FOREST MANAGEMENT AND CERTIFICATION

Practice problem set 1

- 1. Explain the difference between a forest and a stand from a management perspective.
- 2. What are the key environmental and social considerations that often influence forest management decisions?
- 3. Explain the meaning of the phrase "you can't manage what you don't measure."
- 4. Imagine that you have a small forest with 4 management units that are homogeneous and you want to have a plan to manage your forest. All your forest must be productive, so bare land must be converted or to eucalyptus or maritime pine.

Management Unit	Area (ha)	Specie	Age	Rotation
1	5.3	Maritime pine	25	-
2	2.1	Bare land	-	-
3	0.5	Eucalyptus	2	1
4	1.3	Eucalyptus	6	2
Total	9.2	-	-	-

You will write a plan, where you want to know what will be the best management options for the next 50 years. Please, build the prescriptions for each stand according to the following rules:

M Pine: Plantation with spacing of 1250 trees per ha or 1400 tress per ha, rotation age: 40, 45, 50, 55 or 60 years, thinning occurring every five years in the period from 20 to 50 years of age (up to 5 years before the clearcut) based on a FW of 0.27. **Eucalypt:** Plantation with spacing of 1400 trees per ha. Rotation including 3 coppice cycles with 10 to 12 years. Stool thinning leaving an average 2 shoots per stool at year 2 of each cycle (rotation 2 and 3).

Example 1:

Stand 1

Presc ID	Year	Stand	Silvicultural operation					
		Age	Planting	Thinning		•••	Final	
			(density)	(X if			Harvest	
				happens)			(X if	
							happens)	
1	2014	25		Х				
1	2019	30		Х				
1	2024	35						
1	2029	40					Х	
1	2029	0	1400					
1	2049	20		Х				
1	2054	25		Х				
1	2059	30		Х				
1	2064	35		Х				
2								

Or

Example 2:

Or...

5. Why it is important for a firm to know the elasticity of the demand curves it faces for its products?

6. Calculate the price elasticity between A, B and C for the given demand relationships:

7. Given the regional supply and demand curves below the softwood plywood, if the price per m^3 is at *p*, what is likely to happen to the price? Why?

