatment, but not to the same treatment 
within the block. 

BLOCK I

BLOCK II

BLOCK III

BLOCK IV

Example:

Different colors represent different main treatments; each row represents a block. There are 
4 blocks (I-IV) each of 4 main treatments (colors) divided into 4 further sub-plot treatments 
(symbols).

The split-plot design on a RCB 
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The model for data from this type of 
design contains a fixed effects and 

random effects, 
it is a mixed model

The split-plot design on a RCB 

• The effects of factor A, the effects of factor B and interaction 
AXB are considered fixed.

• Block effects are considered random effects.
• The effects of interaction BlockXFactor A are assumed random

effects (whole plot error)
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 Random models (a particular case of mixed model) and
mixed models are historically applied in plant and animal 
breeding. In this context, the objectives are focused in the
covariance parameters estimates and in the preditors of
random effects.

 Other numerous experimental designs produce data for
which mixed models are appropriate. Some examples are
nested designs, designs belonging to the family of
incomplete block designs, repeated measures designs, etc..
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In matrix formulation, the linear mixed model can be written as (the bold will be

used for matrix notation)

: 𝒀 = 𝑿𝜷 + 𝒁𝒖 +e

𝒀 𝑛×1 is the vector of observations 

𝑿 𝑛×𝑝 is the model matrix for fixed effects

𝜷 𝑝×1 is the vector of fixed effects

𝒁 𝑛×𝑞 is the model matrix for random effects 

𝒖 𝑞×1 is the vector of random effects

𝒆 𝑛×1 is a vector random errors

The Linear Mixed Model

The predictors can be factors and numeric variables. 
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Y = 𝑿 𝜷 + 𝒁 𝒖 + 𝒆

Example: model with one factor of fixed effects and
one factor of random effects (when X e Z are incidence matrices)

When  X is a singular matrix, the procedure is similar to the already 
described for ANOVA with fixed effects 
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 The vectors 𝒖 and 𝒆 are assumed mutually independent with 

multivariate normal distribution with vector of mean values 

𝟎 𝑛×1 and covariance matrices 𝑮 e 𝑹 , respectively: 

cov 𝒖, 𝒆 = 𝟎

𝒖 ∩𝓝𝒒 𝟎, 𝑮

e ∩𝓝𝒏 𝟎,𝑹

where 𝑮 𝑞×𝑞 e 𝑹 𝑛×𝑛 are symmetric and positive-definite matrices

𝒀 = 𝑿𝜷 + 𝒁𝒖 +e

Linear mixed model
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 As a consequence,

𝐸 𝒀 = 𝑿𝜷

var 𝒀 = 𝒁𝑮𝒁𝑻 + 𝑹 = 𝑽,

where 𝒁𝑻 is the transpose of 𝒁.

 The distribution of 𝒀 is multivariate normal with mean value 𝑿𝜷
and variance-covariance matrix  𝑽, symmetric and positive-

definite, 

𝒀 ∩𝓝𝒏 𝑿𝜷, 𝑽 .

cov 𝒀, 𝒖 = 𝒁𝑮
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There are many variants for linear mixed models

• In the classical linear mixed model is assumed that:

- The elements of the vector 𝒖 are independent and identically
distributed random variables (i.i.d.), that is, the covariance matrix is
𝑮 = 𝜎𝑢

2𝑰𝒒, where 𝑰𝒒 is the identity matrix 𝑞 × 𝑞 ;

- The elements of the vector 𝒆 are i.i.d. random variables, that is, the
covariance matrix is 𝑹 = 𝜎𝑒

2𝑰𝒏 , where 𝑰𝒏 is the identity matrix 𝑛 × 𝑛.

It means that 𝑿 = 𝟏𝒏, 𝜷 = 𝜇, 𝑮 = 𝜎𝑢
2𝑰𝒒, 𝑹 = 𝜎𝜀

2𝑰𝒏

• A particular case is the traditional random model: 
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Example: the particular case of ANOVA with one factor
with random effects, balanced

𝑌𝑖𝑗 = 𝜇 + 𝑢𝑖 + 𝑒𝑖𝑗

for  𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏.

𝑌𝑖𝑗 is the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ level of  factor 𝐴;

𝜇 is a general mean (population);

𝑢𝑖 is the effect of the level 𝑖 of the factor 𝐴; 

𝑒𝑖𝑗 is the random error associated to the observation 𝑌𝑖𝑗.
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• 𝑢𝑖 ∩𝒩 0, 𝜎2
𝑢 , ∀𝑖

• 𝑒𝑖𝑗 ∩𝒩 0, 𝜎2
𝑒 , ∀𝑖𝑗

• 𝐸 𝑌𝑖𝑗 = 𝜇

• cov 𝑒𝑖𝑗 , 𝑒𝑖′𝑗′ = 0, except for 𝑖 = 𝑖’ e 𝑗 = 𝑗’

• cov 𝑢𝑖 , 𝑢𝑖′ = 0, ∀𝑖 ≠ 𝑖′

• cov 𝑢𝑖 , 𝑒𝑖′𝑗′ = 0, ∀𝑖, 𝑖′e j′

In the traditional random model it is assumed:
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cov 𝑌𝑖𝑗 , 𝑌𝑖𝑗′ = 𝑐𝑜𝑣 𝜇 + 𝑢𝑖 + 𝑒𝑖𝑗 , 𝜇 + 𝑢𝑖 + 𝑒𝑖𝑗′ = 𝜎2
𝑢 , para 𝑗 ≠ 𝑗′

cov 𝑌𝑖𝑗 , 𝑌𝑖´𝑗´ = 0, 𝑝𝑎𝑟𝑎 𝑖 ≠ 𝑖′

In this context arises the concept of Intraclass Correlation:

𝑐𝑜𝑟𝑟 𝑦𝑖𝑗 , 𝑦𝑖𝑗′ =
𝜎2

𝑢

𝜎2
𝑢 + 𝜎2

𝑒 𝜎2
𝑢 + 𝜎2

𝑒

• As a consequence,

var 𝑌𝑖𝑗 = var 𝜇 + 𝑢𝑖 + 𝑒𝑖𝑗 = 𝜎2
𝑢 + 𝜎2

𝑒

var  𝑌𝑖. = 𝜎2
𝑢 +  𝜎2

𝑒
𝑏

• Although 𝑢𝑖 and 𝑒𝑖𝑗 are uncorrelated, the 𝑌𝑖𝑗s are not. In the 

same random effect the observations are correlated (a difference 
from the fixed effects model):
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 𝑿𝜷
- 1 or more factors of fixed effects (including interactions, 
nested factores, etc.)

 𝒁𝒖
- 1 ou more factors of random effects (including interactions, 
nested factores, etc.)

Many other situations can arise according to:

 The structure of the covariance matrices G and R
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But modeling the covariance struture is arguably the most
powerful and important single feature of mixed models, and what
sets it apart from conventional linear models. This extends beyond
covariance structure to include correlation among observations.

As mentioned above, in the traditional linear model the covariance
matrices G and R are defined as 𝑮 = 𝜎𝑢

2𝑰𝒒 𝑹 = 𝜎𝑒
2𝑰𝒏,

𝑮 𝑞×𝑞 =

𝜎𝑢
2 0 ⋯ 0

0 𝜎𝑢
2 ⋯ 0

0 0 ⋱ 0
0 0 ⋯ 𝜎𝑢

2

𝑹 𝑛×𝑛 =

𝜎𝑒
2 0 ⋯ 0

0 𝜎𝑒
2 ⋯ 0

0 0 ⋱ 0
0 0 ⋯ 𝜎𝑒

2
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For example, frequently

𝒖 = 𝒖𝟏
𝑻, ⋯ , 𝒖𝒌

𝑻 𝑻

where 𝒖𝒊 is a vector 𝑞𝑖 × 1, thus 

. 

.
1





k

i
iqq

. 

The model matrix associated to vector 𝒖 is:

𝒁 = 𝒁𝟏 𝒁𝟐 ⋯ 𝒁𝒌 . 

Generalizing for 𝑘 sub-vectors of random effects, 

  





















k

i
ii

k

k uZ

u

u

ZZZu
1

1

1 

 vector  𝒖 consists in 𝑘 sub-vectors, that is, 

 𝒁𝑼 e matriz 𝑮
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Each sub-vector of random effects, represented by 𝒖𝒊, has the 
properties:

  0iuE var 𝒖𝒊 = 𝜎𝑢𝑖
2 𝑰𝑞𝑖 = 𝑮𝑖,

cov 𝒖𝑖 , 𝒖𝑖′ = 0,  for 𝑖 ≠ 𝑖′,

and, consequently,

var 𝒖 =
𝑘
⨁

𝑖 = 1
𝑮𝑖 = 𝑮,

that is, 𝑮 is the direct sum of matrices 𝑮𝑖 .

In the simplest case vectors 𝒖𝑖 e 𝒖𝑖′ are assumed mutually
independent,

…

𝑮 𝑞×𝑞

𝑮𝟏 0 ⋯ 0 0
0 𝑮𝟐 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑮𝒌−𝟏 0
0 0 ⋯ 0 𝑮𝒌
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 Unstructured (the most complex)

 Compound symmetry

Some common covariance structures
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 Autoregressive 

 Toeplitz

Depending on the context, there are
numerous structures for covariance matrices
𝑮 and 𝑹. Some frequently used are inspired in
time series and spatial analysis.

…
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> library(nlme)

lme(fixed, …,random, correlation, method, control, ….)

The linear mixed model in

The linear mixed model can be fitted in           using functions lme
(library nlme), lmer (library lme4), varComp (library varComp).

lme(response~fixed effects, random=~random effects…)

For example:
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> arlme1<-lme(rend~1, random=~1|clone, data=arinto)
> arlme1
Linear mixed-effects model fit by REML
Data: arinto
Log-restricted-likelihood: -714.2113
Fixed: rend ~ 1 

(Intercept) 
1.389713 

Random effects:
Formula: ~1 | clone

(Intercept)  Residual
StdDev:   0.3288653 0.4273398

Example 1: fitting the classical random model (one random
effects factor, G=𝜎𝑢

2 𝑰𝒒, R=𝜎𝑒
2 𝑰𝒏)

library(nlme)
There a single fixed
effect, the intercept

Indicates that there is a single random
effect for each group and that the
grouping is given by the variable clone
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 > terrenolme1<-lme(rend~variedade, random=~1|terreno, data=terrenos)
 > terrenolme1
 Linear mixed-effects model fit by REML
 Data: terrenos
 Log-restricted-likelihood: -21.71354
 Fixed: rend ~ variedade
 (Intercept)  variedadeB variedadeC variedadeD
 1.55600000 -0.02384615 -0.38907692 -0.37784615 

 Random effects:
 Formula: ~1 | terreno
 (Intercept)  Residual
 StdDev:   0.1604919 0.3123811

 Number of Observations: 52
 Number of Groups: 13 

Example 2: fitting a classical linear mixed model (one factor of fixed
effects,  one factor of random effects factor, G=𝜎𝑢

2 𝑰𝒒, R=𝜎𝑒
2 𝑰𝒏)

library(nlme) Fixed
effect

random 
effect
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>  terrenoslmer1<-lmer(rend~ variedade + (1 | terreno), data = terrenos)
terrenoslmer1 
Linear mixed model fit by REML ['lmerMod']
Formula: rend ~ variedade + (1 | terreno)

Data: terrenos
REML criterion at convergence: 43.4271
Random effects:
Groups   Name        Std.Dev.
terreno (Intercept) 0.1605  
Residual             0.3124  

Number of obs: 52, groups:  terreno, 13
Fixed Effects:
(Intercept)   variedadeB variedadeC variedadeD

1.55600     -0.02385     -0.38908     -0.37785 

library(lme4)

Example 2: fitting a classical linear mixed model (one factor of fixed
effects,  one factor of random effects factor, G=𝜎𝑢

2 𝑰𝒒, R=𝜎𝑒
2 𝑰𝒏)

Fixed
effect

random 
effect
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 terrenosvarcomp1<-varComp(rend~variedade, random=~terreno, data=terrenos)
terrenosvarcomp1

Variance component model fit 

Call:
varComp(fixed = rend ~ variedade, data = terrenos, random = ~terreno)

Fixed effect estimates: 
(Intercept)  variedadeB variedadeC variedadeD
1.55600000 -0.02384615 -0.38907692 -0.37784615 

Variance component estimates: 
terreno error 

0.02575779 0.09758188 

Number of observations: 52

library(varComp)

Example 2: fitting a classical linear mixed model (one factor of fixed
effects,  one factor of random effects factor, G=𝜎𝑢

2 𝑰𝒒, R=𝜎𝑒
2 𝑰𝒏)

Fixed
effect

random 
effect
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Example 3: fitting a random model with

𝐺 =
𝒌
⨁

𝒊 = 𝟏
𝑮𝒊 , 𝑮𝑖 = 𝜎𝑢𝑖

2 𝑰𝑞𝑖 ,   R=𝝈𝒆
𝟐 𝑰𝒏

Library(nlme)
> arlme2<-lme(rend~1, random=list(clone=pdDiag(~regiao-1)), data=arinto)
> arlme2
Linear mixed-effects model fit by REML

Data: arinto 
Log-restricted-likelihood: -712.0479
Fixed: rend ~ 1 

(Intercept) 
1.414257 

Random effects:
Formula: ~regiao - 1 | clone
Structure: Diagonal

regiaoBairrada regiaoLafoes regiaoOeste regiaoVverdes Residual
StdDev:      0.3319987    0.3038772   0.4048056      0.272041 0.4273398

Number of Observations: 988
Number of Groups: 247 34



Methods for estimating
covariance parameters
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Variance component estimation in linear mixed models mainly 

use three approaches: 

 restricted (or residual) maximum likelihood (REML)

It is the method of estimation currently most used (by default, it is the

estimation method used in all packages). The restricted maximum likelihood

method in the context of linear mixed models was introduced by Patterson e

Thompson (1971)1.

 maximum likelihood (ML)

ML is sometimes discouraged, because the variance component estimates are 

biased downward.

 procedures based on expected mean squares from the analysis of variance 

(ANOVA)

It is the classical approach, well applied for simple models with balanced data 

and when 𝑮 and 𝑹 are diagonal matrices. 

1 Patterson, H.D., Thompson, R. (1971) - Recovery of inter-block information when block sizes are 
unequal. Biometrika 58:545-554.
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,

General model 𝒀 = 𝑿𝜷 + 𝒁𝒖 +e, with 𝒀~𝓝𝒏 𝑿𝜷, 𝑽 , 

 Estimation of the covariance parameters included in matrix 𝑽:
𝑽(𝝋) = 𝒁𝑮 𝝂 𝒁𝑻 + 𝑹 𝝓 ,

𝝂 is the vector of parameters included in matrix 𝑮 ,𝝓 is the vector

of parameters included in matrix 𝑹, 𝝋 = 𝝂𝑻, 𝝓𝑻 𝑻
.

The likelihood function is

𝐿 𝜷,  𝝋 𝒚 =
1

2𝜋
𝑛
2 𝑽  1 2

𝑒𝑥𝑝 −
1

2
𝒚 − 𝑿𝜷 𝑻𝑽−𝟏 𝒚 − 𝑿𝜷 ,

Thus the log-likelihood is

𝑙 𝜷,  𝝋 𝒚 = −
1

2
𝑛 ln 2𝜋 −

1

2
ln 𝑽 −

1

2
𝒚 − 𝑿𝜷 𝑻𝑽−𝟏 𝒚 − 𝑿𝜷 .

where 𝑽−𝟏 = 𝑹−𝟏 − 𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏, 𝑽 = 𝑹 −𝟏 𝑰𝒏 + 𝑹−𝟏𝒁𝑮𝒁𝑻

Restricted maximum likelihood (REML) method
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The fundamental idea of REML is to maximize the likelihood after
accounting for the model’s fixed effects. Instead of maximizing the
likelihood of 𝒀~𝓝𝒏 𝑿𝜷,𝑽 , maximize the likelihood of 𝑲𝑻𝒀 where 𝑲 is

any matrix such that 𝐸[𝑲𝑻𝒀] = 𝟎 and hence 𝑲𝑻𝒀 ∩𝒩𝑛 𝟎,𝑲𝑻𝑽𝑲 .

This removes the fixed effects from the estimation of 𝝋.

Let

𝑲𝑻 is a matrix 𝑛 − 𝑟𝑋 × 𝑛 (where 𝑟𝑋 is the rank of matrix 𝑿), such 
that 𝑬[𝑲𝑻𝒀] = 𝟎 (that is, 𝑲𝑻𝑿𝜷 = 𝟎). 𝑲 is also called a matrix of 
error contrasts (hence the alternative name of residual).

𝑲𝑻𝒀 = 𝑲𝑻𝑿𝜷 +𝑲𝑻𝒁𝒖 +𝑲𝑻𝒆.
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𝑲𝑻𝒀 = 𝑲𝑻𝒁𝒖 + 𝑲𝑻𝒆

The transformed model is

with 𝑲𝑻𝒀 ∩𝒩𝑛 𝟎,𝑲𝑻𝑽𝑲

• The likelihood function of this model is called the restricted 
likelihood function and is given by:

𝐿𝑅  𝝋 𝒚 =
1

2𝜋
1
2 𝑛−𝑟𝑋 𝑲𝑻𝑽𝑲  1 2

𝑒𝑥𝑝 −
1

2
𝑲𝑻𝒚

𝑻
𝑲𝑻𝑽𝑲

−𝟏
𝑲𝑻𝒚
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And  the REML log - likelihood is 

𝑙𝑅  𝝋 𝒚 = −
1

2
𝑛 − 𝑟𝑋 𝑙𝑜𝑔 2𝜋 −

1

2
𝑙𝑜𝑔 𝑲𝑻𝑽𝑲 −

1

2
𝒚𝑻𝑲 𝑲𝑻𝑽𝑲

−𝟏
𝑲𝑻𝒚 .

Denoting

𝑲 𝑲𝑻𝑽𝑲
−𝟏

𝑲𝑻 = 𝑷 ,

𝑙𝑅 = −
1

2
𝑛 − 𝑟𝑋 log 2𝜋 −

1

2
log 𝑲𝑻𝑽𝑲 −

1

2
𝒚𝑻𝑷𝒚 .

Note: since 𝑲𝑻 has  full row rank 𝑛 − 𝑟𝑋 and 𝑲𝑻𝑿 = 𝟎, can be shown that

𝑲 𝑲𝑻𝑽𝑲
−𝟏

𝑲𝑻 = 𝑷 where  𝑷 = 𝑽−𝟏 − 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−𝟏

𝑿𝑻𝑽−𝟏
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To maximize 𝑙𝑅 we differentiate with respect to 𝜑𝑖 and equate to zero 
and solve the resulting equations.

𝜕𝑙𝑅  𝝋 𝒚

𝜕𝜑𝑖
= 0 .

Differentiate with respect to 𝜑𝑖,

𝜕𝑙𝑅
𝜕𝜑𝑖

= −
1

2
𝑡𝑟 𝑷  𝑽𝒊 − 𝒚𝑻𝑷  𝑽𝒊𝑷𝒚 ,

where  𝑉𝑖 is the derivative of 𝑉 with respect to 𝜑𝑖. Equating to zero, we
obtain

Proof (next slide, additional information)

𝑡𝑟 𝑃  𝑉𝑖 = 𝑦𝑇𝑃  𝑉𝑖𝑃𝑦.

Completing the maximization demands checking second derivatives
and also demands checking the likelihood function on the boundary of
the parameter space, since the maximization must be confined to the
parameter space.
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Uma vez que
𝜕𝑙𝑅
𝜕𝜑𝑖

= −
1

2

𝜕 log 𝐾𝑇𝑉𝐾

𝜕𝜑𝑖
+
𝜕 𝑦𝑇𝑃𝑦

𝜕𝜑𝑖
,

usando resultados de derivadas de funções de matrizes, obtém-se 

𝜕 log 𝐾𝑇𝑉𝐾

𝜕𝜑𝑖
= 𝑡𝑟 𝐾𝑇𝑉𝐾 −1

𝜕 𝐾𝑇𝑉𝐾

𝜕𝜑𝑖

= 𝑡𝑟 𝐾𝑇𝑉𝐾 −1 𝐾𝑇
𝜕𝑉

𝜕𝜑𝑖
𝐾

= 𝑡𝑟 𝐾𝑇𝑉𝐾 −1𝐾𝑇  𝑉𝑖𝐾

= 𝑡𝑟 𝐾 𝐾𝑇𝑉𝐾 −1𝐾𝑇  𝑉𝑖
= 𝑡𝑟 𝑃  𝑉𝑖 .

Por outro lado, 
𝜕 𝑦𝑇𝑃𝑦

𝜕𝜑𝑖
= 𝑦𝑇

𝜕𝑃

𝜕𝜑𝑖
𝑦 ,

mas, usando novamente resultados de derivadas de funções de matrizes, 

𝜕𝑃

𝜕𝜑𝑖
=

𝜕 𝐾 𝐾𝑇𝑉𝐾 −1𝐾𝑇

𝜕𝜑𝑖

= 𝐾
𝜕 𝐾𝑇𝑉𝐾 −1

𝜕𝜑𝑖
𝐾𝑇

= 𝐾 − 𝐾𝑇𝑉𝐾 −1
𝜕 𝐾𝑇𝑉𝐾

𝜕𝜑𝑖
𝐾𝑇𝑉𝐾 −1 𝐾𝑇

= −𝐾 𝐾𝑇𝑉𝐾 −1𝐾𝑇  𝑉𝑖𝐾 𝐾𝑇𝑉𝐾 −1𝐾𝑇

= −𝑃  𝑉𝑖 𝑃.

Proof (additional information)
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REML estimation proceeds iteratively. We implement
REML using Newton-Raphson or Fisher scoring algorithms
(among others)
The Hessian and information matrices derived from
REML log-likelihood are:

Hessian (𝒊𝒋𝒕𝒉 element)

𝜕𝛁𝒍𝑹 𝜑𝑖

𝜕𝜑𝑗
=

1

2
𝑡𝑟 𝑷  𝑽𝑗𝑷  𝑽𝑖 −

1

2
𝑡𝑟 𝑷  𝑽𝑖𝑗 +

1

2
𝒚𝑇𝑷  𝑽𝑖𝑗𝑷𝒚 − 𝒚𝑇𝑷  𝑽𝑖𝑷  𝑽𝑗𝑷𝒚 ,

where 𝛁𝒍𝑹 is the gradient vector of 𝑙𝑅 and 

ji

ij

V
V






2



Information matrix (𝒊𝒋𝒕𝒉 element):

𝐼𝑒 𝜑𝑖 , 𝜑𝑗 = 𝐸 −
𝜕2𝑙𝑅

𝜕𝜑𝑖𝜕𝜑𝑗

It can be proved that 𝐼𝑒 𝜑𝑖 , 𝜑𝑗 =
1

2
𝑡𝑟 𝑷  𝑽𝒊𝑷  𝑽𝒋 . 43



The REML estimator of  𝝋 is consistent and, under

regularity conditions, is asymptotic normal with vector of

mean values 𝝋 and asymptotic covariance matrix

𝑰𝒆 𝝋 −1, where 𝑰𝒆 is the information matrix (expected

information matrix):

 𝝋 ~
𝑎 𝒩 𝝋, 𝑰𝒆 𝝋 −1 . 

Properties of REML estimators
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Equating to zero it is shown that the ML equations are:

𝑿𝑻𝑽−𝟏𝑿𝜷 = 𝑿𝑻𝑽−𝟏𝒚

𝒕𝒓 𝑽−𝟏  𝑽𝒊 = 𝒚 − 𝑿𝜷 𝑻𝑽−𝟏  𝑽𝒊𝑽
−𝟏 𝒚 − 𝑿𝜷

𝜕𝑙

𝜕𝜷
= 𝑿𝑻𝑽−𝟏𝒚 − 𝑿𝑻𝑽−𝟏𝑿𝜷

𝜕𝑙𝑅
𝜕𝜑𝑖

= −
1

2
𝑡𝑟 𝑽−𝟏  𝑽𝒊 − 𝒚 − 𝑿𝜷 𝑻𝑽−𝟏  𝑽𝒊𝑽

−𝟏 𝒚 − 𝑿𝜷

where  𝑉𝑖 is the derivative of 𝑉 with respect to 𝜑𝑖.

Maximum likelihood (ML) method

The process for obtaining the ML estimators is identical, but is based on the log-
likelihood, therefore,
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> summary(terrenoslmer1)
Linear mixed model fit by REML ['lmerMod']
Formula: rend ~ variedade + (1 | terreno)

Data: terrenos

REML criterion at convergence: 43.4

Scaled residuals: 
Min       1Q   Median       3Q      Max 

-1.91520 -0.72001  0.03862  0.54535  2.82304 

Random effects:
Groups   Name        Variance Std.Dev.
terreno (Intercept) 0.02576 0.1605  
Residual           0.09758 0.3124  

Number of obs: 52, groups:  terreno, 13
…

> terrenoslmer1<-lmer(rend~ variedade + (1 | 
terreno), data = terrenos)

> terrenoslmer1ML<-update(terrenoslmer1, 
REML=FALSE)
> summary(terrenoslmer1ML)
Linear mixed model fit by maximum likelihood  
['lmerMod']
Formula: rend ~ variedade + (1 | terreno)

Data: terrenos

Scaled residuals: 
Min      1Q  Median      3Q     Max 

-1.9934 -0.7494  0.0402  0.5676  2.9383 

Random effects:
Groups   Name        Variance Std.Dev.
terreno (Intercept) 0.02378  0.1542  
Residual          0.09008  0.3001  

Number of obs: 52, groups:  terreno, 13

In 

REML estimation ML estimation

Library(lme4)
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> terrenolme1<-lme(rend~variedade, 
random=~1|terreno, data=terrenos)
> summary(terrenolme1)
Linear mixed-effects model fit by REML
Data: terrenos

AIC    BIC    logLik
55.42708 66.65429 -21.71354

Random effects:
Formula: ~1 | terreno

(Intercept)  Residual
StdDev:   0.1604919 0.3123811
….

> VarCorr(terrenolme1)

Variance StdDev
(Intercept) 0.02575765 0.1604919
Residual   0.09758196 0.3123811

> terrenolme1ML<-update(terrenolme1, 
method="ML")
> summary(terrenolme1ML)

Linear mixed-effects model fit by maximum 
likelihood
Data: terrenos

AIC      BIC   logLik
43.76901 55.47647 -15.8845

Random effects:
Formula: ~1 | terreno

(Intercept)  Residual
StdDev:   0.1541963 0.3001259
….

> VarCorr(arlme2ML)
Variance StdDev

(Intercept) 0.02377651 0.1541963
Residual   0.09007553 0.3001259

In Library(nlme)

REML estimation ML estimation
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> terrenosvarcomp1<-varComp(rend~variedade, random=~terreno, data=terrenos)
> summary(terrenosvarcomp1) 
Variance component model fit 
…
Variance component estimates: 

terreno error 
0.02575779   0.09758188 

Number of observations: 52

> logLik(terrenosvarcomp1)
'log Lik.' -202.4013 (df=2)

In Library(varComp)

REML estimation (varComp, only REML) 
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No 

Estimated covariance (asymptotic) matrix for REML 
estimators

 var( 𝛗)

> vcov(terrenosvarcomp1, "varComp")
terreno error

terreno 0.0004522882 -0.0001322531
Error      -0.0001322531  0.0005290124
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The variance componente estimators

Some particular cases:

 Random model (one factor of random effects), balanced,
with 𝑮 and 𝑹 diagonal matrices

Linear mixed model (one factor of fixed effects, one factor
with random effects, without interaction and with
interaction), balanced, with 𝑮 and 𝑹 diagonal matrices
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One factor of random effects, balanced

𝑌𝑖𝑗 = 𝜇 + 𝑢𝑖 + 𝑒𝑖𝑗

for 𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏 , 𝑛 = 𝑎𝑏.

𝑌𝑖𝑗 is the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ level of  factor 𝐴;

𝜇 is a general mean (population);

𝑢𝑖 is the effect of the level 𝑖 of the factor 𝐴 (random effects); 

𝑒𝑖𝑗 is the random error associated to the observation 𝑌𝑖𝑗.

• 𝑢𝑖, 𝑖. 𝑖. 𝑑. , 𝒩 0, 𝜎2
𝑢 , ∀𝑖

• 𝑒𝑖𝑗 , 𝑖. 𝑖. 𝑑. ,𝒩 0, 𝜎2
𝑒 , ∀𝑖𝑗
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𝑆𝑄𝐴 =  

𝑖=1

𝑎

𝑏  𝑌𝑖. −  𝑌..
2

𝑆𝑄𝑅𝐸 =  

𝑖=1

𝑎

 

𝑗=1

𝑏

𝑌𝑖𝑗 −  𝑌𝑖.
2

𝑆𝑄𝑇 =  

𝑖=1

𝑎

 

𝑗=1

𝑏

𝑌𝑖𝑗 −  𝑌..
2

𝑆𝑄𝑇 = 𝑆𝑄𝐴 + 𝑆𝑄𝑅𝐸

The sums of squares are defined as in the case of fixed effects:
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E 𝑆𝑄𝐴 = 𝐸  𝑖=1
𝑎 𝑏  𝑌𝑖. −  𝑌..

2 = 𝑎 − 1 𝑏𝜎𝑢
2 + 𝜎𝑒

2

E 𝑄𝑀𝐴 =
𝐸 𝑆𝑄𝐴

𝑎−1
= 𝑏𝜎𝑢

2 + 𝜎𝑒
2

𝐸 𝑆𝑄𝑅𝐸 = 𝐸  

𝑖=1

𝑎

 

𝑗=1

𝑏

𝑌𝑖𝑗 −  𝑌𝑖.
2

= 𝑎 𝑏 − 1 𝜎𝑒
2

𝐸 𝑄𝑀𝑅𝐸 =
𝐸 𝑆𝑄𝑅𝐸

𝑎(𝑏 − 1)
= 𝜎𝑒

2

𝑆𝑄𝐴 = 𝑎 − 1 𝑏  𝜎𝑢
2 +  𝜎𝑒

2

𝑆𝑄𝑅𝐸 = 𝑎(𝑏 − 1)  𝜎𝑒
2

The estimators are:

 𝜎𝑒
2 =

𝑆𝑄𝑅𝐸

𝑎 𝑏 − 1
= 𝑄𝑀𝑅𝐸  𝜎𝑢

2 =  
𝑆𝑄𝐴

𝑎 − 1
−  𝜎𝑒

2 𝑏 =
𝑄𝑀𝐴 − 𝑄𝑀𝑅𝐸

𝑏

Equating sums of squares in their expected values, gives:

• Estimators for variance components: procedure based on expected 

mean squares from the analysis of variance (ANOVA)
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• Maximum likelihood estimation

For a model with one factor of random effects and balanced, the log-likelihood is given by:

    
 

 

 
.

22
ln1

2

1
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222

2

.

22

2

2

222
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i iu

e
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eue
b
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y

babanLl
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














With some manipulation and rearranged so as to display SQA e SQRE ( the sums of squares of 
ANOVA) and equating to zero the partial derivatives of 𝑙𝑛𝐿 with respect to 𝜇, 𝜎𝑒

2 and 𝜎𝑢
2 , 

the following solutions are obtained:

 𝜎𝑒
2 = 𝑄𝑀𝑅𝐸

 𝜎𝑢
2 =

1 −
1
𝑎 𝑄𝑀𝐴 − 𝑄𝑀𝑅𝐸

𝑏

 𝜇 =  𝑦..

These are the solutions to the maximum likelihood equations. But they are not necessarily the 
maximum likelihood estimators. It is necessary to verify if the matrix of second derivatives 
(Hessian matrix) is definite negative when the parameters in the Hessian are replaced by the 
solutions used. And ML estimators must be in the parameter space: 

−∞ < 𝜇 < +∞, 0 < 𝜎𝑒
2 < ∞, 0 ≤ 𝜎𝑢

2 < ∞ 54



The maximum likelihood estimators for variance components are:

 𝜎𝑢
2 =

1−
1

𝑎
𝑄𝑀𝐴−𝑄𝑀𝑅𝐸

𝑏
, if 1 −

1

𝑎
𝑄𝑀𝐴 ≥ 𝑄𝑀𝑅𝐸,

 𝜎𝑢
2 = 0, otherwise

 𝜎𝑒
2 = 𝑄𝑀𝑅𝐸, if 1 −

1

𝑎
𝑄𝑀𝐴 ≥ 𝑄𝑀𝑅𝐸, 

 𝜎𝑒
2 =

𝑆𝑄𝑇

𝑎𝑏
,                          otherwise 
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• Restrited maximum likelihood estimation for variance components

For a model with one factor of random effects and balanced, the restrited
log-likelihood (𝑙𝑅) is given by:

    .
22

ln1
2

1
ln1

2

1
ln

2

1
2ln)1(

2

1
2

2




SQASQRE
abaababl

e

eR 

Equating to zero the partial derivatives of 𝑙𝑅with respect to 𝜎𝑒
2 and 𝜎𝑢

2 , the 

following solutions are obtained:

QMRE
ba

SQRE
e 




)1(

2

 QMREQMA
b

u 
12

22

ue b with
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The restricted maximum likelihood estimators for variance 
components are:

 𝜎𝑢
2 =

𝑄𝑀𝐴−𝑄𝑀𝑅𝐸

𝑏
, se 𝑄𝑀𝐴 ≥ 𝑄𝑀𝑅𝐸, 

 𝜎𝑢
2 = 0, caso contrário

 𝜎𝑒
2 = 𝑄𝑀𝑅𝐸, se 𝑄𝑀𝐴 ≥ 𝑄𝑀𝑅𝐸,

 𝜎𝑒
2 =

𝑆𝑄𝑇

𝑎𝑏−1
,       caso contrário
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var
 𝜎𝑒

2

 𝜎𝑢
2

≈

2𝜎𝑒
4

𝑎(𝑏 − 1)

−2𝜎𝑒
4

𝑎𝑏(𝑏 − 1)

2𝜎𝑒
4

𝑏2
(𝜎𝑒

2 + 𝑏𝜎𝑢
2 )2/𝜎𝑒

4

𝑎
+

1

𝑎(𝑏 − 1)

Asymptotic covariance matrix for REML estimators
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Linear mixed model: one factor of fixed effects (factor A), 
one factor with random effects (factor B), balanced, 

without interaction

𝑌𝑖𝑗𝑘 = 𝜇1 + 𝛽𝑖 + 𝑢𝑗 + 𝑒𝑖𝑗𝑘
for 𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏, 𝑘 = 1,… , 𝑐, 𝑛 = 𝑎𝑏𝑐 , with 𝛽1 = 0. 

𝑌𝑖𝑗𝑘 is the observation in the 𝑖𝑡ℎ level of  factor 𝐴 and 𝑗𝑡ℎ level of  

factor 𝐵;
𝜇1 is a general mean (population) in the level 1 of factor 𝐴;
𝛽𝑖 is the effect of the level 𝑖 of the factor 𝐴 ((the increased 
concerning to 𝜇1), fixed;
𝑢𝑗 is the effect of the level 𝑗 of the factor 𝐵, random;

𝑒𝑖𝑗𝑘 is the random error associated to the observation 𝑌𝑖𝑗𝑘 .

• 𝑢𝑗, 𝑖. 𝑖. 𝑑. , 𝒩 0, 𝜎2
𝑢 , ∀𝑗

• 𝑒𝑖𝑗𝑘 , 𝑖. 𝑖. 𝑑. ,𝒩 0, 𝜎2
𝑒 , ∀𝑖𝑗𝑘
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𝑆𝑄𝐴 =  

𝑖=1

𝑎

𝑏𝑐  𝑌𝑖.. −  𝑌..,
2

𝑆𝑄𝑅𝐸 =  

𝑖=1

𝑎

 

𝑗=1

𝑏

 

𝑘=1

𝑐

𝑌𝑖𝑗𝑘 −  𝑌𝑖.. −  𝑌.𝑗. +  𝑌…,
2

𝑆𝑄𝑇 =  

𝑖=1

𝑎

 

𝑗=𝟏

𝑏

 

𝑘=1

𝑐

𝑌𝑖𝑗𝑘 −  𝑌…
2

𝑆𝑄𝑇 = 𝑆𝑄𝐴 + 𝑆𝑄𝐵 + 𝑆𝑄𝑅𝐸

𝑆𝑄𝐵 =  

𝑗=1

𝑏

𝑎𝑐  𝑌.𝑗. −  𝑌…,
2

The sums of squares are defined as :
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E 𝑆𝑄𝐵 = 𝑏 − 1 𝑎𝑐𝜎𝑢
2 + 𝜎𝑒

2

E 𝑄𝑀𝐵 =
𝐸 𝑆𝑄𝐵

𝑏−1
= 𝑎𝑐𝜎𝑢

2 + 𝜎𝑒
2

𝐸 𝑆𝑄𝑅𝐸 = 𝑛 − 𝑎 + 𝑏 − 1 𝜎𝑒
2

𝐸 𝑄𝑀𝑅𝐸 =
𝐸 𝑆𝑄𝑅𝐸

𝑛 − (𝑎 + 𝑏 − 1)
= 𝜎𝑒

2

 𝜎𝑒
2 =

𝑆𝑄𝑅𝐸

𝑛 − 𝑎 + 𝑏 − 1
= 𝑄𝑀𝑅𝐸  𝜎𝑢

2 =
𝑄𝑀𝐵 − 𝑄𝑀𝑅𝐸

𝑎𝑐
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• Estimators for variance components: procedure based on expected 

mean squares from the analysis of variance (ANOVA)

The estimators are:



• The maximum likelihood estimators for variance components 

are( 𝝈𝒖
𝟐 ≥ 𝟎)

 𝜎𝑒
2 = 1 −

𝑎−1

𝑏(𝑎𝑐−1)
𝑄𝑀𝑅𝐸, 

 𝜎𝑢
2 =

𝑆𝑄𝐵/𝑏− 𝜎𝑒
2

𝑎𝑐

• The restricted maximum likelihood estimators for variance 
components are ( 𝝈𝒖

𝟐 ≥ 𝟎):

 𝜎𝑒
2 =

𝑆𝑄𝑅𝐸

𝑛 − 𝑎 + 𝑏 − 1
= 𝑄𝑀𝑅𝐸  𝜎𝑢

2 =
𝑄𝑀𝐵 − 𝑄𝑀𝑅𝐸

𝑎𝑐
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var
 𝜎𝑒

2

 𝜎𝑢
2 ≈

2𝜎𝑒
4

𝑏(𝑎𝑐 − 1)

1
−1

𝑎𝑐
−1

𝑎𝑐

1 + 𝑎𝑐 − 1 (1 + 𝑎𝑐𝜎𝑢
2 /𝜎𝑒

2 )2

𝑎2𝑐2

Asymptotic variance matrix for REML estimators
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Linear mixed model: one factor of fixed effects (factor A), one
factor with random effects (factor B), balanced, with interaction

𝑌𝑖𝑗𝑘 = 𝜇1 + 𝛽𝑖 + 𝑢𝑗 + 𝛽𝑢 𝑖𝑗 + 𝑒𝑖𝑗𝑘
for 𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏, 𝑘 = 1,… , 𝑐, 𝑛 = 𝑎𝑏𝑐, with 𝛽1 = 0 .
𝑌𝑖𝑗𝑘 is the k𝑡ℎ observation in the 𝑖𝑡ℎ level of  factor 𝐴 and j𝑡ℎ level of  factor 

𝐵;
𝜇1 is a general mean (population) in the level 1 of factor 𝐴;
𝛽𝑖 is the effect of the level 𝑖 of the factor 𝐴 (the increased concerning to 𝜇1), 
fixed;
𝑢𝑗 is the effect of the level 𝑗 of the factor 𝐵, random;

𝛽𝑢 𝑖𝑗 is the interaction effect of the 𝑖𝑡ℎ level of factor 𝐴 with the 𝑗𝑡ℎ level

of factor 𝐵, random;
𝑒𝑖𝑗𝑘 is the random error associated to the observation 𝑌𝑖𝑗𝑘 .

• 𝑢𝑗, 𝑖. 𝑖. 𝑑. , 𝒩 0, 𝜎2
𝑢 , ∀𝑗

• 𝛽𝑢 𝑖𝑗 , 𝑖. 𝑖. 𝑑. ,𝒩 0, 𝜎2
𝛽𝑢 , ∀𝑖j

• 𝑒𝑖𝑗𝑘 , 𝑖. 𝑖. 𝑑. ,𝒩 0, 𝜎2
𝑒 , ∀𝑖𝑗𝑘 64



𝑆𝑄𝐴 =  

𝑖=1

𝑎

𝑏𝑐  𝑌𝑖.. −  𝑌…
2

𝑆𝑄𝑅𝐸 =  

𝑖=1

𝑎

 

𝑗=1

𝑏

 

𝑘=1

𝑐

𝑌𝑖𝑗𝑘 −  𝑌𝑖𝑗.
2

𝑆𝑄𝑇 =  

𝑖=1

𝑎

 

𝑗=𝟏

𝑏

 

𝑘=1

𝑐

𝑌𝑖𝑗𝑘 −  𝑌…
2

𝑆𝑄𝑇 = 𝑆𝑄𝐴 + 𝑆𝑄𝐵 + 𝑆𝑄𝐴𝐵 + 𝑆𝑄𝑅𝐸

The sums of squares are defined as :

𝑆𝑄𝐵 =  

𝑗=1

𝑏

𝑎𝑐  𝑌.𝑗. −  𝑌…
2

𝑆𝑄𝐴𝐵 =  

𝑖=1

𝑎

 

𝑗=1

𝑏

𝑐 𝑌𝑖𝑗. −  𝑌𝑖.. −  𝑌.𝑗. +  𝑌…
2
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E 𝑆𝑄𝐵 = 𝑏 − 1 𝑎𝑐𝜎𝑢
2 + 𝑐𝜎𝛽𝑢

2 + 𝜎𝑒
2

E 𝑄𝑀𝐵 =
𝐸 𝑆𝑄𝐵

𝑏−1
= 𝑎𝑐𝜎𝑢

2 + 𝑐𝜎𝛽𝑢
2 + 𝜎𝑒

2

𝐸 𝑆𝑄𝑅𝐸 = 𝑎𝑏(𝑐 − 1)𝜎𝑒
2

𝐸 𝑄𝑀𝑅𝐸 =
𝐸 𝑆𝑄𝑅𝐸

𝑎𝑏(𝑐 − 1)
= 𝜎𝑒

2

E 𝑆𝑄𝐴𝐵 = 𝑎 − 1 𝑏 − 1 𝑐𝜎𝛽𝑢
2 + 𝜎𝑒

2

E 𝑄𝑀𝐴𝐵 =
𝐸 𝑆𝑄𝐴𝐵

(𝑎−1) 𝑏−1
= 𝑐𝜎𝛽𝑢

2 + 𝜎𝑒
2

 𝜎𝑒
2 = 𝑄𝑀𝑅𝐸

 𝜎𝑢
2 =

𝑄𝑀𝐵 − 𝑄𝑀𝐴𝐵

𝑎𝑐

 𝜎𝛽𝑢
2 =

𝑄𝑀𝐴𝐵 − 𝑄𝑀𝑅𝐸

𝑐
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• Estimators for variance components: procedure based on expected 

mean squares from the analysis of variance (ANOVA)

These yield the estimators



• The maximum likelihood estimators for variance components are ( 𝝈𝒖
𝟐 ≥

𝟎,  𝝈𝜷𝒖
𝟐 ≥ 𝟎)

 𝜎𝑒
2 = 𝑄𝑀𝑅𝐸

 𝜎𝑢
2 =

(1−
1

𝑏
)(𝑄𝑀𝐵−𝑄𝑀𝐴𝐵)

𝑎𝑐

 𝜎𝛽𝑢
2 =

(1 −
1
𝑏
)𝑄𝑀𝐴𝐵 − 𝑄𝑀𝑅𝐸

𝑐

• The restricted maximum likelihood estimators for variance components are 

( 𝝈𝒖
𝟐 ≥ 𝟎,  𝝈𝜷𝒖

𝟐 ≥ 𝟎)

 𝜎𝑒
2 = 𝑄𝑀𝑅𝐸

 𝜎𝑢
2 =

𝑄𝑀𝐵 − 𝑄𝑀𝐴𝐵

𝑎𝑐

 𝜎𝛽𝑢
2 =

𝑄𝑀𝐴𝐵 − 𝑄𝑀𝑅𝐸

𝑐
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var

 𝜎𝑒
2

 𝜎𝑢
2

 𝜎𝛽𝑢
2

≈
2

𝑏

𝜎𝑒
4

𝑎(𝑐 − 1)
0

−𝜎𝑒
4

𝑎𝑐(𝑐 − 1)

(𝜎𝑒
2 + 𝑐𝜎𝛽𝑢

2 )2

𝑎 − 1
+ (𝜎𝑒

2 + 𝑐𝜎𝛽𝑢
2 + 𝑎𝑐𝜎𝑢

2 )2

𝑎2𝑐2

−(𝜎𝑒
2 + 𝑐𝜎𝛽𝑢

2 )2

𝑎𝑐2(𝑎 − 1)

1

𝑐2

(𝜎𝑒
2 + 𝑐𝜎𝛽

2 )2

𝑎 − 1
+

𝜎𝑒
4

𝑎(𝑐 − 1)

Asymptotic variance  matrix for REML estimators
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Some considerations about REML/ML/ANOVA estimators

• For unbalanced data each of ML and REML are to be preferred over
procedures based on expected mean squares from the analysis of
variance (ANOVA).

• REML and ML have the same merits of being based on the
maximum likelihood principle that is known to have useful
properties of consistency and asymptotic normality of the
estimators and the asymptotic sampling dispersion matrix of the
estimators is also known.

• For balanced data REML solutions are identical to ANOVA
estimators.

• For complex models, ML and REML are computationally intensive.
• The REML and ML estimators are based on assuming normality of

the data, but in many circumstances that assumption is unlikely to
be seriously wrong. Therefore, the asymptotic variance-covariance
properties are valid only in the large-sample sense.
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Some considerations about REML/ML/ANOVA estimators

• ML provides estimators of fixed effects, whereas REML , of itself,
does not.

• ML variance component estimates are biased downward. REML
estimators are based on taking into account the degrees of
freedom for the fixed effects in the model. This is particularly
important when the rank of matrix X is large in relation to the
sample size.

• REML estimators do not seem to be as sensitive to outliers in the
data as are ML estimators
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Estimating fixed effects and 
predicting random effects: 
the mixed model equations 

• The estimators of fixed effects and predictors of random effects are obtained 
through mixed model equations (Henderson, 19754). 

4Henderson, C.R. (1975) - Best linear unbiased estimation and prediction under a selection model. 
Biometrics 31:423 - 447.
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The mixed models equations are derived by maximizing 𝑙𝑛 𝑓 𝒀, 𝒖 with respect to 𝜷 and  𝒖:

𝐥𝒏 𝒇 𝒀, 𝒖

= −
1

2
𝑛 + 𝑞 log 2𝜋 −

1

2
l𝑛 𝑹 + 𝑙𝑛 𝑮

−
1

2
 𝒀𝑻𝑹−𝟏𝒚 − 2𝒀𝑻𝑹−𝟏𝑿𝜷 − 2𝒀𝑻𝑹−𝟏𝒁𝒖 + 2𝜷𝑻𝑿𝑻𝑹−𝟏𝒁𝒖 + 𝜷𝑻𝑿𝑻𝑹−𝟏𝑿𝜷 + 𝒖𝑻𝒁𝑻𝑹−𝟏𝒁𝒖

Equating to zero:

𝛛𝐥𝒏𝒇 𝒀, 𝒖

𝝏𝜷
= 𝟎 ⟺ 𝑿𝑻𝑹−𝟏𝒀 − 𝑿𝑻𝑹−𝟏𝑿𝜷 − 𝑿𝑻𝑹−𝟏𝒁𝒖 = 𝟎

𝛛𝐥𝒏𝒇 𝒀, 𝒖

𝝏𝒖
= 𝟎 ⟺ 𝒁𝑻𝑹−𝟏𝒀 − 𝒁𝑻𝑹−𝟏𝑿𝜷 − 𝒁𝑻𝑹−𝟏𝒁𝒖 − 𝑮−𝟏𝒖 = 𝟎 .

The joint density of 𝒖 and Y is

𝑓 𝒀, 𝒖 = 𝑓 𝒀 𝒖 𝑓 𝒖 =

=

𝑒𝑥𝑝 −
1
2

𝒀 − 𝑿𝜷 − 𝒁𝒖 𝑻𝑹−𝟏 𝒀 − 𝑿𝜷 − 𝒁𝒖 + 𝒖𝑻𝑮−𝟏𝒖

2𝜋  𝑛+𝑞 2 𝑹  1 2 𝑮  1 2
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Which results in

𝑿𝑻𝑹−𝟏𝑿𝜷 + 𝑿𝑻𝑹−𝟏𝒁𝒖

𝒁𝑻𝑹−𝟏𝑿𝜷 + 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 𝒖
=

𝑿𝑻𝑹−𝟏𝒚

𝒁𝑻𝑹−𝟏𝒚
,

and, consequently, the mixed models equations are defined as:

𝑿𝑻𝑹−𝟏𝑿 𝑿𝑻𝑹−𝟏𝒁
𝒁𝑻𝑹−𝟏𝑿 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏

𝜷
𝒖

=
𝑿𝑻𝑹−𝟏𝒚

𝒁𝑻𝑹−𝟏𝒚
. 

• The estimator of fixed effects ( 𝜷) and the predictor of random effects ( 𝒖)  
are:

 𝜷 = 𝑿𝑻𝑽−𝟏𝑿
−𝟏

𝑿𝑻𝑽−𝟏𝒀

 𝒖 = 𝑮𝒁𝑻𝑽−𝟏 𝒀 − 𝑿 𝜷 .

Proof in next slides, additional information
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Proof

Para chegar às soluções das equações do modelo misto, podemos começar por verificar, a partir da 

segunda equação de 
𝑿𝑻𝑹−𝟏𝑿 𝑿𝑻𝑹−𝟏𝒁
𝒁𝑻𝑹−𝟏𝑿 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏

𝜷
𝒖

= 𝑿𝑻𝑹−𝟏𝒀
𝒁𝑻𝑹−𝟏𝒀

que

𝒖 = 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏 𝒀 − 𝑿𝜷 ,

e substituindo este resultado na primeira equação,

𝑿𝑻𝑹−𝟏𝑿𝜷 + 𝑿𝑻𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏 𝒚 − 𝑿𝜷 = 𝑿𝑻𝑹−𝟏𝒀,

logo,

𝑿𝑻𝑹−𝟏𝒀 − 𝑿𝑻𝑹−𝟏𝑿𝜷 − 𝑿𝑻𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏 𝒀 − 𝑿𝜷 = 𝟎.

Depois de algum rearranjo da expressão anterior, chega-se a

𝑿𝑻 𝑹−𝟏 − 𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏 𝑿𝜷 = 𝑿𝑻  𝑹−𝟏 − 𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 +

Additional information
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Voltando novamente a 𝒖, verifica-se que

 𝒖 = 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝑽𝑽−𝟏 𝒀 − 𝑿 𝜷

=  𝒁𝑻𝑹−𝟏𝒁 +

Proof (cont.)

Additional information
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• Vector  𝜷 has multivariate normal distribution with vector of 

mean values 𝜷 and covariance matrix 𝑿𝑻𝑽−𝟏𝑿
−𝟏

 𝜷 ∩𝓝 𝜷, 𝑿𝑻𝑽−𝟏𝑿
−𝟏

• Vector  𝒖 has multivariate normal distribution with vector of 

mean values zero and covariance matrix 𝑮𝒁𝑻𝑷𝒁𝑮,

 𝒖 ∩𝓝 𝟎,𝑮𝒁𝑻𝑷𝒁𝑮
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 When matrices  𝑮 e 𝑹 are known,  𝜷 is the best linear unbiased 
estimator (BLUE) of 𝜷, and  𝒖 is the best  linear unbiased predictor 
(BLUP) of 𝒖.

 However, in general, matrices 𝑮 e 𝑹 are unknown, and only their 
estimates are available,  𝑮 e  𝑹. In this case, we have the empirical 
best linear unbiased estimator (EBLUE) and the empirical best 
linear unbiased predictor (EBLUP):

 𝜷𝑬𝑩𝑳𝑼𝑬 = 𝑿𝑻 𝑽−𝟏𝑿
−𝟏

𝑿𝑻 𝑽−𝟏𝒀

and

 𝒖𝑬𝑩𝑳𝑼𝑷 =  𝑮𝒁𝑻 𝑽 𝒀 − 𝑿 𝜷𝑬𝑩𝑳𝑼𝑬 .
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Example: for a random model with one factor of random effects, 
balanced (factor with 𝑎 levels, 𝑏 observations per level), the
empirical best linear unbiased predictor of 𝑢𝑖 (for the level 𝑖) is:

𝐸𝐵𝐿𝑈𝑃(𝑢𝑖) =
𝑏  𝜎2

𝑢

𝑏  𝜎2
𝑢 +  𝜎2

𝑒

 𝑌𝑖. −  𝑌..
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Given the mixed model equations: 

𝜷
𝒖

= 𝑿𝑻𝑹−𝟏𝑿 𝑿𝑻𝑹−𝟏𝒁
𝒁𝑻𝑹−𝟏𝑿 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏

−𝟏 𝑿𝑻𝑹−𝟏𝒚

𝒁𝑻𝑹−𝟏𝒚
,

denote by 𝑪 the matrix:

𝑿𝑻𝑹−𝟏𝑿 𝑿𝑻𝑹−𝟏𝒁
𝒁𝑻𝑹−𝟏𝑿 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏

−𝟏

= 𝑪.

The elements of matrix 𝑪:

𝑪𝟏𝟏 = 𝑿𝑻𝑽−𝟏𝑿
−𝟏

, 

𝑪𝟐𝟏 = −𝑮𝒁𝑻𝑽−𝟏𝑿𝑪𝟏𝟏,

𝑪𝟐𝟐 = 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
− 𝑪𝟐𝟏𝑿

𝑻𝑽−𝟏𝒁𝑮 = 𝑮 − 𝑮𝒁𝑻𝑷𝒁𝑮

𝑪𝟏𝟐 = 𝑪𝟐𝟏
𝑻 .

Proof in next slides 
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The matrix C is the covariance matrix of  𝜷 − 𝜷,  𝒖 − 𝒖 , 

𝑪 =
var  𝜷 − 𝜷 cov  𝜷 − 𝜷,  𝒖 − 𝒖

cov  𝒖 − 𝒖,  𝜷 − 𝜷 var  𝒖 − 𝒖
.

var  𝒖 − 𝒖 , is the prediction variance matrix of the random effects

var  𝜷 − 𝜷 = var  𝜷 , is the covariance matrix of the fixed effects  

estimators

Proof in next slides 80



Proof (additional information): Segundo a teoria de matrizes, a inversa da matriz não singular subdividida em 

assumindo que todas as inversas necessárias existem, é

𝑨−𝟏 =
𝑻 −𝑻𝑨𝟐𝟐𝑨𝟐𝟐

−𝟏

−𝑨𝟐𝟐
−𝟏𝑨𝟐𝟏𝑻 𝑨𝟐𝟐

−𝟏 + 𝑨𝟐𝟐
−𝟏𝑨𝟐𝟏𝑻𝑨𝟏𝟐𝑨𝟐𝟐

−𝟏

onde 𝑻 = 𝑨𝟏𝟏 − 𝑨𝟏𝟐𝑨𝟐𝟐
−𝟏𝑨𝟐𝟏

−𝟏

Aplicando ao nosso caso, chega-se a

𝑪𝟏𝟏 = 𝑿𝑻𝑹−𝟏𝑿 − 𝑿𝑻𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝑿

−𝟏

= 𝑿𝑻 𝑹−𝟏 − 𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏 𝑿

−𝟏

,

e, atendendo a que  𝑽−𝟏 = 𝑹−𝟏 − 𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏, 𝑪𝟏𝟏 = 𝑿𝑻𝑽−𝟏𝑿

−𝟏
.

𝑪𝟐𝟏 = − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿

−𝟏

= − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝑽𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿

−𝟏

= − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝑽 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿

−𝟏

= − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏(𝒁𝑮𝒁𝑻 + 𝑹) 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿

−𝟏

= − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝒁𝑮𝒁𝑻 + 𝒁𝑻𝑹−𝟏𝑹 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿

−𝟏

= − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝒁𝑮𝒁𝑻 + 𝑮−𝟏𝑮𝒁𝑻 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿

−𝟏

= − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 𝑮𝒁𝑻𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿

−𝟏
= −𝑮𝒁𝑻𝑽−𝟏𝑿𝑪𝟏𝟏.

𝐴 =
𝐴11 𝐴12

𝐴21 𝐴22
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Por último, 

𝑪𝟐𝟐

= 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏

− − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿

−
𝑿𝑻𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏

= 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
− 𝑪𝟐𝟏 𝑿𝑻𝑽−𝟏𝑽𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏

= 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
− 𝑪𝟐𝟏 𝑿𝑻𝑽−𝟏 𝒁𝑮𝒁𝑻 + 𝑹 𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏

= 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
− 𝑪𝟐𝟏𝑿

𝑻𝑽−𝟏 𝒁𝑮𝒁𝑻𝑹−𝟏𝒁 + 𝑹𝑹−𝟏𝒁 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏

= 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
− 𝑪𝟐𝟏𝑿

𝑻𝑽−𝟏 𝒁𝑮𝒁𝑻𝑹−𝟏𝒁 + 𝒁𝑮𝑮−𝟏 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏

= 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
− 𝑪𝟐𝟏𝑿

𝑻𝑽−𝟏𝒁𝑮 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏

= 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
− 𝑪𝟐𝟏𝑿

𝑻𝑽−𝟏𝒁𝑮.

Proof (additional information) (cont.) 
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A matriz 𝑪𝟏𝟏, corresponde à matriz de covariâncias dos estimadores   𝜷, já que 

𝑽𝒂𝒓  𝜷 − 𝜷 = 𝑽𝒂𝒓  𝜷 .

A matriz 𝑪𝟏𝟐, corresponde à matriz de covariâncias entre os erros de estimação e de 
predição, uma vez que

𝑪𝒐𝒗  𝜷 − 𝜷,  𝒖 − 𝒖 = 𝑬  𝜷 𝒖𝑻 − 𝑬  𝜷𝒖𝑻

Mas,  

𝑬  𝜷 𝒖𝑻 = 𝑬 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏𝒚𝒚𝑻𝑷𝒁𝑮

= 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏𝑬 𝒚𝒚𝑻 𝑷𝒁𝑮,

e sendo

𝑬 𝒚𝒚𝑻 = 𝑽 + 𝑿𝜷𝜷𝑻𝑿𝑻 ,

então,
𝑬  𝜷 𝒖𝑻 = 𝑿𝑻𝑽−𝟏𝑿

−
𝑿𝑻𝑽−𝟏 𝑽 + 𝑿𝜷𝜷𝑻𝑿𝑻 𝑷𝒁𝑮

= 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑷𝒁𝑮 + 𝑿𝑻𝑽−𝟏𝑿

−
𝑿𝑻𝑽−𝟏𝑿𝜷𝜷𝑻𝑿𝑻𝑷𝒁𝑮

= 𝟎,

porque 𝑿𝑻𝑷 = 𝟎 (𝑷𝑿 = 𝑽−𝟏𝑿 − 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏𝑿 = 𝟎).

Proof (additional information)
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Por outro lado,

𝑬  𝜷𝒖𝑻 = 𝑬 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏𝒚𝒖𝑻

= 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏𝑬 𝒚𝒖𝑻

= 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏𝒁𝑮

= 𝑪𝟏𝟏 𝑿𝑻𝑽−𝟏𝒁𝑮,

consequentemente,

𝑪𝒐𝒗  𝜷 − 𝜷,  𝒖 − 𝒖 = −𝑪𝟏𝟏𝑿
𝑻𝑽−𝟏𝒁𝑮,

isto é,

𝑪𝒐𝒗  𝜷 − 𝜷,  𝒖 − 𝒖 = 𝑪𝟏𝟐.

𝑽𝒂𝒓  𝒖 − 𝒖 = 𝑮 − 𝑮𝒁𝑻𝑷𝒁𝑮

= 𝑮 − 𝑮𝒁𝑻 𝑽−𝟏 − 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏 𝒁𝑮

= 𝑮 − 𝑮𝒁𝑻𝑽−𝟏𝒁𝑮 − 𝑮𝒁𝑻𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏𝒁𝑮,

Relativamente a 𝑪𝟐𝟐

Proof (additional information)
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mas, tendo em conta que

𝑮𝒁𝑻𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−
𝑿𝑻𝑽−𝟏𝒁𝑮 = 𝑪𝟐𝟏𝑿

𝑻𝑽−𝟏𝒁𝑮,

resta provar que 

𝑮 − 𝑮𝒁𝑻𝑽−𝟏𝒁𝑮 = 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
.

Sabendo-se que 

𝑮𝒁𝑻𝑽−𝟏 = 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏 ,

então 

𝑮 − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝒁𝑮 − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏

=

=𝑮 − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝒁𝑮 + 𝑰𝒒

= 𝑮 − 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 𝑮

= 𝑮 − 𝑮 = 𝟎,
logo,

𝑽𝒂𝒓  𝒖 − 𝒖 = 𝒁𝑻𝑹−𝟏𝒁 + 𝑮−𝟏 −𝟏
− 𝑪𝟐𝟏𝑿

𝑻𝑽−𝟏𝒁𝑮 = 𝑪𝟐𝟐.

Proof (additional information)
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The residuals

Alternatively, it is common appear in the form:
 𝒆 = 𝑹𝑷𝒀,

with  𝑷 = 𝑽−𝟏 − 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−𝟏

𝑿𝑻𝑽−𝟏 and 𝑽 − 𝒁𝑮𝒁𝑻 = 𝑹 .

Nota: The value of leverage of the ith observation is the ith diagonal element of the matrix 

𝑯 = 𝑿 𝑿𝑻 𝑽−𝟏𝑿
−𝟏

𝑿𝑻 𝑽−𝟏

Proof in next slide (additional information)

In the linear mixed model , 𝒀 = 𝑿𝜷 + 𝒁𝒖 + e, with 𝒀~𝓝𝒏 𝑿𝜷, 𝑽

• The conditional residuals that measure deviations from the conditional mean are 
defined as :

 𝒆 = 𝒀 − 𝑿 𝜷 − 𝒁 𝒖.

Vector  𝒆 has multivariate normal distribution with vector of mean 
values 𝟎 𝑛×1 and covariance matrix 𝑹𝑷𝑹,

 𝒆 ~𝓝𝒏 𝟎,𝑹𝑷𝑹 ,

with 𝑷 = 𝑽−𝟏 − 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−𝟏

𝑿𝑻𝑽−𝟏 and 𝑽 − 𝒁𝑮𝒁𝑻 = 𝑹 .
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 Proof:  𝒆 = 𝑹𝑷𝒀 (additional information)

With the results obtained for  𝜷 e  𝒖

 𝒆 = 𝒀 − 𝑿 𝑿𝑻𝑽−𝟏𝑿
−𝟏

𝑿𝑻𝑽−𝟏𝒀 − 𝒁𝑮𝒁𝑻𝑷𝒀

= 𝑰𝒏 − 𝑿 𝑿𝑻𝑽−𝟏𝑿
−𝟏

𝑿𝑻𝑽−𝟏 − 𝒁𝑮𝒁𝑻𝑷 𝒀

= 𝑽 𝑽−𝟏 − 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−𝟏

𝑿𝑻𝑽−𝟏 − 𝒁𝑮𝒁𝑻𝑷 𝒀.

Using the result 𝑷 = 𝑽−𝟏 − 𝑽−𝟏𝑿 𝑿𝑻𝑽−𝟏𝑿
−𝟏

𝑿𝑻𝑽−𝟏,

 𝒆 = 𝑽𝑷𝒀 − 𝒁𝑮𝒁𝑻𝑷𝒀

= 𝑽 − 𝒁𝑮𝒁𝑻 𝑷𝐘 ,

but 𝑽 − 𝒁𝑮𝒁𝑻 = 𝑹, therefore, 𝒆 = 𝑹𝑷𝒀
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In 

> fixed.effects(terrenolme1)
(Intercept) variedadeB variedadeC variedadeD

1.55600000 -0.02384615 -0.38907692 -0.37784615 

> ranef(terrenolme1)
(Intercept)

I     0.042982693
II    0.123871539
III  -0.009659254
IV   -0.047150592
IX   -0.165530776
V     0.208483839
VI    0.056207377
VII   0.010883945
VIII  0.023081469
X    -0.211881368
XI    0.032325909
XII  -0.122903638
XIII  0.059288857
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> fitted(terrenolme1)
I    II      III     IV        V        VI                VII    VIII 

1.5989827 1.6798715 1.5463407 1.5088494 1.7644838 1.6122074 1.5668839 1.5790815 
IX  X       XI     XII     XIII     I      II       III 

1.3904692 1.3441186 1.5883259 1.4330964 1.6152889 1.5751365 1.6560254 1.5224946 

…

> predict(terrenolme1)
I   II    III   IV       V      VI      VII     VIII 

1.5989827 1.6798715 1.5463407 1.5088494 1.7644838 1.6122074 1.5668839 1.5790815 
IX      X      XI      XII     XIII         I                  II III 

1.3904692 1.3441186 1.5883259 1.4330964 1.6152889 1.5751365 1.6560254 1.5224946 

…

> resid(terrenolme1) (conditional residuals)
I          II    III           IV                     V               VI 

0.201017307  0.029128461 -0.269340746  0.166150592  0.049516161  0.283792623 
VII      VIII         IX           X           XI                 XII 

-0.488883945  0.160918531 -0.190469224  0.155881368  0.343674091 -0.264096362 
…
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In 

Estimated covariance (asymptotic) matrix for estimators  𝜷

 var  𝜷 = 𝑿𝑻 𝑽−𝟏𝑿
−𝟏

> vcov(terrenolme1)
(Intercept)   variedadeB variedadeC variedadeD

(Intercept) 0.009487662 -0.007506305 -0.007506305 -0.007506305
variedadeB -0.007506305  0.015012610  0.007506305  0.007506305
variedadeC -0.007506305  0.007506305  0.015012610  0.007506305
variedadeD -0.007506305  0.007506305  0.007506305  0.015012610
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• Tests of Hypotheses for covariance
parameters, fixed and random effects

• Model selection (model comparison
via likelihood ratio tests and via
information criteria)
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• Inference concerning covariance parameters of a linear mixed
model usually relies on approximate distributions for the
RE(ML) estimators derived from asymptotic results.
In the current context of mixed models, the most important
formal test for covariance components is the likelihood ratio
test (the most used is the REML likelihood ratio test ).

• For its historical importance, we will start by tests concerning
variance components in balanced designs (and when G and R
are diagonal matrices) derived from the usual analysis of
variance.

Tests of Hypotheses for covariance parameters
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Tests of Hypotheses for variance components derived from ANOVA

Example 1: random model with one factor of random effects, 
balanced with G=𝜎𝑢

2 𝑰𝒒, R=𝜎𝑒
2 𝑰𝒏

Example 2: linear mixed model, one factor of fixed effects and one
factor of random effects, balanced,  G=𝜎𝑢

2 𝑰𝒒, R=𝜎𝑒
2 𝑰𝒏

Example 3: linear mixed model, one factor of fixed effects, one
factor of random effects with interaction, balanced, G=𝜎𝑢

2 𝑰𝒒, 

R=𝜎𝑒
2 𝑰𝒏
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G.L. S.Q. QM E[QM] F

Factor A 𝑎 − 1
𝑆𝑄𝐴 =  

𝑖=1

𝑎

𝑏  𝑦𝑖. −  𝑦..
2 𝑄𝑀𝐴 =

𝑆𝑄𝐴

𝑎 − 1

𝑏𝜎𝑢
2 + 𝜎𝑒

2 𝑄𝑀𝐴

𝑄𝑀𝑅𝐸

Resíduals 𝑎(𝑏 − 1)
𝑆𝑄𝑅𝐸 =  

𝑖=1

𝑎

 

𝑗=1

𝑏

𝑦𝑖𝑗 −  𝑦𝑖.
2

𝑄𝑀𝑅𝐸

=
𝑆𝑄𝑅𝐸

𝑎(𝑏 − 1)

𝜎𝑒
2

TOTAL 𝑎𝑏 − 1
𝑆𝑄𝑇 =  

𝑖=1

𝑎

 

𝑗=1

𝑏

𝑦𝑖𝑗 −  𝑦..
2
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ANOVA TABLE: random model with one factor of random effects
(Factor A), balanced with G=𝜎𝑢

2 𝑰𝒒, R=𝜎𝑒
2 𝑰𝒏

𝑌𝑖𝑗 = 𝜇 + 𝑢𝑖 + 𝑒𝑖𝑗

for 𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏 , 𝑛 = 𝑎𝑏.



Tests of hypotheses for variance component associated to factor A

• Hypotheses: 𝐻0: 𝜎𝑢
2 = 0 𝑣𝑠 𝐻1: 𝜎𝑢

2 > 0

• Test statistic: 𝐹 =
𝑄𝑀𝐴

𝑄𝑀𝑅𝐸
∩ ℱ 𝑎−1,𝑎(𝑏−1) , under 𝐻0

• Significance level: 𝛼

• Rejection region: upper (right-hand) tail

Reject 𝐻0 if 𝐹𝑐𝑎𝑙𝑐 > 𝑓𝛼 𝑎−1,𝑎(𝑏−1)

𝑄𝑀𝐴
𝑏𝜎𝑢

2 + 𝜎𝑒
2

𝑄𝑀𝑅𝐸
𝜎𝑒

2

~ℱ𝑎−1,𝑎𝑏−𝑎𝑆𝑄𝐴

𝑏𝜎𝑢
2 + 𝜎𝑒

2 ~𝜒2
𝑎−1

𝑆𝑄𝑅𝐸

𝜎𝑒
2 ~𝜒2

𝑎(𝑏−1)

Note:

Independent random variables, 
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G.L. S.Q. QM E[QM] F

Factor A 𝑎 − 1 𝑆𝑄𝐴 𝑄𝑀𝐴 𝑏𝑐

𝑎 − 1
 

𝑖=1

𝑎

𝛽𝑖 −  𝛽.
2
+ 𝜎𝑒

2
𝑄𝑀𝐴

𝑄𝑀𝑅𝐸

Factor B 𝑏 − 1 𝑆𝑄𝐵 𝑄𝑀𝐵 𝜎𝑒
2 + 𝑎𝑐𝜎𝑢

2 𝑄𝑀𝐵

𝑄𝑀𝑅𝐸

Residuals 𝑛 − (𝑎 + 𝑏 − 1) 𝑆𝑄𝑅𝐸 𝑄𝑀𝑅𝐸 𝜎𝑒
2

TOTAL 𝑛 − 1 𝑆𝑄𝑇

ANOVA TABLE: linear mixed model, one factor of fixed effects (Factor
A) and one factor of random effects (factor B), balanced, with
G=𝜎𝑢

2 𝑰𝒒, R=𝜎𝑒
2 𝑰𝒏
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𝑌𝑖𝑗𝑘 = 𝜇1 + 𝛽𝑖 + 𝑢𝑗 + 𝑒𝑖𝑗𝑘

for 𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏, 𝑘 = 1,… , 𝑐, 𝑛 = 𝑎𝑏𝑐 , with 𝛽1 = 0. 

Note: the test for fixed effects is identical to what was described in the context of fixed effects
ANOVA



Tests of hypotheses for variance component associated to factor B

• Hypotheses : 𝐻0: 𝜎𝑢
2 = 0 𝑣𝑠 𝐻1: 𝜎𝑢

2 > 0

• Test statistic : 𝐹 =
𝑄𝑀𝐵

𝑄𝑀𝑅𝐸
∩ 𝐹 𝑏−1,𝑛−(𝑎+𝑏−1) , under 𝐻0

• Significance level : 𝛼

• Rejection region : upper (right-hand) tail

Rejeitar 𝐻0 se 𝐹𝑐𝑎𝑙𝑐 > 𝑓𝛼 𝑏−1,𝑛−(𝑎+𝑏−1))
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G.L. S.Q. QM E[QM] F

Factor A 𝑎 − 1 𝑆𝑄𝐴 𝑄𝑀𝐴 𝑏𝑐

𝑎 − 1
 

𝑖=1

𝑎

𝛽𝑖 −  𝛽.
2
+ 𝜎𝑒

2 + c𝜎𝛽𝑢
2

𝑄𝑀𝐴

𝑄𝑀𝐴𝐵

Factor B 𝑏 − 1 𝑆𝑄𝐵 𝑄𝑀𝐵 𝜎𝑒
2 + c𝜎𝛽𝑢

2 + c𝑎𝜎𝑢
2 𝑄𝑀𝐵

𝑄𝑀𝐴𝐵

Interaction (𝑎 − 1)(𝑏 − 1) 𝑆𝑄𝐴𝐵 𝑄𝑀𝐴𝐵 𝜎𝑒
2 + c𝜎𝛽𝑢

2 𝑄𝑀𝐴𝐵

𝑄𝑀𝑅𝐸

Resíduals 𝑎𝑏(𝑐 − 1) 𝑆𝑄𝑅𝐸 𝑄𝑀𝑅𝐸 𝜎𝑒
2

TOTAL 𝑛 − 1 𝑆𝑄𝑇

Note: the test statistics for the test for fixed effects is different to what was described in the 
context of fixed effects ANOVA 98

ANOVA TABLE: linear mixed model, one factor of fixed effects (factor A) 
and one factor of random effects (factor B), balanced, with interaction

𝑌𝑖𝑗𝑘 = 𝜇1 + 𝛽𝑖 + 𝑢𝑗 + 𝛽𝑢 𝑖𝑗 + 𝑒𝑖𝑗𝑘

for 𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏, 𝑘 = 1,… , 𝑐, 𝑛 = 𝑎𝑏𝑐, with 𝛽1 = 0 .

• 𝑢𝑗, 𝑖. 𝑖. 𝑑. , 𝒩 0, 𝜎2
𝑢 , ∀𝑗; 𝛽𝑢 𝑖𝑗 , 𝑖. 𝑖. 𝑑. ,𝒩 0, 𝜎2

𝛽𝑢 , ∀𝑖j; 𝑒𝑖𝑗𝑘 , 𝑖. 𝑖. 𝑑. ,𝒩 0, 𝜎2
𝑒 , ∀𝑖𝑗𝑘



Tests of hypotheses for variance component associated to interaction

• Hypotheses: 𝐻0: 𝜎𝛽𝑢
2 = 0 𝑣𝑠 𝐻1: 𝜎𝛽𝑢

2 > 0

• Test statistic: 𝐹 =
𝑄𝑀𝐴𝐵

𝑄𝑀𝑅𝐸
∩ ℱ

𝑎−1 𝑏−1 ,𝑎𝑏(𝑐−1) , under 𝐻0

• Significance level: 𝛼

• Rejection region: upper (right-hand) tail

Reject 𝐻0 if 𝐹𝑐𝑎𝑙𝑐 > 𝑓𝛼 𝑎−1 𝑏−1 ,𝑎𝑏(𝑐−1)
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Tests of hypotheses for variance component associated to factor B

• Hypotheses: 𝐻0: 𝜎𝑢
2 = 0 𝑣𝑠 𝐻1: 𝜎𝑢

2 > 0

• Test statistic: 𝐹 =
𝑄𝑀𝐵

𝑄𝑀𝐴𝐵
∩ ℱ 𝑏−1,(𝑎−1)(𝑏−1) , under 𝐻0

• Significance level: 𝛼

• Rejection region: upper (right-hand) tail

Reject 𝐻0 if 𝐹𝑐𝑎𝑙𝑐 > 𝑓𝛼 𝑏−1,(𝑎−1)(𝑏−1)
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• Other examples will be studied in the applications section (for
example, model with several random effects factors, analysis of
split plot experiments, etc.).

• For random or complex mixed models there are no exact
statistical tests for certain model effects (the numerator and
denominator of the F statistics are linear combinations of mean
squares). In these cases, approximate F tests are performed. One
of the classic methods most used for this approach is the method
of Satterthwaite (1941). However, other methods are
implemented in more complex mixed models frequently reported
in the literature and commonly used in several packages, for
example, the methods of Giesbrecht and Burns (1985) and
Kenward and Roger (1997). (next slide, additional information)
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 Example: Satterthwaite Degrees of freedom Approximation

Satterthwaite showed that given the ratio

where 𝑋𝑛𝑢𝑚
2 ∩ 𝜒𝜈1

2 and 𝑋2
∗ is a linear combination of chi-square random variable all 

independent of 𝑋𝑛𝑢𝑚
2 , the 𝑋2

∗ ∩ 𝜒𝜐2∗
2 , where 

 𝑋𝑛𝑢𝑚
2

𝜈1

 
𝑋2
∗

𝜐2
∗

where 𝑋𝑚
2 denotes the  𝜒𝑑𝑓𝑚

2 random variables,  𝑙𝑚 denote the constants in the linear 

combination, 𝑑𝑓𝑚 the degrees of freedom for the respective 𝑋𝑚
2 .

𝜐2
∗ ≅

 𝑚 𝑙𝑚𝑋𝑚
2 2

 𝑚  𝑙𝑚𝑋𝑚
2 𝑑𝑓𝑚

Additional information
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• There are no exact confidence intervals for the variance
components associated with the random effects of the model
(the distribution of the estimator of variance components is a
linear combination of chi-square random variables, remember
these estimators for the classic cases in slides 53, 61 and 66).
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In the current context of mixed models, the 
most important  formal test for covariance 

components is the likelihood ratio test

104



• The REML likelihood ratio statistic : 

𝛬 = 2 𝑙𝑅1
− 𝑙𝑅0

~𝜒𝜈
2

being 𝑙𝑅1
the REML log-likelihood of the more general model (full model) and 𝑙𝑅0

the REML

log-likelihood of the reduced model (that is, the REML log-likelihood under the null
hypothesis). Under regularity conditions and under the null hypothesis, the likelihood ratio
statistic, has an approximate 𝜒𝜈

2 distribution with the degrees of freedom (𝜈) equal to the
difference in the number of parameters between the two models.

Likelihood ratio tests for covariance components

• Hypotheses: 𝐻0: 𝜑𝑖 = 0 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 𝑣𝑠 𝐻1: 𝜑𝑖 ≠ 0 (𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙)

( 𝐻0: 𝜑𝑖 = 0 𝑣𝑠 𝐻1: 𝜑𝑖 > 0 , if 𝜑𝑖 is a variance component) 

• Significance level: 𝛼

• Rejection region: upper (right-hand) tail
Reject 𝐻0 if Λ𝑐𝑎𝑙𝑐 > 𝜒2

𝛼 𝜈

• The REML likelihood ratio test is only valid if the fixed effects are the same for both model.  

For ML likelihood ratio test the procedure is similar,  using the log-
likelihood instead of REML log-likelihood; 
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• The REML likelihood ratio test is implicitly two-sided, and must be adjusted
when the test involves an hypothesis with the parameter on the boundary of
the parameter space. When we test a variance component, under the null
hypothesis the parameter falls on the boundary of the parameter space.
Theoretically it can be shown that for a single variance component, the
asymptotic distribution of the REMLRT is a mixture of 𝜒2 variates , where the
mixing probabilities are 0.5, one with 0 degrees of freedom and the other with
one degree of freedom. As a consequence we can perform the likelihood ratio
test as if the standard conditions apply, and divide the resulting p-value by two.

• The distribution of the REMLRT for the test involving more complex situations
(for example, test that 𝑘 variance components are zero), involves a mixture of
𝜒2 variates from 0 to k degrees of freedom (Self and Liang, 1987; Stram and
Lee, 1994; Verbeke and Molenberghs, 2003, etc.).

Likelihood ratio tests for covariance parameters

In              the library ‘RLRsim’ is dedicated to the simulation of the empirical distribution 
of the REML likelihood statistic when variance components testing is involved. The library
‘lme4’ also has this functionality.
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• The naïve approach to using a 𝜒2distribution with degrees of
freedom determined by the difference in the number of
parameters in the models is currently implemented by several
packages. However, one should be aware that the p-values
obtained may be conservative (that is, the reported p-value may
be greater than the true p-value for the test).

Likelihood ratio tests for covariance parameters
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One common statistic is the Wald Z, which is computed as the parameter
estimate divided by its estimated asymptotic standard error computed from
the inverse of the second derivative matrix of the log-likelihood with respect to
covariance parameters. The Wald Z test is valid for large samples, but it can be
unreliable for small data sets and for parameters such as variance components
that are known to have a bounded sampling distribution.

Not recommended for variance components

A note about Wald statistic



 TerrenosH1<-varComp(rend~variedade, random=~terreno, data=terrenos) 
> logLik(TerrenosH1)
'log Lik.' -202.4013 (df=2)

> TerrenosH0<-varComp(rend~variedade, data=terrenos)
> logLik(TerrenosH0)
'log Lik.' -203.6992 (df=1)

>  2*( logLik(TerrenosH1)-logLik(TerrenosH0)) 
'log Lik.' 2.595781 

> 1-pchisq(2.595781,1)
[1] 0.1071486
> (1-pchisq(2.595781,1))/2
[1] 0.0535743

In 

Performing a REML likelihood ratio test for a variance component
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Tests of hypotheses for fixed 
(and random effects)
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Tests of hypotheses for linear combinations of the effects of the 

mixed model ( 𝑳𝑻
𝜷
𝒖

), being 𝑳 a non random vector 

𝐻𝑜: 𝑳
𝑻 𝜷

𝒖
= 𝟎 vs. 𝐻1: 𝑳

𝑻 𝜷
𝒖

≠ 𝟎• Hypotheses :

• Test statistic:  𝑇 =
𝑳𝑻

 𝜷
 𝒖

𝑳𝑻 𝑪𝑳

~𝑡𝜐2 , under 𝐻0
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Under the assumed normality of 𝒖 and 𝒆, 𝑇 has an exact 𝑡-distribution only for data
exhibiting certain types of balance and for some special unbalanced cases. In general,
it is only approximately 𝑡-distributed, and its degrees of freedom must be estimated
(for example, using Satterthwaite approximation). This not happen only for particular
cases for data exhibiting certain types of balance and for some special unbalanced
cases with the elements of the vectors 𝒖 e 𝒆 being i.i.d. random variables. In these
cases, 𝜐2 = 𝑛 − 𝑟(𝑾), where 𝑟 𝑾 is the rank of the matrix W which contains the
columns of matrices 𝑿 and 𝒁.

𝑳𝑻 𝑪𝑳 is a scalar, is the standard error of the estimator of the parameter being

tested, matrix C was defined in slides 79 and 80.



Tests of hypotheses for linear combinations of the effects of the 

mixed model ( 𝑳𝑻
𝜷
𝒖

), being 𝑳 a non random vector (cont.)

• Significance level: 𝛼

• Rejection region: two-tailed

Reject 𝐻0 if 𝑇𝑐𝑎𝑙𝑐 > 𝑡  𝛼 2 (𝜐2 )

The current procedure is mainly focused on the test of
hypotheses for the fixed effects of the model . In this

case  C = 𝑿𝑻 𝑽−𝟏𝑿
−𝟏

. 
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𝑳𝑻
 𝜷
 𝒖

− 𝑡  𝛼 2,𝜐2 𝑳𝑻 𝑪𝑳, 𝑳𝑻
 𝜷
 𝒖

+ 𝑡  𝛼 2,𝜐2 𝑳𝑻 𝑪𝑳
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It follows from previous slides that a confidence interval 

1 − 𝛼 × 100% for 𝑳𝑻
𝜷
𝒖

is given as:



Tests of hypotheses for linear combinations of the effects of the 

mixed model ( 𝑳𝑻
𝜷
𝒖

), when 𝑳 is a matrix (rank of 𝑳 greater than 1)

𝐻𝑜: 𝑳
𝑻 𝜷

𝒖
= 𝟎 vs. 𝐻1: 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑳

𝑻 𝜷
𝒖

= 𝟎• Hypotheses:

• Test statistic :  F =

 𝜷
 𝒖

𝑻

𝑳 𝑳𝑻 𝑪𝑳

−𝟏

𝑳𝑻
 𝜷
 𝒖

𝒓𝒂𝒏𝒌(𝑳)
~𝓕𝜐1,𝜐2 , sob 𝐻0
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F in general has an approximate F-distribution, with 𝜐1 = 𝑟𝑎𝑛𝑘 𝑳
and 𝜐2 must be estimated (for example, using Satterthwaite
approximation). This not happen only for particular cases for data
exhibiting certain types of balance and for some special unbalanced
cases with the elements of the vectors 𝒖 e 𝒆 being i.i.d. random
variables. In these cases, 𝜐2 = 𝑛 − 𝑟(𝑾), where 𝑟 𝑾 is the rank of
the matrix W which contains the columns of matrices 𝑿 and 𝒁.



Tests of hypotheses for linear combinations of the effects of the 

mixed model ( 𝑳𝑻
𝜷
𝒖

), when 𝑳 is a matrix (rank of 𝑳 greater than 1) 

(cont.)

• Significance level : 𝛼

• Rejection region: upper (right-hand) tail

Reject 𝐻0 if 𝐹𝑐𝑎𝑙𝑐 > 𝑓𝛼 𝜐1,𝜐2

115



116

Final note about inference:

For variance component and random coefficient models,
Bayesian inference on the fixed and random effects can be
conducted by generating a sample from their posterior
distribution (not studied in this course).



> summary(arlme2)
Linear mixed-effects model fit by REML
Data: arinto

AIC      BIC    logLik
1152.537 1181.887 -570.2686

Random effects:
Formula: ~1 | clone

(Intercept)  Residual
StdDev:   0.3512633 0.3488315

Fixed effects: rend ~ bloco
Value  Std.Error DF  t-value p-value

(Intercept)  1.3938704 0.03149894 738 44.25134  0.0000
blocoB3     -0.3075385 0.03138934 738 -9.79754  0.0000
blocoB4     -0.0085951 0.03138934 738 -0.27382  0.7843
blocoB5      0.2995020 0.03138934 738  9.54152  0.0000

No 

> anova(arlme2)
numDF denDF F-value p-value

(Intercept)     1   738 3101.4982  <.0001
bloco 3   738  124.6915  <.0001 117



> intervals(arlme2)
Approximate 95% confidence intervals

Fixed effects:
lower         est.      upper

(Intercept)  1.33203224  1.393870445  1.4557087
blocoB3     -0.36916150 -0.307538462 -0.2459154
blocoB4     -0.07021818 -0.008595142  0.0530279
blocoB5      0.23787898  0.299502024  0.3611251
attr(,"label")
[1] "Fixed effects:"

Random Effects:
Level: clone 

lower      est.     upper
sd((Intercept)) 0.3144 0.3512633 0.3924488
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 Model comparison via likelihood ratio tests

• REML and ML likelihood ratio tests can be used to compare

nested models. One model is said to be nested within another

model if it represents a special case of the other model.

• The REML likelihood ratio tests should only be used for models

with same fixed-effects specification.

(procedure already described in slide 105)
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 Model comparison via information criteria
• Information criteria provide an alternative to formal testing. The

two most widely used information criteria are the AIC (Akaike

information criterion) and BIC (Bayesian information criterion).

There are others, for example: sample corrected version of AIC,

AICC; Information criterion of Hannan-Quinn, HQIC; etc..

• Both the AIC and BIC contain two terms that measure the fit of

the model and the complexity of the model.

• With REML, AIC and BIC criteria can only be used for

comparing models with same fixed-effects specification (with

equal 𝑿𝜷)

• They can be used to compare nested models and non-nested

models 120
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Akaike information criterion (𝑨𝑰𝑪𝑹) is defined as:

𝐴𝐼𝐶𝑅 = −2𝑙𝑅 + 2𝑛𝑝𝑎𝑟 ,

𝑙𝑅 is the REML log-likelihood of the model and  𝑛𝑝𝑎𝑟 is the number 

of covariance parameters in the model

 AIC is calculated for each model. The model with the smallest 
value is chosen as the preferred model. 

 Penalizes model complexity (models with a higher number of
parameters)

Note: For ML estimation method, REML log-likelihood is replaced
by log-likelihood and 𝑛𝑝𝑎𝑟 is the number of parameters in the

model (thus, includes fixed effects).
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Bayesian information criterion (𝐵𝐼𝐶𝑅) is defined as,

𝐵𝐼𝐶𝑅 = −2𝑙𝑅 + 𝑛𝑝𝑎𝑟𝑙𝑛 𝑛 − 𝑟𝑋 ,

𝑙𝑅 is the REML log-likelihood of the model and  𝑛𝑝𝑎𝑟 is the number of 

covariance parameters in the model, 𝑛 is the number of observations 
and 𝑟𝑋 is the rank of matrix 𝑿. 

 The number of observations is also taken into account.
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 BIC is calculated for each model. The model with the smallest 
value is chosen as the preferred model. 

 Penalizes model complexity (models with a higher number of
parameters).

Note: For ML estimation method, the REML log-likelihood is
replaced by log-likelihood, 𝑛𝑝𝑎𝑟 is the number of parameters in

the model (thus, includes fixed effects) and 𝑙𝑛 𝑛 − 𝑟𝑋 is replaced
by 𝑙𝑛 𝑛 .



>siria.lme1<-lme(rend~subpop+bloco, data=siria, random=list(clone=pdIdent(~subpop-1)))
> summary(siria.lme1)
Linear mixed-effects model fit by REML
Data: siria

AIC BIC logLik
2163.291 2207.831 -1072.646

Random effects:
Formula: ~subpop - 1 | clone
Structure: Multiple of an Identity

subpopALE subpopALG subpopPINHEL Residual
StdDev: 0.4550345 0.4550345 0.4550345 0.5784932

> siria.lme2<-lme(rend~subpop+bloco, data=siria, random=list(clone=pdDiag(~subpop-1)))
> summary(siria.lme2)
Linear mixed-effects model fit by REML
Data: siria

AIC BIC logLik
2153.235 2207.673 -1065.618

Random effects:
Formula: ~subpop - 1 | clone
Structure: Diagonal

subpopALE subpopALG subpopPINHEL Residual
StdDev: 0.245502 0.4622154 0.5355529 0.5784956

> anova(siria.lme1,siria.lme2)
Model df AIC BIC logLik Test L.Ratio p-value

siria.lme1 1 9 2163.291 2207.831 -1072.646
siria.lme2 2 11 2153.235 2207.673 -1065.618 1 vs 2 14.05585 9e-04

In 
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Validation of the model assumptions 

 As in classical linear model, validation of model assumptions is made essentially
using graphic tools.

 One key assumption is the normality. Now it is necessary to validate this 
hypothesis in the residuals (by tools already mentioned in the linear model) and 
in the predictors of random effects (using the same diagnostic tools).

 In the classical linear mixed model, the homogeneity of variances is validated 
using  diagnostic plots. In certain contexts, when this assumption fails, the usual 
technique is to fit a new linear mixed model that assumes heterogeneous 
variances. Both models are compared using a formal test (Likelihood ratio test) or 
by AIC and BIC criteria.

 In the classical linear mixed model, the classical assumption of independence can 
also be validated by graphic tools. In certain contexts, the semivariogram of the 
residuals (a tool of spatial analysis) is used for validation of this assumption.
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> oats.lme1<-lme(yield~Variety, data=oats,random=~1|Blocks)
> plot(oats.lme1)

In 
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>qqnorm(oats.lme1, ~resid(.)) >qqnorm(oats.lme1, ~ranef(.))

In 

126 Cook's Distance can be studied using package “influence.ME” (requires to fit
the model with the function lmer of the package lme4).


