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Linear Mixed Models
Summary:
1. Motivation: some typical examples involving mixed models

2. The general linear mixed model: description and properties;
estimation of covariance parameters; estimation of fixed effects
and prediction of random effects; hypothesis tests for covariance
parameters, fixed and random effects; model selection (model
comparison via likelihood ratio tests and via information criteria);
validation of model assumptions

3. Some particular cases and applications: exercises



Fitting linear mixed models
Packages usually used

> Library nime, @ (http://www.R-project.org)

> Library Imed4, @ (http://www.R-project.org)
> Proc mixed do SAS (SAS Institute, Inc.)

» Library ASREML-R @® (VSN International) (mainly
focused on aninal and plant breeding)

» Library rrBLUP, @ (http://www.R-project.orq)
(focused on genomic selection)



http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
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What is a mixed model?

* Models in which the only effects are fixed effects
are called fixed effects models.

* Models that contain both fixed and random effects
are called mixed models.

* A special case of a mixed model is when there are
no fixed effects (except a general mean common to
all observations, u), that is, a model having only
random effects. It is called a random model.



What are random effects?

When the levels of the factor have been selected at random from a
population of possible levels and we want to obtain information
about the parameters of the distribution of those levels.

The main goals of the analysis of random effects models are:

» Estimate covariance parameters

» Test hypotheses about the parameters or functions of the
parameters

» Calculate predictors (BLUP) of the realized values of the random
effects

» Compare treatment means



Motivation

Some typical examples involving mixed models



The Randomized Complete Block design (RCB)

The randomized block design is just the begining with mixed models.

Blocking is a research technique that is used to reduce the effects of variation among
experimental units. The units can be people, plants, animals, etc..

» The RCB is the standard design for agricultural
experiments.

» The field is divided into units to account for any
variation in the field (by accounting for spatial

effects). Blocks are groups of units that are formed

so that units within the blocks are as nearly
homogeneous as possible.

» The levels of the factor being investigated, called
treatments, are randomly assigned to units within
the blocks (each treatment once per block).

» The number of blocks is the number of
replications.

» Any treatment can be adjacent to any other

treatment, but not to the same treatment within
the block.

Example: each row
represents a block. There are
4 blocks (I-1V) and 4
treatments (different colors)

BLOCK |

BLOCK II

BLOCK Il

BLOCK IV
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The Randomized Complete Block (RCB) design

* Usually, the primary objectives are to estimate and compare
treatment means. In most cases, the treatment effects are
considered fixed because the treatments in the experiment are the
only ones to which inference is to be made.

* Block effects are usually considered random because the blocks in
the experiment constitute only a small subset of the larger set of
blocks over which inferences about treatment means are to be
made.

The model for data from a randomized blocks design usually contains a
fixed effects factor and random effects for blocks, making it a mixed
model



RCB repeated at more than one location

* Blocks are laid out at more than one location. Treatments

are assigned at random to those blocks.

* Treatments are assigned at random within blocks, each
treatment once per block.

* The number of blocks is the number of replications.

* Any treatment can be adjacent to any other treatment,
but not to the same treatment within the block.

» Usually, the treatment effects are considered fixed.

» Usually, location effects are considered random
because the locations constitute only a small subset
of the larger set of locations over which inferences
about treatment means are to be made.

» Block effects nested within location are usually
considered random.

The model for data from this type of design contains
a fixed effects factor and random effects factors,

it is @ mixed model

Example: there are 4 treatments (different colors),

4 locations and 4 blocks per location

Location |
- BLOCK I
- BLOCK Il
- BLOCK Il
- BLOCK IV
Location I
- BLOCK |
- BLOCK Il
- BLOCK Ili
. BLOCK IV
Location Il
- BLOCK I
- BLOCK II
- BLOCK IlI
- BLOCK IV
Location IV
- BLOCK |
- BLOCK Il
- BLOCK Il
L] )
BLOCK IV




The split-plot design

* The split plot design has an agricultural heritage, with the
whole plots usually being large areas of land and the subplots
being smaller areas of land within the large areas.

Example: several varieties of a crop could be planted in diferente fields (whole plots),
one variety to a field. Then each field could be divided into several subplots, and each
subplot could be treated with a diferente type of fertilizer..

* Despite its agricultural basis, the split-plot design is useful in
many other scientific areas.
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The split-plot design on a RCB

* Main treatments (levels of factor A) are assigned at random within blocks, each treatment
once per block; they are divided further into additional independent units (subplots) to which
another set of treatments (levels of factor B) are randomly assigned.

* The number of blocks is the number of replications.
* Any main treatment can be adjacent to any other treatment, but not to the same treatment

within the block.

Example:
Different colors represent different main treatments; each row represents a block. There are

4 blocks (I-1V) each of 4 main treatments (colors) divided into 4 further sub-plot treatments

(symbols).
sne® [Eeisl] wien Aem® o
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The split-plot design on a RCB

 The effects of factor A, the effects of factor B and interaction
A*B are considered fixed.

* Block effects are considered random effects.

* The effects of interaction Block*Factor A (whole plot error)
and Block*Factor B are assumed random effects

The model for data from this type of design
contains fixed and random effects,
it is @ mixed model
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(d Random models (a particular case of mixed model) and
mixed models are historically applied in plant and animal
breeding. In this context, the objectives are focused on the
covariance parameters estimates and on the preditors of
random effects.

d Other numerous experimental designs produce data for
which mixed models are appropriate. Some examples are
nested designs, designs belonging to the family of
incomplete block designs, repeated measures designs, etc..



The Linear Mixed Model

In matrix formulation, the linear mixed model can be written as (the bold will be

used for matrix notation):
Y=XB +Zu +e

Y nx1) is the vector of observations

B px1) is the vector of fixed effects

X (nxp) is the model matrix for fixed effects
U(yx1) is the vector of random effects

Z (nxq) is the model matrix for random effects

€(nx1) IS a vector random errors

The predictors can be factors or numeric variables.
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Y11
Y12

qu
Y21
Y22

qu

ypl

pr

| Ypg

one random effects factor (when X and Z are incidence matrices)

Example: model with one fixed effects factor and

X p Z u e
(1 1 0 ] (1 0 0 0| [ e1
1 1 0 0 1 0 €19
1 1 0 0 0 0 0 1 €1q
1 1 [ I 0 - €21
1 1 34 0 “ €22
U2
By
1 0 1 0 : 0 0 0 1 e2q
Ug
Bp -
1 0 0 1 1 0 0O 0 ep1
1 0 0 1 01 0 0 €p2
1 0 0 1 | 0 0 0 1 | | epq

When X\II/S a singular matrix, the procedure is similar to the already
described for ANOVA with fixed effects
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Linear mixed model

Y=Xp+Zu +e

O The vectors u and e are assumed mutually independent with
multivariate normal distribution with vector of mean values 0, x1)

and covariance matrices G and R , respectively:

coviu,e] =0
un N 0,6)

enNN,(0R)

where G, xq) and R,xp,) are symmetric and positive-definite matrices



3 As a consequence,
ElY] = XB

var[Y] = ZGZT + R =V,

where Z7 is the transpose of Z.

covlY,ul| = ZG

 The distribution of Y is multivariate normal with mean value X
and variance-covariance matrix V, symmetric and positive-definite,

Y NNV, (XB,V).



There are many variants for linear mixed models

* |In the classical linear mixed model is assumed that:

- The elements of the vector u are independent and identically
distributed random variables (i.i.d.), that is, the covariance matrix is
G = o1, where I, is the identity matrix g X q ;

- The elements of the vector e are i.i.d. random variables, that is, the
covariance matrix is R = 621,,, where I, is the identity matrixn X n.

e A particular case is the traditional random model:

It meansthat X = 1,8 = u,G = 071, R = o¢l,

19



Example: the particular case of ANOVA with one factor
with random effects, balanced

Yij — U + U; + el-j
fori=1,..,a,j=1,..,b.
Y;; is the jth observation in the ith level of factor 4;

(1 is a general mean (population);
u; is the effect of the level i of the factor 4;

e;j is the random error associated to the observation Y;;.

20



In the traditional random model it is assumed:

;N (0,02, ),V

+ e V(0,02 ),Vij

© B(Y;) = u

» cov(e;j,eyj) =0, exceptfori=1iej=j
e cov(u;,u;) =0,vi#i

. cov(ui,ei,j,) =0,Vi,i'ej’



* Although u; and e;; are uncorrelated, the Y;;s are not. In the

same random effect the observations are correlated (a difference
from the fixed effects model):

cov(Y,;j,Yl-j,) = COoV (,u +u; +e,utu;+ el-jr) = qu,fOF]' *J
cov(Yij,Yi'j') =0,fori+1i

* Asa consequence,

var(Y;;) = var(p + u; + ¢;;) = 0%, + 02,
_ g2
var(Y;) = O-Zu + ¢ b

In this context arises the concept of Intraclass Correlation:

o2,

\/O'Zu + 02, \/azu + 02,

COT'T'(yl'j, yijl) =

22



Many other situations can arise according to:

> Xp
- one or more factors of fixed effects (including interactions,
nested factores, etc.)

> Zu
- one ou more factors of random effects (including
interactions, nested factores, etc.)

> The structure of the covariance matrices G and R

23



As mentioned above, in the traditional linear model the covariance
matrices G and R are defined as G = oI, and R = o¢l,,

respectively:

Ggxq) =

oy
0
0
0

0

oy

0
0

R(nxn) —

gz 0 0]
0 of 0
0 O 0
0 0 o2

But modeling the covariance struture is arguably the most
powerful and important single feature of mixed models, and what
sets it apart from conventional linear models. This extends beyond
covariance structure to include correlation among observations.



. > ZU and matrix G
For example, frequently:
] vector u consists in k sub-vectors, that is,
w=(uf,uf)"
where u; is a vector g; X 1, thus q = iqi-

i=1
The model matrix associated to vector u is:

Z=12Zy Zy - Zil

dGeneralizing for k sub-vectors of random effects,

k
Uz
Zu=[Zy Z, - Z;]| . :zziui
i=1



In the simplest case,
[ each sub-vector of random effects, represented by u;, has the

properties:
E[ui]: 0 var|u;] = Ut%ilqi = G;,

[ vectors u; e u;, are assumed mutually independent,
covlu;,u;] =0, fori # i,
and, consequently,

k
varlul = @ G; =G,

i =1
thatis, G is the direct sum of matrices G;.
G4, 0 - 0 07
0 G, - 0 0
0O 0 - Gp1 O
o 0 - 0 G




Some other common covariance structures

= Unstructured (the most complex) 2
O1 O
2
O 93
U135 On3
O14 Oy
= Compound symmetry
0'2 —+ Jf orf Jf
2 2 2 2
01 o~ + 07 o
c:rf orf o2 + O
o o7 o

2
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= Autoregressive - 0'2 O'Qp O_Q pi} 0_‘2 103 _
0'210 O.‘.?_’ :’J'Q',O J‘zp‘z
0'2,02 O'Qp 52 O'Qp

I O'ng szz O'Q',O 0'2 ]

" Toeplitz
P o2 o, O, O
B
o, ©° o, O,
L |

c, Oy O Oy

gy O, g, ©

v'Depending on the context, there are
numerous structures for covariance matrices
G and R. Some frequently used are inspired in
time series and spatial analysis.



The linear mixed model in @&

The linear mixed model can be fitted in €& using functions Ime
(library nlme), Imer (library Ime4), varComp (library varComp).

For example:
> library(nime)

Ime(fixed, ...,random, correlation, method, contral, ....)

Ime(response~fixed effects, random="random effects...)

29



Example 1: fitting the classical random model (one random
effects factor, G=01,, R=0£1,,)

library(nlme)

There is a single fixed
effect, the intercept

Indicates that there is a single random
effect for each group and the grouping
/ is given by the variable clone

> arlmel<-Ime(rend~1, random=~1|clone, data=arinto)
> arlmel
Linear mixed-effects model fit by REML
Data: arinto
Log-restricted-likelihood: -714.2113
Fixed: rend ~ 1
(Intercept)
1.389713

Random effects:

Formula: ~1 | clone
(Intercept) Residual

StdDev: 0.3288653 0.4273398
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Example 2: fitting a classical linear mixed model (one factor of fixed
effects, one factor of random effects factor, G=01,, R=0Z1,)

library(nime)

VVVVYVYYVYVY

YV VYV

VYV VYV

Fixed random
effect  effect

> terrenolmel<-Ime(rend~variedade, random="~1|terreno, data=terrenos)
> terrenolmel
Linear mixed-effects model fit by REML
Data: terrenos
Log-restricted-likelihood: -21.71354
Fixed: rend ~ variedade
(Intercept) variedadeB variedadeC variedadeD
1.55600000 -0.02384615 -0.38907692 -0.37784615

Random effects:

Formula: ~1 | terreno
(Intercept) Residual

StdDev: 0.1604919 0.3123811

Number of Observations: 52
Number of Groups: 13
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Example 2: fitting a classical linear mixed model (one factor of fixed
effects, one factor of random effects factor, G=01,, R=0Z1,)

library(Ime4) Fixed random

\/ effect / effect

> terrenoslmerl<-lmer(rend~ variedade + (1 | terreno), data = terrenos)

terrenosimerl

Linear mixed model fit by REML ['ImerMod']

Formula: rend ~ variedade + (1 | terreno)
Data: terrenos

REML criterion at convergence: 43.4271

Random effects:

Groups Name Std.Dev.

terreno (Intercept) 0.1605

Residual 0.3124

Number of obs: 52, groups: terreno, 13

Fixed Effects:

(Intercept) variedadeB variedadeC variedadeD
1.55600 -0.02385 -0.38908 -0.37785
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Example 3: fitting a random model with

k
G= & G; ,G;=o0;l1,, R=0¢I,
i=1

Library(nime)

> arlme2<-Ime(rend™~1, random=list(clone=pdDiag(~regiao-1)), data=arinto)
> arlme?2
Linear mixed-effects model fit by REML
Data: arinto
Log-restricted-likelihood: -712.0479
Fixed: rend ~ 1
(Intercept)
1.414257

Random effects:
Formula: ~regiao - 1 | clone
Structure: Diagonal
regiaoBairrada regiaolafoes regiaoOeste regiaoVverdes Residual
StdDev: 0.3319987 0.3038772 0.4048056 0.272041 0.4273398

Number of Observations: 988
Number of Groups: 247 33



Methods for estimating
covariance parameters

34



Variance component estimation in linear mixed models mainly
use three approaches:

Q restricted (or residual) maximum likelihood (REML)

It is the method of estimation currently most used (by default, it is the
estimation method used in all packages). The restricted maximum likelihood
method in the context of linear mixed models was introduced by Patterson e
Thompson (1971).

O maximum likelihood (ML)
ML is sometimes discouraged, because the variance component estimates are
biased downward.

O procedures based on expected mean squares from the analysis of variance
(ANOVA)

It is the classical approach, well applied for simple models with balanced data

and when G and R are diagonal matrices (some examples will be studied in the

applications section).

1 patterson, H.D., Thompson, R. (1971) - Recovery of inter-block information when block sizes are
unequal. Biometrika 58:545-554.



Some considerations about REML/ML/ANOVA estimators

For unbalanced data each of ML and REML are to be preferred over
procedures based on expected mean squares from the analysis of
variance (ANOVA).

REML and ML have the same merits of being based on the
maximum likelihood principle that is known to have useful
properties of consistency and asymptotic normality of the
estimators and the asymptotic sampling dispersion matrix of the
estimators is also known.

For balanced data REML solutions are identical to ANOVA
estimators.

For complex models, ML and REML are computationally intensive.
REML and ML estimators are based on assuming normality of the
data, but in many circumstances that assumption is unlikely to be
seriously wrong. Therefore, the asymptotic variance-covariance
properties are valid only in the large-sample sense.



Some considerations about REML/ML/ANOVA estimators

ML provides estimators of fixed effects, whereas REML , of itself,
does not.

* ML variance component estimates are biased downward. REML
estimators are based on taking into account the degrees of
freedom for the fixed effects in the model (losing 1 degree of
freedom for each). For this reason, REML estimators for covariance
parameters are unbiased for balanced data. The use of REML
method instead of ML is particularly important when the rank of
matrix X is large in relation to the sample size.

 REML estimators do not seem to be as sensitive to outliers in the
data as are ML estimators.



Restricted (or residual) maximum likelihood (REML) method

General model Y = XB + Zu +e, with Y~V (XB,V),

» Estimation of the covariance parameters included in matrix V:
V(p) =2G6(W)Z" + R(¢),
V is the vector of parameters included in matrix G , ¢ is the vector

T
of parameters included in matrix R, ¢ = (vI,¢T) .

The likelihood function is

1 1
LB, @ly) = = exp (— > - xp)v-1(y- Xﬁ)) ,
(2m)Z|V|1/2

where V-1 = R™1 — R-1Z(ZTR1Z + G‘l)_lzTR‘l, V| = |RI7|I,, + R"1ZGZ"|

Thus the log-likelihood is

1 1 1 _
L(B,ply) = —Enln 2m —21H|V| —E()’ - XB)'V - (y — Xp).



The fundamental idea of REML is to maximize the likelihood after
accounting for the model’s fixed effects. Instead of maximizing the
likelihood of Y~NV,,(Xf, V), maximize the likelihood of KTY where K is

any matrix such that E[KTY] = 0 and hence KTY n IV, (0, KTVK). This
removes the fixed effects from the estimation of ¢.

Let
K'Y =K'XB + K"Zu + K'e.

KT is a matrix (n — ry) X n (where 1y is the rank of matrix X), such
that E[KTY] = 0 (that is, KT XB = 0). K is also called a matrix of

error contrasts (hence the alternative name of residual maximum
likelihood method).



The transformed model is
K'Y = K"Zu + KTe
with KTY n ;,(0, KTVK)

 The likelihood function of this model is called the restricted
likelihood function and is given by:

1 1 _
Le(ply) = — exp (—5 (KTy)" (KTVK) 1(KT:v))
(27.[)5(71—7”)() KTV K|1/2




And the REML log - likelihood is
1 1 1 1
IR (@ly) = -3 (n —1y) log 2m — > log|KTVK| — EyTK(KTVK) KTy.

Denoting
K(KTVK) 'KT =P,

1 1 1
lp = —E(n —1y) log 2m — Elog|KTVK| — EyTPy.

Note: since KT has full row rank n — ry and KT X = 0, can be shown that

K(KTVK) KT = P where P = V-1 — y-1x(XTy-1x) " xTy-1
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To maximize [ we differentiate with respect to ¢; and equate to zero
and solve the resulting equations.

dlz(ply) -

0,
Differentiate with respect to ¢;,

dlp 1 : :
= ——(tr(PV;) — y'PV,;Py),
| o, > (tr(PV) — y"PVPy)
where V; is the derivative of V with respect to @;. Equating to zero, we
obtain tr(PV;) = yTPV;Py.

Completing the maximization demands checking second derivatives
and also demands checking the likelihood function on the boundary of
the parameter space, since the maximization must be confined to the
parameter space.



REML estimation proceeds iteratively. We implement
REML using Newton-Raphson or Fisher scoring algorithms
(among others).

The Hessian and information matrices derived from
REML log-likelihood are:

Hessian (ijth element)

A% ; 1 C 1 . 1 .. D
rip) 1 tr(PV;PV;) — s tr(PV;;) + -y"PV;;Py — y"PV,PV,Py,
dp; 2 2 2
where VI is the gradient vector of Iz and V;; = aj-zav<p-'
i99j
Information matrix (ijth element):
(¢ w)—E[ ale]
e\VYir'¥j) — _
g dp;0@;

It can be proved that I, (¢;, ¢;) = %tr(PV,-PV]-).



Properties of REML estimators

The REML estimator of ¢ Is consistent and, under
regularity conditions, is asymptotic normal with vector of
mean values ¢ and asymptotic covariance matrix

[I.(p)]~1, where I, is the information matrix (expected
Information matrix):

QLN (@ [I.(0)] ).



Maximum likelihood (ML) method

The process for obtaining the ML estimators is identical, but is based on the log-
likelihood, therefore,

al
— Tv—l _XTv—IX
B X y B
oly 1 iy P
o0, = 2 r(VVi) =y =XV iy — XB) )
l

where V, is the derivative of V with respect to ;.

Equating to zero it is shown that the ML equations are:
XTv-1xp =xTv-1y

tr(V-1V;) = (y - XB)'V IV v1(y - XB)



In @ Library(lme4)

REML estimation ML estimation

> terrenosimerl<-Imer(rend~ variedade + (1 | > terrenosimerlML<-update(terrenosimerl,

terreno), data = terrenos) REML=FALSE)
> summary(terrenosimer1) > summary(terrenosimer1ML)

Linear mixed model fit by REML ['ImerMod'] Linear mixed model fit by maximum likelihood
['lmerMod']

Formula: rend ~ variedade + (1 | terreno)
Data: terrenos

Formula: rend ~ variedade + (1 | terreno)
Data: terrenos

REML criterion at convergence: 43.4 _
Scaled residuals:

Min 1Q Median 3Q Max
-1.9934 -0.7494 0.0402 0.5676 2.9383

Scaled residuals:
Min 1Q Median 3Q Max
-1.91520-0.72001 0.03862 0.54535 2.82304

Random effects:
Groups Name Variance Std.Dev.

Random effects:

Groups Name Variance Std.Dev.

terreno (Intercept) 0.02576 0.1605 terr-eno (Intercept) 0.02378 0.1542
Residual 0.09758 0.3124 Residual 0.09008 0.3001

Number of obs: 52, groups: terreno, 13 Number of obs: 52, groups: terreno, 13
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REML estimation

> terrenolmel<-Ime(rend~variedade,
random=~1|terreno, data=terrenos)
> summary(terrenolmel)
Linear mixed-effects model fit by REML
Data: terrenos
AlC BIC logLik

55.42708 66.65429 -21.71354
Random effects:

Formula: ~1 | terreno

(Intercept) Residual

StdDev: 0.1604919 0.3123811

> VarCorr(terrenolmel)

Variance StdDev
(Intercept) 0.02575765 0.1604919
Residual 0.09758196 0.3123811

Library(nime)

ML estimation

> terrenolmelML<-update(terrenolmel,

method="ML")
> summary(terrenolmelMVIL)

Linear mixed-effects model fit by maximum

likelihood
Data: terrenos

AIC BIC loglLik
43.76901 55.47647 -15.8845
Random effects:
Formula: ~1 | terreno

(Intercept) Residual

StdDev: 0.1541963 0.3001259

> VarCorr(arime2ML)

Variance StdDev
(Intercept) 0.02377651 0.1541963
Residual 0.09007553 0.3001259



In @

Fa

Estimated covariance (asymptotic) matrix for REML
estimators

var()
> vcov(terrenosvarcompl, "varComp")
terreno error
terreno 0.0004522882 -0.0001322531
error -0.0001322531 0.0005290124
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Estimating fixed effects and
predicting random effects:
the mixed model equations

* The estimators of fixed effects and predictors of random effects are obtained
through mixed model equations (Henderson, 1975%).

4Henderson, C.R. (1975) - Best linear unbiased estimation and prediction under a selection model.

Biometrics 31:423 - 447. 19



The joint density of u and Y is

fY,u) = f(Y[uw)f(uw) =
exp <— % (v —xp - zZw)™R1(Y - X — Zu) + uTG—lu)>

(Zn)(n+q)/2 |R|1/2|G|1/2

The mixed models equations are derived by maximizing [n f(¥,u) with respect to f and u:
Inf(Y,u)

1 1
= —E(n + q) log(2m) — §(1n|R| + In|G|)

1
-5 (YTR 1y — 2YTR™IXB — 2YTR " 1Zu + 2BTX"R1Zu + BTXTRIXB + uT'ZTR"1Zu

Equating to zero:

dln f(Y,u) B

ap
oln f(Y,u) B

u

0= XTRY —X"TRIXB—X"R1Zu=0

0= ZTRYY-ZTRXB-Z"TR"'Zu- G u=0.



Which results in

X"R'XB + X"R™1Zu _[X"R 1y
ZTRIXB+ (ZTR1Z+ ¢ V)u| |ZTR'y|’

and, consequently, the mixed models equations are defined as:

XTR1x XTR 1z lp] _|XTR™ 1y
Z'TRIX (Z'R'Z+G7V)|lul T |zTR1y|"

* The estimator of fixed effects (ﬁ) and the predictor of random effects (i)
are:

B = (XTv-1x)"'XTv-1y
i=GZTV (Y — XB).

Proof in next slides, additional information
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Additional information
Proof

Para chegar as solucdes das equacdes do modelo misto, podemos comecar por verificar, a partir da

N XTR1x XTR™17 Bl _ [XTR 1y

-1
u=(Z"TR1Z+6G61') ZTRY(Y - XPB),
e substituindo este resultado na primeira equacao,

XTR1XB + X"R™1Z(ZTR1Z + G‘l)_lzTR‘l(y — XB) = XTR 1y,
logo,
XTR-1Y — XTR-1XB — X"TR-1Z(ZTR"1Z + 6™1) ' ZTR-1(Y - XB) = 0.

Depois de algum rearranjo da expressao anterior, chega-se a
XT(R1-RZ(Z'TR'Z+67") " ZTR)Xp =X" (R~ R'Z(2"R'Z +



Additional information

Proof (cont.)

Voltando novamente a u, verifica-se que

i =(ZTR1Z + 6 1) ZTR-Wvv-1(vy — XB)
= (ZTR1Z + 67V) ' ZTR-1(Z6Z" + R)V-1(Y — XP)
= (ZTR1Z + 6™V) ' (2ZTR™126Z" + ZT)V-1(Y — XB)
= (ZTR1Z+ 61) ' (ZTR1Z + 6 1)6ZTV-1(Y - XP),
isto é,
u=GZ"v-i(y — XB).
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Vector B has multivariate normal distribution with vector of
: . -1
mean values B and covariance matrix (X7 V~-1x)

Bow(B(Xvx)")

Vector 1 has multivariate normal distribution with vector of
mean values zero and covariance matrix GZT PZG,

i NN(0,6GZTPZG)

Exercise: prove the previous results.
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O When matrices G e R are known, 8 is the best linear unbiased
estimator (BLUE) of 8, and u is the best linear unbiased predictor
(BLUP) of wu.

(d However, in general, matrices G e R are unknown, and only their
estimates are available, G e R. In this case, we have the empirical

best linear unbiased estimator (EBLUE) and the empirical best
linear unbiased predictor (EBLUP):

BEBLUE — (XTV_1X)_1XTv_1Y
and

Ugprup = GZTV(Y — XBrpLur) -



Example: for a random model with one factor of random effects,
balanced (factor with a levels, b observations per level), the
empirical best linear unbiased predictor of u; (for the level i) is:

EBLUP(u;) =
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Given the mixed model equations:
HE [XTR‘lX XTR-1Z ]‘1 X"R 1y
ul 1Z'R7'X Z'R7'Z+ G [ZTRYy)’

denote by C the matrix:
XTR1x XTR 17
ZTR1x ZTR 17+ 61

The elements of matrix C:
11 = (XTV-1X) 7,

C,y = —GZ'V1XCq4,
Cy2 = (ZTR1Z+ 6 1) " — € XTV~1Z6 = G — GZTPZG

Cyz = C3.

Proof in next slides
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The matrix Cis the covariance matrix of (ﬁ — B, u — u),

C— Var[ﬁ — B] cov[ﬁ — B, u — u]

B cov[fi —u, B — B] var[u — u]

var[[? — ﬁ] = var[ﬁ], is the covariance matrix of the fixed effects
estimators

var[il — u], is the prediction variance matrix of the random effects

Proof in next slides



Proof (additional information): Segundo a teoria de matrizes, a inversa da matriz ndo singular subdividida em

A A
4 = [ 11 12]
Ayr Ay

assumindo que todas as inversas necessarias existem, é

21— [ T —TA2A7; ]

-1 -1 -1 -1
—A3,A21T Ay + A33A21TA1243;
_ -1 -1
ondeT = (All — A12A22 AZI)
Aplicando ao nosso caso, chega-se a
_ -1
Ci1 = ((XTR-lx) ~(X"™R'Z)(Z"R'Z+G1) 1(ZTR‘1X))

= (XT (R-l ~RZ(ZTRZ + G™1) ' ZTR! )X)_l,

e, atendendoa que V-1 = R"1 — R"1Z(ZTR1Z + 61) 'ZTR™Y, C1; = (XTV-1x) .
Co1 = —(2"TR"1Z+ 671) ' (ZTR1X)(XTv-1x) "
= —(2"R"1Z + 671) T (ZTRvy1x)(xTv1x)
= —(2"R1Z + ¢ (ZTR W)V 1x(xTv1x) "
= —(2"R"1Z+ 6™1) ' (ZTR1(ZGZ" + R))V-IX(XTV-1X) ™"
= —(2"R"1Z+ 6™) ' (ZTR126Z" + ZTRIR)V-1X(XTV-1X)
= —(2"R1Z+ 6™) ' (ZTR126Z" + 6-16ZT)V-1X(XTV~1X) ™

= —(2ZTRZ + 6 ) (ZTR1Z + 6 V)6ZTV-IX(XTV~1X) "' = —GZ"V-1XCy,.



Proof (additional information) (cont.)

Finally,
Coo = (Z'R'Z+67) " = (—(2R1Z+ 6 (ZTRTX)(XTV X)) (FTRZ)(2TR 2+ 671)
= (ZTR1Z+671) " = Co(XTV-WR1Z)(ZTR1Z + G1)
= (ZTR'Z+61) " — Cp(X"V-1(2G6Z" + R)R'Z)(ZTRZ + 61)
= (ZTR 1z + (;-1)'1 — €1 X"V Y(Z6Z"R™*Z+ RR™1Z)(ZTR™1Z + G‘l)_l
= (ZTR'Z+ G )" — X"V (ZGZTR'Z + 266 1) (Z"R7Z + G1)
= (ZTRZ+ 6 1) " = CuX"V-1Z6(ZTR1Z + 6 V)(Z"TR"1Z + 6 1)

= (ZTR1Z+ 61) " = €;1X"V"1Z6.
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Proof (additional information)
A matriz Cq4, corresponde a matriz de covariancias dos estimadores ﬁ, ja que
Var[ﬂ — ﬁ] = Var[ﬁ].

A matriz €12, corresponde a matriz de covariancias entre os erros de estimagao e de
predigdo, uma vez que

Cov|B — B, 1 — u| = E|Bu”| — E|puT]

Mas,
Elyy'] =V +XBp'X",
= (X"v7'X) X"V 'E[yy"|PZG,
e sendo _ _
E[puT| = E|(xTv-1X) xTv-1lyyTPZG|
entao,

E[puT| = (XTv-1X) XTv-Y(v + XBBTXT)PZG

= (xTv-1x) xTPzG + (X"v-1X) XTv-1XBBTX"PZG
=0,
porque XTP = 0 (PX = V-1X — v~ 1x(XTv-1X) XTv~1Xx = 0).



Proof (additional information)
Por outro lado,

E[puT] = E[(XTV-1X) XTv-1lyuT]
= (X"v1X) X"V E[yu']

= (X"v'1X) X"v'ZG
= Cy, XTV712Z6,

consequentemente,

Cov|B — B, —u| = —C11X"V1ZG,
isto é,

Cov[ﬁ —p,u— u] = C13.
Relativamente a €55

Var[ii—u] =6 - GZ"PZG
=6-GZT(v 1 -v-1x(xTv-1x) XTv-1)zG

=6-6Z"v1z26 - 6ZTv-1x(xTv-1x) xTv-1zg,
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Proof (additional information)
mas, tendo em conta que

GZTv-ix(xTv-1x) X'v-1zG = ¢, X"Vv-1ZG,
resta provar que
G-GZ'v-1ZG6 = (ZTR1Z+6™1) .

Sabendo-se que
GZTv-1 = (ZTR-1Z+ 1) 'Z'R1,

entao
G- (Z"R1Z+671) 'ZTR1Z6 - (ZTR"'Z+G1) =
=G — (ZTR1Z+61) " (ZTR1ZG +1,)
=6-(ZTR1Z+6) (ZTRZ + 67 1)6
=6-6=0,
logo,

Var[ii—u] = (ZTR1Z + 671) " = ;1 XTV-1Z6 = C,,.
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The residuals
In the linear mixed model ,Y = X + Zu + e, with Y~N,(XB,V)

The conditional residuals that measure deviations from the conditional mean are
defined as :

e=Y—XpB - Zil.

Alternatively, it is common appear in the form:
e = RPY,
-1
with P =V-1—v-1xX(xTv-1X) "XTv-! and V- ZGZT =R.

Proof in next slide (additional information)

Vector e has multivariate normal distribution with vector of mean
values 0, 1) and covariance matrix RPR,

e ~N,(0,RPR),
with P = V=1 — v=1X(XTV-1X) " X"V~1and V — ZGZ" =R.



» Proof: e = RPY (additional information)
With the results obtained for B e %

e =Y — X(XTv-1X) "' XTV-1y — ZGZTPY
= (I, - X(X"v=1X) " X"V - Z6Z"P) Y
= (v(v-1-v-X(XTv1X) ' XTV1) - ZGZTP)Y.
Using the result P = V1 — V‘lX(XTV'lX)_lXTV_l,
é =VPY — ZGZ"PY
= (Vv -ZGZ")PY,
butV — ZGZ" = R, therefore,'®@ = RPY
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In @

1 The empirical best linear unbiased estimator (EBLUE) of fixed effects

> fixed.effects(terrenolmel)
(Intercept) variedadeB variedadeC variedadeD
1.55600000 -0.02384615 -0.38907692 -0.37784615

1 The empirical best linear unbiased predicted (EBLUP) of random effects

> ranef(terrenolmel)
(Intercept)
| 0.042982693
Il 0.123871539
lll -0.009659254
IV -0.047150592
IX -0.165530776
V 0.208483839
VI 0.056207377
VIl 0.010883945
VIl 0.023081469
X -0.211881368
Xl 0.032325909
Xl -0.122903638
XIll 0.059288857



> fitted(terrenolmel)

I 1 1 IV Vv VI VII VIl
1.5989827 1.6798715 1.5463407 1.5088494 1.7644838 1.6122074 1.5668839 1.5790815
IX X Xl Xl Xl I [ 1
1.3904692 1.3441186 1.5883259 1.4330964 1.6152889 1.5751365 1.6560254 1.5224946

> predict(terrenolmel)

I Il 1l \Y V VI VIl VI
1.5989827 1.6798715 1.5463407 1.5088494 1.7644838 1.6122074 1.5668839 1.5790815
IX X X XII XII I Il I

1.3904692 1.3441186 1.5883259 1.4330964 1.6152889 1.5751365 1.6560254 1.5224946

> resid(terrenolmel) (conditional residuals)

I Il I IV \Y VI
0.201017307 0.029128461 -0.269340746 0.166150592 0.049516161 0.283792623
Vi VI IX X XI Xl

-0.488883945 0.160918531 -0.190469224 0.155881368 0.343674091 -0.264096362



Estimated covariance (asymptotic) matrix for estimators ﬁ

var(B ) = (XT0-1x)™

> vcov(terrenolmel)

(Intercept) variedadeB variedadeC variedadeD
(Intercept) 0.009487662 -0.007506305 -0.007506305 -0.007506305
variedadeB -0.007506305 0.015012610 0.007506305 0.007506305
variedadeC -0.007506305 0.007506305 0.015012610 0.007506305
variedadeD -0.007506305 0.007506305 0.007506305 0.015012610
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Tests of Hypotheses for covariance
parameters, fixed and random effects

Model selection (model comparison

via likelihood ratio tests and via
information criteria)
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Tests of Hypotheses for covariance parameters

* Inference concerning covariance parameters of a linear mixed
model usually relies on approximate distributions for the
RE(ML) estimators derived from asymptotic results.

In the current context of mixed models, the most important
formal test for covariance components is the likelihood ratio
test (the most used is the REML likelihood ratio test ).
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Likelihood ratio tests for covariance components

* Hypotheses: Hy: ¢; = 0 (reduced model) vs Hy: @; # 0 (full model)
(Hy: 0; =0  wvs Hy: ¢; >0 , if @, isavariance component)

e The REML likelihood ratio statistic :

A= Z(IR1 — lRO)“’)(w%

being [z, the REML log-likelihood of the more general model (full model) and I the REML

log-likelihood of the reduced model (that is, the REML log-likelihood under the null
hypothesis). Under regularity conditions and under the null hypothesis, the likelihood ratio
statistic, has an approximate y2 distribution with the degrees of freedom (v) equal to the
difference in the number of parameters between the two models.

 The REML likelihood ratio test is only valid if the fixed effects are the same for both model.

* Significance level: a

* Rejection region: upper (right-hand) tail
Reject Hy if Apgqe > X2

a(v)

For ML likelihood ratio test the procedure is similar, using the log-
likelihood instead of REML log-likelihood.
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Likelihood ratio tests for covariance parameters

* The REML likelihood ratio test is implicitly two-sided, and must be adjusted
when the test involves an hypothesis with the parameter on the boundary of
the parameter space. When we test a variance component, under the null
hypothesis the parameter falls on the boundary of the parameter space.
Theoretically it can be shown that for a single variance component, the
asymptotic distribution of the REMLRT is a mixture of x? variates , where the
mixing probabilities are 0.5, one with O degrees of freedom and the other with
one degree of freedom. As a consequence we can perform the likelihood ratio
test as if the standard conditions apply, and divide the resulting p-value by two.

* The distribution of the REMLRT for the test involving more complex situations
(for example, test that k variance components are zero), involves a mixture of
x? variates from 0 to k degrees of freedom (Self and Liang, 1987; Stram and
Lee, 1994; Verbeke and Molenberghs, 2003, etc.).

In ®

Fc« the library ‘RLRsim’ is dedicated to the simulation of the empirical distribution
of the REML likelihood statistic when variance components testing is involved. The library
‘Imed’ also has this functionality.



Likelihood ratio tests for covariance parameters

* The naive approach to using a y?distribution with degrees of
freedom determined by the difference in the number of
parameters in the models is currently implemented by several
packages. However, one should be aware that the p-values
obtained may be conservative (that is, the reported p-value may
be greater than the true p-value for the test).



In @

Performing a REML likelihood ratio test for a variance component

» TerrenosH1l<-varComp(rend~variedade, random="terreno, data=terrenos)
> logLik(TerrenosH1)

'log Lik.' -202.4013 (df=2)

> TerrenosHO<-varComp(rend~variedade, data=terrenos)
> logLik(TerrenosHO)
'log Lik.' -203.6992 (df=1)

> 2*( loglLik(TerrenosH1)-logLik(TerrenosHO0))
'log Lik.' 2.595781

> 1-pchisq(2.595781,1)

[1] 0.1071486

> (1-pchisq(2.595781,1))/2
[1] 0.0535743
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Some considerations

1. For its historical importance, we will also study tests
concerning variance components in balanced designs, with G
and R diagonal matrices, derived from the usual analysis of
variance in the applications section (for example: random model
with one random effects factor; linear mixed model with one
factor of fixed effects, one factor of random effects, without
interaction and with interaction; models with several random
effects factors; analysis of split plot experiments).



2. For random or complex mixed models there are no exact
statistical tests for certain model effects (the numerator and
denominator of the F statistics are linear combinations of mean
squares). In these cases, approximate F tests are performed. One
of the classic methods most used for this approach is the
method of Satterthwaite (1941). However, other methods are
implemented in more complex mixed models frequently
reported in the literature and commonly used in several
packages, for example, the methods of Giesbrecht and Burns
(1985) and Kenward and Roger (1997 (additional information in
the applications section).



3. A note about Wald statistic

One common statistic is the Wald Z, which is computed as the parameter
estimate divided by its estimated asymptotic standard error computed
from the inverse of the second derivative matrix of the log-likelihood with
respect to covariance parameters. The Wald Z test is valid for large
samples, but it can be unreliable for small data sets and for parameters
such as variance components that are known to have a bounded sampling
distribution.

Not recommended for variance components



Tests of hypotheses for fixed
(and random effects)
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Tests of hypotheses for linear combinations of the effects of the

mixed model ( LT Lﬁl]), being L a non random vector

* Hypotheses: H,:L" [ﬁ] =0 vs. Hy:L" [ﬁ] =0

|

(LTCL)

e Test statistic: T = ~ty,, under Hy

Under the assumed normality of u and e, T has an exact t-distribution only for data
exhibiting certain types of balance and for some special unbalanced cases. In general,
it is only approximately t-distributed, and its degrees of freedom must be estimated
(for example, using Satterthwaite approximation). This not happen only for particular
cases for data exhibiting certain types of balance and for some special unbalanced
cases with the elements of the vectors u e e being i.i.d. random variables. In these
cases, v, =n —r(W), where r(W) is the rank of the matrix W which contains the
columns of matrices X and Z.

/(LTEL) is a scalar, is the standard error of the estimator of the parameter being

tested, matrix C was defined in slides 59 and 60.



Tests of hypotheses for linear combinations of the effects of the

mixed model ( LT [ﬁ]), being L a non random vector (cont.)

* Significance level: a
* Rejection region: two-tailed

Reject Hy if |Teqic] > tas, (vy)

The current procedure is mainly focused on the test of
hypotheses for the fixed effects of the model . In this

case C= (XTV‘lX)_l.
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It follows from previous slides that a confidence interval
(1—a) X 100% for LT [ﬁ] is given as:

]LT ’g] — to 20, VLTCL, LT ’g] + to 20,V LTEL[
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Tests of hypotheses for linear combinations of the effects of the

mixed model ( LT Lﬁl]), when L is a matrix (rank of L greater than 1)

* Hypotheses: H,:LT [ﬁ] =0 vs. Hj:notall LT [ﬁ] =0

—~ -1 —~
o [ e wf]
rank(L)

e Test statistic :

F in general has an approximate F-distribution, with v; = rank(L)
and v, must be estimated (for example, using Satterthwaite
approximation). This not happen only for particular cases for data
exhibiting certain types of balance and for some special unbalanced
cases with the elements of the vectors u e e being i.i.d. random
variables. In these cases, v, = n —r(W), where r(W) is the rank of
the matrix W which contains the columns of matrices X and Z.



Tests of hypotheses for linear combinations of the effects of the
mixed model ( LT Lﬁl]), when L is a matrix (rank of L greater than 1)
(cont.)

* Significance level : a

* Rejection region: upper (right-hand) tail

Reject Hy if Feqic > faw,v,)
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No @

> summary(arime2)
Linear mixed-effects model fit by REML
Data: arinto
AIC  BIC loglLik
1152.537 1181.887 -570.2686

Random effects:

Formula: ~1 | clone
(Intercept) Residual

StdDev: 0.3512633 0.3488315

Fixed effects: rend ~ bloco

Value Std.Error DF t-value p-value
(Intercept) 1.3938704 0.03149894 738 44.25134 0.0000
blocoB3 -0.3075385 0.03138934 738 -9.79754 0.0000
blocoB4 -0.0085951 0.03138934 738 -0.27382 0.7843
blocoB5 0.2995020 0.03138934 738 9.54152 0.0000

> anova(arime2)

numDF denDF F-value p-value
(Intercept) 1 738 3101.4982 <.0001
bloco 3 738 124.6915 <.0001



> intervals(arime2)
Approximate 95% confidence intervals

Fixed effects:
lower est. upper

(Intercept) 1.33203224 1.393870445 1.4557087
blocoB3 -0.36916150-0.307538462 -0.2459154
blocoB4 -0.07021818 -0.008595142 0.0530279
blocoB5 0.23787898 0.299502024 0.3611251
attr(,"label")

[1] "Fixed effects:"

Random Effects:
Level: clone
lower est. upper
sd((Intercept)) 0.3144 0.3512633 0.3924488



Model selection

= Model comparison via likelihood ratio tests

« REML and ML likelihood ratio tests can be used to compare
nested models. One model is said to be nested within another
model if it represents a special case of the other model.

« The REML likelihood ratio tests should only be used for models
with same fixed-effects specification.

(procedure already described in slide 71)



Model selection

Model comparison via information criteria

Information criteria provide an alternative to formal testing. The
two most widely used information criteria are the AIC (Akaike
Information criterion) and BIC (Bayesian information criterion).
There are others, for example: sample corrected version of AIC,
AICC; Information criterion of Hannan-Quinn, HQIC,; etc..

Both the AIC and BIC contain two terms that measure the fit of
the model and the complexity of the model.

With REML, AIC and BIC criteria can only be used for
comparing models with same fixed-effects specification (with
equal Xp)

They can be used to compare nested models and non-nested
models



Akaike information criterion (AICy) is defined as:
AICR — —ZlR + anar ,

[g is the REML log-likelihood of the model and n,,, is the number
of covariance parameters in the model.

= AIC is calculated for each model. The model with the smallest
value is chosen as the preferred model.

= Penalizes model complexity (models with a higher number of
parameters).

Note: For ML estimation method, REML log-likelihood is replaced
by log-likelihood and n,,, is the number of parameters in the
model (thus, includes fixed effects).



Bayesian information criterion (BICy) is defined as,

BICgr = =2l + nygrln(n —1y),
[g is the REML log-likelihood of the model and n,,, is the number of
covariance parameters in the model, n is the number of observations
and ry is the rank of matrix X.

= BICis calculated for each model. The model with the smallest

value is chosen as the preferred model.
= Penalizes model complexity (models with a higher number of

parameters).
= The number of observations is also taken into account.

Note: For ML estimation method, the REML log-likelihood is
replaced by log-likelihood, n,,, is the number of parameters in
the model (thus, includes fixed effects) and In(n — ry) is replaced
by In(n).



In @@

>siria.Imel<-Ime(rend~subpop+bloco, data=siria, random=list(clone=pdident(~subpop-1)))
> summary(siria.Imel)
Linear mixed-effects model fit by REML
Data: siria
AIC BIC logLik
2163.291 2207.831 -1072.646
Random effects:
Formula: ~subpop - 1 | clone
Structure: Multiple of an Identity
subpopALE subpopALG subpopPINHEL Residual
StdDev: 0.4550345 0.4550345 0.4550345 0.5784932

> siria.Ime2<-Ime(rend~subpop+bloco, data=siria, random=list(clone=pdDiag(~subpop-1)))
> summary(siria.Ime2)
Linear mixed-effects model fit by REML
Data: siria
AIC  BIC loglik
2153.235 2207.673 -1065.618
Random effects:
Formula: ~subpop - 1 | clone
Structure: Diagonal
subpopALE subpopALG subpopPINHEL Residual
StdDev: 0.245502 0.4622154 0.5355529 0.5784956

> anova(siria.Imel,siria.lIme2)
Model df AIC BIC loglik  Test L.Ratio p-value
siria.lmel 1 9 2163.291 2207.831 -1072.646

siria.lme2 211 2153.235 2207.673 -1065.618 1 vs 2 14.05585 9e-04 -



Validation of the model assumptions

M As in classical linear model, validation of model assumptions is made essentially
using graphic tools.

M One key assumption is the normality. Now it is necessary to validate this
hypothesis in the residuals (by tools already mentioned in the linear model) and
in the predictors of random effects (using the same diagnostic tools).

O In the classical linear mixed model, the homogeneity of variances is validated
using diagnostic plots. In certain contexts, when this assumption fails, the usual
technique is to fit a new linear mixed model that assumes heterogeneous
variances. Both models are compared using a formal test (Likelihood ratio test) or
by AIC and BIC criteria.

M In the classical linear mixed model, the classical assumption of independence can
also be validated by graphic tools. In certain contexts, the semivariogram of the
residuals (a tool of spatial analysis) is used for validation of this assumption.
When this assumption fails, the usual technique is to fit a new linear mixed
model with covariance matrices which include correlation among observations.



In @@

> oats.Imel<-Ime(yield~Variety, data=oats,random="1| Blocks)
> plot(oats.Imel)
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>qqnorm(oats.Imel, ~resid(.)) >qqnorm(oats.Imel, ~ranef(.))
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Random effects

O Cook's Distance can be studied using package “influence. ME” (requires to fit
the model with the function Imer of the package Ime4).



