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Optimization
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Optimization



Review of some techniques commonly used in
optimization

Depth-first search

Direct-search methods

One solution vector → Hooke and Jeeves (1961)
Several solution vectors → population-based methods

Non-linear differentiable optimization techniques → differentiable
objective function



What is a solution vector?

It is a vector where the decision variables are included → in
stand-level management planning variables that define the
management prescription

Thinning type

Thinning time

Thinning intensity

Clearcut age



Local optimum vs. global optimum

Source: flickr.com

flickr.com


Local optimum vs. global optimum

Source: turingfinance.com

turingfinance.com


Depth-first search

Optimization technique that explores trees or graph structures

Exhaustive search: looks all the possible paths

It guarantees reaching the global optimum within the defined tree
of alternatives

Decision variables need to be discretized



Tree of alternatives for stand-level management
planning
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Depth-first search
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Depth-first search

Advantages

It guarantees reaching the global optimum within the tree of
alternatives

It does not need discretization of state variables, in opposite to
dynamic programming

Disadvantages

Discretization of decision variables should be carefully considered

Too detailed =⇒ high computation time without a significative
improvement in objective function value
Too gross =⇒ the optimal found might be far from the ‘true’ optimal

Implementation harder than other techniques → growth and yield
model is implicitly implemented in the optimization algorithm



Direct-search methods

Let it consider the growth simulator as a black box that receives
variable values (decision variable values) and returns a value
(objective function)

Direct-search methods iteratively evaluate and modify the
solution to optimize the objective function

Constraints → interesting to include bounds to some decision
variables, e.g. do not allow to apply thinnings that imply removal
of more than 45% of the trees, to avoid making the stand too
sensitive to wind or snow damage

Constraints → implemented as

penalty function → the objective function value is penalized if any
constraint is violated =⇒ the algorithm keeps searching for better
solutions
barrier methods → if a constraint is violated, the solution is discarded



Direct-search methods

Advantages

They usually provide good solutions in a reasonable amount of time

The decision variables are continous =⇒ no discretization

Disadvantages

They do not guarantee reaching the global optimum

Some are not deterministic, i.e. do not provide the same results if
they are run more than once



Classification

One solution vector → Hooke and Jeeves (1961) method

Several solution vectors → population-based methods

Differential evolution (DE)
Particle swarm optimization (PS)
Evolution strategy (ES)
Nelder and Mead (1965) method (NM)



Hooke and Jeeves (1961) method

An initial solution vector is needed to start the optimization
procedure → the best among several solutions randomly generated

It alternates between two search types

Exploratory search → a specific step value is summed or substracted
to each decision variable value → evaluate whether the objective
function value improves or not
Pattern search → the information provided by exploratory search is
used to vary several decision variable values simultaneously



Hooke and Jeeves (1961) method

If the solution can no longer be improved by exploratory search →
step value is halved and the procedure is repeated until a
stopping criteria is met

This technique has been widely used over the years for stand-level
optimization, e.g. Roise (1986), Valsta (1990) or Pukkala et al.
(2014)

The quality solution of the optimal solution found may be
dependent on the initial solution used → it may yield a local
optima



Hooke and Jeeves (1961) method



Population-based methods



Population-based methods

A population of solution vectors is needed to start the optimization
procedure

The solutions are spread all over the solution space to avoid
reaching a local optimum → exploration of the whole solution
space

The solutions are combined to form a new solution vector that is
compared with the earlier solutions and included in the population
if the average quality improves

Examples of application for stand-level optimization → Pukkala
(2009) and Arias-Rodil et al. (2015)

Further reading → Bazaraa et al. (1993) and Cortez (2014)



Population-based methods



Non-linear differentiable optimization

If the objective function (e.g. Land Expectation Value) can be
expressed as a differentiable function and the set of constraints
meet some requirements (to be closed, bounded and convex)

Non-linear differentiable optimization techniques can be applied →
for example Sequential Quadratic Programming

These techniques approximate the objective function gradient

Advantages relative to direct search methods

The global optimum is commonly reached

It is much more efficient computationally



Approximating the gradient



Simulation and optimization example



Growth and yield model

State-space approach

State variables (t1) State variables (t2)

H1

G1

N1

V1

H2

G2

N2

V2

Output function

Transition functions

Output function

Growth = V2 − V1



Dynamic growth model for even-aged stands

Model developed for Pinus pinaster in Asturias (NW Spain)

Age (yr)

 

500

1000

1500

2000

10 20 30 40 50

N
um

be
r 

of
 s

te
m

s 
(h

a−1
)

500

1000

1500

2000

N

0

20

40

60

80

100

S
ta

nd
 b

as
al

 a
re

a 
(m

2  h
a−1

)

0

20

40

60

80

100

G

0

5

10

15

20

25

30

D
om

in
an

t h
ei

gh
t (

m
)

0

5

10

15

20

25

30

H

Observed Predicted



Simulation and optimization example

Example in spreadsheet

Dynamic growth model for Pinus pinaster in Asturias (Spain)

Growth simulator → from the simplest to a more complex one

Total volume
Volume classified by assortments
Only incomes
Incomes + costs

Application of an optimization algorithm



Simulation and optimization example

The optimization procedure could be applied for different initial
conditions of the stand

Number of stems

Site quality

Discount rate

Prices

Costs

...



Simulation and optimization example

The next figure shows the evolution of basal area under the
optimal management prescriptions for stands of Pinus pinaster in
Asturias (Spain), considering different initial conditions

Number of stems

Site quality

Discount rate



Simulation and optimization example
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