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Case 3

Linear mixed models for analysis of split plot experiments
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• Main treatments (levels of factor A) are assigned at random within blocks, each treatment once 

per block; they are divided further into additional independent units (subplots) to which another 

set of treatments (levels of factor B) are randomly assigned. 

• The number of blocks is the number of replications.

•Any main treatment can be adjacent to any other treatment, but not to the same treatment 

within the block. 

BLOCK I

BLOCK II

BLOCK III

BLOCK IV

Example:

Different colors represent different main treatments (levels of factor A) ; each row represents 

a block. There are 4 blocks (I-IV) each of 4 main treatments (colors) divided into 4 additional 

independent units (subplots) to which another set of treatments (levels of factor B, symbols) 

are randomly assigned. 

The split-plot design on a RCB 
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Considering two factors with fixed effects (factors A and B) and random blocks. The model can

be described as:

𝑌𝑖𝑗𝑘 = 𝜇11 + 𝛼𝑖 + 𝑢𝑗 + 𝛼𝑢 𝑖𝑗 + 𝛽𝑘 + 𝛼𝛽 𝑖𝑘 + 𝛽𝑢 𝑘𝑗 +𝑒𝑖𝑗𝑘

with 𝑖 = 1,… , 𝑎, 𝑗 = 1,… , 𝑏, 𝑘 = 1,… , 𝑐, 𝑛 = 𝑎𝑏𝑐,

and 𝛼1= 0 , 𝛽1 = 0 , 𝛼𝛽 1𝑘 = 0, ∀𝑘 , 𝛼𝛽 𝑖1 = 0, ∀𝑖.

Where:

𝑌𝑖𝑗𝑘, is the observation from ith level of factor 𝐴 (whole-plot 𝑖), block 𝑗, and 𝑘th level of factor 𝐵

(sub-plot or split-plot k);

𝜇11, is the general mean (population) in the level 1 of factor 𝐴 with level 1 of factor 𝐵;

𝛼𝑖, is the effect of the level 𝑖 of the factor 𝐴 (increase), assigned to whole-plot (fixed);

𝑢𝑗, is the effect of block 𝑗 (random);

𝛼𝑢 𝑖𝑗, is the interaction effect of the ith level of factor 𝐴 with block 𝑗, named as whole-plot

error (random);

𝛽𝑘, is the effect of the level k of the factor B (increase), assigned to sub-plot (fixed);

𝛼𝛽 𝑖𝑘, is the interaction effect of the 𝑖𝑡ℎ level of factor 𝐴 with the k𝑡ℎ level of factor 𝐵
(increase) (fixed);

𝛽𝑢 𝑘𝑗, is the interaction effect of the kth level of factor 𝐵 with block 𝑗 (random);

𝑒𝑖𝑗𝑘, is the random error associated to the observation 𝑌𝑖𝑗𝑘.
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In the common approach, the effect 𝛽𝑢 𝑗𝑘 is set to zero (thus, 𝛽𝑢 𝑗𝑘 is

incorporated in 𝑒𝑖𝑗𝑘). The random error includes 𝛽𝑢 𝑗𝑘 and 𝛼𝛽𝑢 𝑖𝑗𝑘 , and is

called as within plot error.

Therefore, the common assumptions are:

𝑢𝑗, 𝑖. 𝑖. 𝑑. , 𝒩 0, 𝜎2
𝑢 , ∀𝑗; 𝛼𝑢 𝑖𝑗 , 𝑖. 𝑖. 𝑑. ,𝒩 0, 𝜎2

𝛼𝑢 , ∀𝑖j; 

𝑒𝑖𝑗𝑘 , 𝑖. 𝑖. 𝑑. ,𝒩 0, 𝜎2
𝑒 , ∀𝑖𝑗𝑘; 𝐶𝑜𝑣 𝑢𝑗 , 𝛼𝑢 𝑖𝑗 = 0; 𝐶𝑜𝑣 𝑢𝑗 , 𝑒𝑖𝑗𝑘 = 0; 

𝐶𝑜𝑣 𝛼𝑢 𝑖𝑗 , 𝑒𝑖𝑗𝑘 = 0.
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G.L. S.Q. QM E[QM] F

Factor A 𝑎 − 1 𝑆𝑄𝐴 𝑄𝑀𝐴 c𝜎𝛼𝑢
2 + 𝜎𝑒

2 + 𝑏𝑐
 𝑖=1

𝑎 𝛼𝑖 −  𝛼.
2

𝑎 − 1

𝑄𝑀𝐴

QMWError

Block 𝑏 − 1 SQBL QMBL 𝑎𝑐𝜎𝑢
2 c𝜎𝛼𝑢

2 + 𝜎𝑒
2

Interaction

FactorA×Block

(Whole-plot error)

(𝑎 − 1)(𝑏 − 1) SQWError QMWError c𝜎𝛼𝑢
2 + 𝜎𝑒

2

Factor B 𝑐 − 1 𝑆𝑄𝐵 𝑄𝑀𝐵 𝜎𝑒
2 + 𝑎𝑏

 𝑘=1
𝑐 𝛽𝑘 −  𝛽.

2

𝑐 − 1

𝑄𝑀𝐵

𝑄𝑀𝑅𝐸

Interaction

FactorA×FactorB
(𝑎 − 1)(𝑐 − 1) 𝑆𝑄𝐴𝐵 𝑄𝑀𝐴𝐵 𝜎𝑒

2 + 𝑏
 𝑖=1

𝑎  𝑘=1
𝑐 𝛼𝛽𝑖𝑘 − 𝛼𝛽..

2

𝑎 − 1 𝑐 − 1

𝑄𝑀𝐴𝐵

𝑄𝑀𝑅𝐸

Residuals

(Within plot error)
𝑎(𝑏 − 1)(𝑐 − 1) 𝑆𝑄𝑅𝐸 𝑄𝑀𝑅𝐸 𝜎𝑒

2

ANOVA TABLE, considering a balance design:
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Exercise 6

In package “nlme” do R, there is a data set named as “Alfalfa”.

> head(Alfalfa)

Grouped Data: Yield ~ Date | Block/Variety

Variety Date Block Yield

1 Ladak None 1 2.17

2 Ladak S1 1 1.58

3 Ladak S20 1 2.29

4 Ladak O7 1 2.23

5 Ladak None 2 1.88

6 Ladak S1 2 1.26

…
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Exercise 6

These data are described in Snedecor & Cochran (1980) as an example of a split-

plot design (Pinheiro and Bates, 2000). The objective is to study if the yield

(T/acre) of alfalfa (Medicago sativa) is afected by variety and date of third

cutting. Therefore, there are two factors: variety of alfalfa, with 3 levels (Cossac,

Ladak e Ranger) and date of third cutting, with 4 levels (none–sem corte, S1–

Sep1; S20 – Sep20; and O7 – Oct7). The treatment structure used in the

experiment was a 3×4 full factorial. The experimental units were arranged into 6

blocks, each block was divided into 3 plots (whole plots; whole plot, largest

experimental unit), where the varieties of alfalfa were randomly assigned; and

each whole plot was divided into four subplots (split plots), where the dates of

third cutting were randomly assigned.

a) Describe the appropriate model for this study.
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b) Plot the data using plot.design (Alfalfa) and interaction.plot (Date, Variety,

Yield). Comment.

Exercise 6 (cont.)
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c) Fit the model described in item a) in R using lmer of package

“lme4”.

d) Carry out the hypothesis tests that answer the objectives of the

study.

e) Compare the previous results with those obtained with the

command

“aov(Yield~Date*Variety+Error(Block*Variety), data=Alfalfa)”.

Exercise 6 (cont.)



Some considerations
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(1) Factors A and B with random effects;

(2) Factor A with fixed effects and factor B with random effects.
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(1) ANOVA table: factors A and B with random effects, balanced:

G.L. QM E[QM] F

Factor A 𝑎 − 1 𝑄𝑀𝐴 𝑏𝑐𝜎𝛼
2 + c𝜎𝛼𝑢

2 + 𝑏𝜎𝛼𝛽
2 + 𝜎𝑒

2 𝑄𝑀𝐴+𝑄𝑀𝑅𝐸

QMWError+𝑄𝑀𝐴𝐵
*

Block 𝑏 − 1 𝑄𝑀𝐵𝐿 𝑎𝑐𝜎𝑢
2 c𝜎𝛼𝑢

2 + 𝜎𝑒
2

Interaction

FactorA×Block

(Whole-plot error)

(𝑎 − 1)(𝑏 − 1) 𝑄𝑀𝑊𝐸𝑟𝑟𝑜𝑟 c𝜎𝛼𝑢
2 + 𝜎𝑒

2

Factor B 𝑐 − 1 𝑄𝑀𝐵 𝑎𝑏𝜎𝛽
2 + 𝑏𝜎𝛼𝛽

2 + 𝜎𝑒
2 𝑄𝑀𝐵

𝑄𝑀𝐴𝐵
Interaction

FactorA×FactorB
(𝑎 − 1)(𝑐 − 1) 𝑄𝑀𝐴𝐵 𝑏𝜎𝛼𝛽

2 + 𝜎𝑒
2 𝑄𝑀𝐴𝐵

𝑄𝑀𝑅𝐸

Residuals 𝑎(𝑏 − 1)(𝑐 − 1) 𝑄𝑀𝑅𝐸 𝜎𝑒
2

*Approximate degrees of freedom. For example, Satterthwaite method:

𝜈1 =
𝑄𝑀𝐴+𝑄𝑀𝑅𝐸 2

𝑄𝑀𝐴 2

𝑎−1
+

𝑄𝑀𝑅𝐸 2

𝑎(𝑏−1)(𝑐−1)

, 𝜈2 =
QMWError+𝑄𝑀𝐴𝐵 2

QMWError 2

(𝑎−1)(𝑏−1)
+

𝑄𝑀𝐴𝐵 2

(𝑎−1)(𝑐−1)
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(2) ANOVA table: factor A with fixed effects and factor B with random effects, balanced:

G.L. QM E[QM] F

Factor A 𝑎 − 1 𝑄𝑀𝐴 c𝜎𝛼𝑢
2 + 𝑏

𝑎

𝑎 − 1
𝜎𝛼𝛽

2 + 𝜎𝑒
2 + 𝑏𝑐

 𝑖=1
𝑎 𝛼𝑖 −  𝛼.

2

𝑎 − 1

𝑄𝑀𝐴+𝑄𝑀𝑅𝐸

QMWError+𝑄𝑀𝐴𝐵
*

Block 𝑏 − 1 QMBL 𝑎𝑐𝜎𝑢
2 c𝜎𝛼𝑢

2 + 𝜎𝑒
2

Interaction

FactorA×Block

(Whole-plot error)

(𝑎 − 1)(𝑏 − 1) QMWError c𝜎𝛼𝑢
2 + 𝜎𝑒

2

Factor B 𝑐 − 1 𝑄𝑀𝐵 𝑎𝑏𝜎𝛽
2 + 𝜎𝑒

2 𝑄𝑀𝐵

𝑄𝑀𝑅𝐸
Interaction

FactorA×FactorB
(𝑎 − 1)(𝑐 − 1) 𝑄𝑀𝐴𝐵 𝑏

𝑎

𝑎 − 1
𝜎𝛼𝛽

2 + 𝜎𝑒

2 𝑄𝑀𝐴𝐵

𝑄𝑀𝑅𝐸

Residuals 𝑎(𝑏 − 1)(𝑐 − 1) 𝑄𝑀𝑅𝐸 𝜎𝑒
2

*Approximate degrees of freedom. For example, Satterthwaite method:

𝜈1 =
𝑄𝑀𝐴+𝑄𝑀𝑅𝐸 2

𝑄𝑀𝐴 2

𝑎−1
+

𝑄𝑀𝑅𝐸 2

𝑎(𝑏−1)(𝑐−1)

, 𝜈2 =
QMWError+𝑄𝑀𝐴𝐵 2

QMWError 2

(𝑎−1)(𝑏−1)
+

𝑄𝑀𝐴𝐵 2

(𝑎−1)(𝑐−1)



Case 4

The following is an example of the application of linear

mixed models with categorical and numerical predictor

variables (covariance analysis) and in which the

observations are made in the same individual over time*
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* The correlation matrices used for this type of analysis are used in time series and spatial

statistics. For its understanding would be necessary theoretical bases on time series and

spatial statistics, which is not part of this UC. Therefore, we will only exemplify its

application, so that it is recorded that these instruments are currently widely used in mixed

models context.



Data set BodyWeight (Pinheiro e Bates, 2000) is available in R, and

is related to the body weights of rats measured over 64 days. The

body weights of the rats (in grams) are measured on day 1 and

every seven days thereafter until day 24, with an extra measurement

on day 44. There are 3 groups of rats, each on a different diet.

> head(BodyWeight)
Grouped Data: weight ~ Time | Rat
weight Time Rat Diet

1    240    1   1    1
2    250    8   1    1
3    255   15   1    1
4    260   22   1    1

Exercise 8



Time (days)

B
od

y 
w

ei
gh

t (
g)

300

400

500

600

0 40

2

0 40

3

0 40

4

0 40

1

0 40

8

0 40

5

0 40

6

0 40

7

0 40

11

0 40

9

0 40

10

0 40

12

0 40

13

0 40

15

0 40

14

0 40

16

a) Plot the data using plot(BodyWeight) and comment.

It can be observed:

- differences among the three diet groups;

- there is evidence of a rat in diet group 2 with an unusually high initial body weight;

- the body weights appear to grow linearly with time, possibly with different intercepts 

and slopes for each diet.

Diet 1 Diet 2 Diet 3



b) In R use lme of package “nlme4” to fit the appropriate model for this study

(consider intercept and slope random effects to account for rat-to-rat variation). Use

the commands summary, anova, ranef and fitted. Explain how each fitted value is

obtained.

c) The observations are made in the same individual over time. In this context it can

be model the dependence among the within-group errors. The observations are not

equally spaced in time, as an extra observation is taken at 44 days. In this case, we

can use a spatial correlation structure for random errors. Several correlation structures

are available in package nlme, for example, corEXp, corGaus, corSpher. Use the

commands:

bodyw2.lme<-update(bodyw1.lme, corr=corExp(form=~Time))

bodyw3.lme<-update(bodyw1.lme, corr=corGaus(form=~Time))

bodyw4.lme<-update(bodyw1.lme, corr=corSpher(form=~Time)).

According to AIC and BIC criteria, what is the best correlation structure?

d) The model selected in item c) is significantly better than the model fitted in item b? 


