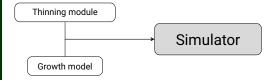
Forest Management and Certification Stand-level management planning - decision analysis in single species even-aged stands

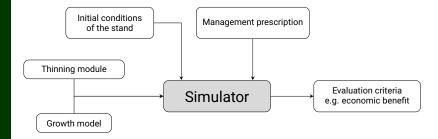
Who?

Manuel Arias-Rodil Ulises Diéguez-Aranda

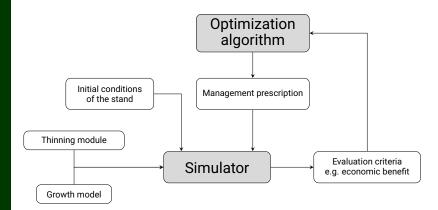
DEPARTAMENTO DE ENXEÑARÍA AGROFORESTAL ESCOLA POLITÉCNICA SUPERIOR


When?

From?


17/10 - 04/11/2016

Reminder!


Simulation

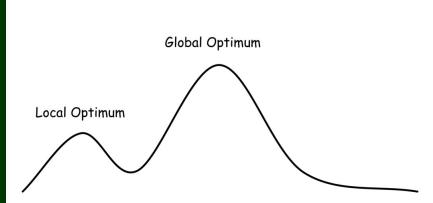
Economical evaluation

Optimization

Optimization

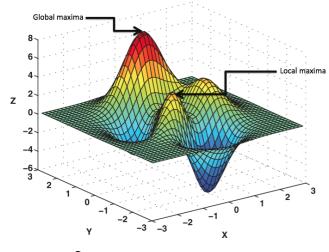
Review of some techniques commonly used in optimization

- Depth-first search
- Direct-search methods
 - One solution vector ightarrow Hooke and Jeeves (1961)
 - Several solution vectors \rightarrow population-based methods
- Non-linear differentiable optimization techniques \rightarrow differentiable objective function


What is a solution vector?

It is a vector where the decision variables are included \to in stand-level management planning variables that define the management prescription

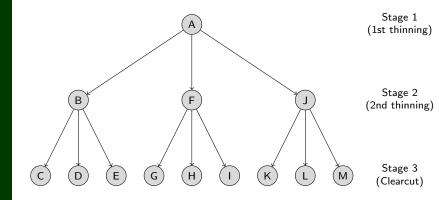
Thinning type


- Thinning time
- Thinning intensity
- Clearcut age

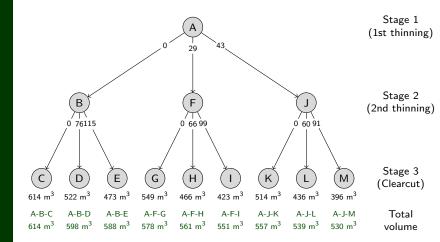
Local optimum vs. global optimum

Source: flickr.com

Local optimum vs. global optimum



Source: turingfinance.com


Depth-first search

- Optimization technique that explores trees or graph structures
- Exhaustive search: looks all the possible paths
- It guarantees reaching the global optimum within the defined tree of alternatives
- Decision variables need to be discretized

Tree of alternatives for stand-level management planning

Depth-first search

Depth-first search

Advantages

- It guarantees reaching the global optimum within the tree of alternatives
- It does not need discretization of state variables, in opposite to dynamic programming

Disadvantages

- Discretization of decision variables should be carefully considered
 Too detailed ⇒ high computation time without a significative
 - improvement in objective function value
- Too gross \implies the optimal found might be far from the 'true' optimal
- Implementation harder than other techniques \rightarrow growth and yield model is implicitly implemented in the optimization algorithm

Direct-search methods

- Let it consider the growth simulator as a black box that receives variable values (decision variable values) and returns a value (objective function)
- Direct-search methods iteratively evaluate and modify the solution to optimize the objective function
- **Constraints** \rightarrow interesting to include bounds to some decision variables, e.g. do not allow to apply thinnings that imply removal of more than 45% of the trees, to avoid making the stand too sensitive to wind or snow damage
- $\bullet \quad Constraints \rightarrow implemented as$

- **penalty function** \rightarrow the objective function value is penalized if any constraint is violated \implies the algorithm keeps searching for better solutions
- **barrier methods** \rightarrow if a constraint is violated, the solution is discarded

Direct-search methods

Advantages

- They usually provide good solutions in a reasonable amount of time
- The decision variables are continous ⇒ no discretization
 Disadvantages
- They do not guarantee reaching the global optimum
- Some are not deterministic, i.e. do not provide the same results if they are run more than once

Classification

One solution vector \rightarrow Hooke and Jeeves (1961) method Several solution vectors \rightarrow population-based methods Differential evolution (DE) Particle swarm optimization (PS) Evolution strategy (ES) Nelder and Mead (1965) method (NM)

Hooke and Jeeves (1961) method

- An initial solution vector is needed to start the optimization procedure \rightarrow the best among several solutions randomly generated
- It alternates between two search types
- **Exploratory search** \rightarrow a specific step value is summed or substracted to each decision variable value \rightarrow evaluate whether the objective function value improves or not
- **Pattern search** \rightarrow the information provided by exploratory search is used to vary several decision variable values simultaneously

Hooke and Jeeves (1961) method

- If the solution can no longer be improved by exploratory search \rightarrow **step value** is **halved** and the procedure is repeated until a stopping criteria is met
- This technique has been widely used over the years for stand-level optimization, e.g. Roise (1986), Valsta (1990) or Pukkala et al. (2014)
- The quality solution of the optimal solution found may be dependent on the initial solution used \rightarrow it may yield a local optima

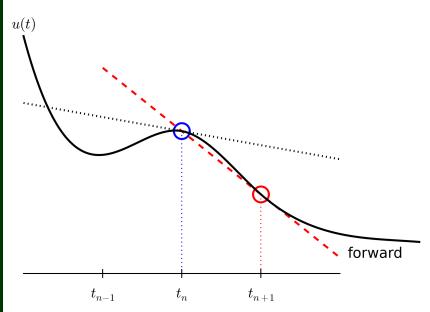
Hooke and Jeeves (1961) method

Population-based methods

Population-based methods

- A population of solution vectors is needed to start the optimization procedure
- The solutions are spread all over the solution space to avoid reaching a local optimum \rightarrow exploration of the whole solution space
- The solutions are combined to form a new solution vector that is compared with the earlier solutions and included in the population if the average quality improves
- Examples of application for stand-level optimization \rightarrow Pukkala (2009) and Arias-Rodil et al. (2015)
- Further reading \rightarrow Bazaraa et al. (1993) and Cortez (2014)

Population-based methods

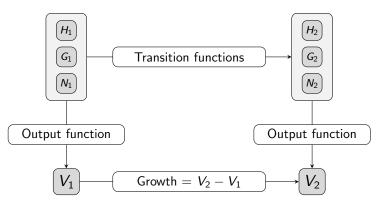

Non-linear differentiable optimization

- If the objective function (e.g. Land Expectation Value) can be expressed as a differentiable function and the set of constraints meet some requirements (to be closed, bounded and convex)
- \square Non-linear differentiable optimization techniques can be applied \rightarrow for example Sequential Quadratic Programming
- These techniques approximate the objective function gradient

Advantages relative to direct search methods

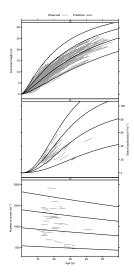
- The global optimum is commonly reached
 - It is much more efficient computationally

Approximating the gradient



Growth and yield model

State-space approach


State variables (t_1)

Dynamic growth model for even-aged stands

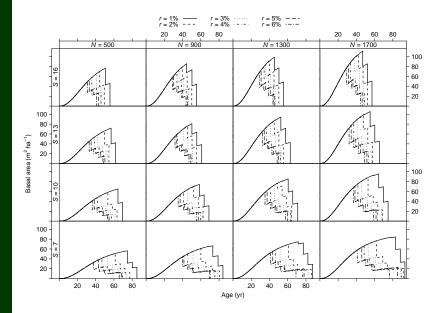
Model developed for *Pinus pinaster* in Asturias (NW Spain)

Example in spreadsheet

- Dynamic growth model for *Pinus pinaster* in Asturias (Spain) Growth simulator \rightarrow from the simplest to a more complex one Total volume Volume classified by assortments Only incomes Incomes + costs
 - Application of an optimization algorithm

The optimization procedure could be applied for different initial conditions of the stand

- Number of stems
- Site quality
 - Discount rate
 - Prices


- Co

Costs

The next figure shows the evolution of basal area under the optimal management prescriptions for stands of *Pinus pinaster* in Asturias (Spain), considering different initial conditions

- Number of stems
 - Site quality

Discount rate

References I

Arias-Rodil, M., T. Pukkala, J. M. González-González, M. Barrio-Anta, and U. Diéguez-Aranda (2015). "Use of depth-first search and direct search methods to optimize even-aged stand management: a case study involving maritime pine in Asturias (NW Spain)". In: *Can. J. For. Res.* 45.10, pp. 1269–1279.

Bazaraa, M. S., H. D. Sherali, and C. M. Shetty (1993). Nonlinear programming: theory and algorithms. Hoboken: Wiley & Sons, p. 639.

Bettinger, P, K Boston, J. Siry, and D. Grebner (2009). Forest management and planning. San Diego, CA: Academic Press.
Borges, J. G., L. Diaz-Balteiro, M. E. McDill, and L. C. Rodriguez (2014). The Management of Industrial Forest Plantations.
Ed. by J. G. Borges, L. Diaz-Balteiro, M. E. McDill, and L. C. Rodriguez. Vol. 33. Managing Forest Ecosystems. Dordrecht: Springer, p. 543.

References II

Cortez, P. (2014). *Modern optimization with R*. Springer, pp. xiii + 174.

- Hooke, R. and T. A. Jeeves (1961). ""Direct Search" solution of numerical and statistical problems". In: J. Assoc. Comput. Mach. 8, pp. 212–229.
- Nelder, J. A. and R. Mead (1965). "A simplex method for function minimization". en. In: *Comput. J.* 7.4, pp. 308–313.
- Pukkala, T. (2009). "Population-based methods in the optimization of stand management". In: Silva Fenn. 43.2, pp. 261–274.
- Pukkala, T., E. Lähde, and O. Laiho (2014). "Optimizing any-aged management of mixed boreal forest under residual basal area constraints". In: J. For. Res. 25.3, pp. 627–636.
- Roise, J. P. (1986). "A nonlinear programming approach to stand optimization". In: *For. Sci.* 32.3, pp. 735–748.

References III

Valsta, L. (1990). "A comparison of numerical methods for optimizing even aged stand management". en. In: *Can. J. For. Res.* 20.7, pp. 961–969.