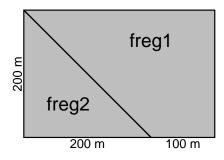

1. Considere o seguinte diagrama de operações num SIG que usa um sistema de coordenadas cartográfico em metros



em que parcelas é um conjunto de dados geográficos vectorial (cdg) com três features e com um atributo cultura cujo valor para cada feature é indicado sobre a figura. freguesias é um cdg com duas features e um atributo nome cujo valor para cada feature é indicado sobre a figura. Os dois cdg têm a mesma extensão e o mesmo sistema de coordenadas.

cdg parcelas e valores do atributo cultura

cdg freguesias e valores do atributo nome

- (a) Represente os objectos geométricos e a tabela de atributos de C.
- (b) Represente os objectos geométricos e a tabela de atributos de D.
- 2. Os subsídios agrícolas da UE aplicam-se a superfícies agrícolas e a gado. Considere um cdg de polígonos em que cada feature representa o conjunto das parcelas elegíveis de uma exploração agrícola. Para simplificar, suponha que cada exploração apenas tem um tipo de ocupação agrícola elegível e um tipo de gado tal como exemplificado na tabela abaixo

ID	gadoTipo	N	supTipo
001134	BOV	35	1
312441	OVI	58	2
210012	OVI	82	1
561174	CAP	20	1
	•••		

onde ID é a identificação da exploração, gadoTipo é o tipo de gado, N é o número de cabeças de gado desse tipo na exploração e supTipo é o tipo de subsídio de superfície. Os domínios desses atributos são: ID[inteiro; 6], tipoGado[texto; 3], N[inteiro; 6], e supTipo[inteiro; 2].

Para fazer a gestão dos subsídios é necessário incluir igualmente no SIG informação sobre o subsídio por cabeça de gado (em euros) para cada tipo de gado, o subsídio de superfícies (em euros/ha) de cada tipo, o número de identificação fiscal (9 dígitos) e o nome do proprietário da exploração. Pretende-se igualmente registar o código e designação da entidade (a direcção regional) que é responsável pelo fiscalização da exploração. O mesmo proprietário pode possuir várias explorações e uma entidade fiscaliza várias explorações. Descreva as tabelas de dados geográficos e de dados não geográficos que devem ser incluídas no SIG: cada tabela deve ser descrita pelo seu esquema da forma NomeTabela(atributo1,atributo2,...), as chave primárias devem ser indicadas por um sublinhado a cheio e as chaves estrangeiras por um sublinhado a tracejado. Deve-se também sugerir um domínio para cada atributo para além dos indicados acima. A base de dados deve estar normalizada para evitar redundâncias.

- 3. Suponha que um SIG tem o seguintes cdg:
 - (a) Um cdg do tipo "polígono" com os limites de povoações, código, nome e número de habitantes: povoacoes(codPov,nomePov, numHab);
 - (b) Um cdg do tipo "ponto" com a localização de árvores notáveis, o seu código e a espécie: notaveis(ID, especie);

(c) Um cdg do tipo "linha" com a localização, código e nome de rios: rios(codigo, nomeRio).

Para cada uma das questões abaixo, apresente um diagrama de operações que mostre como se obtém a respectiva resposta. O diagrama de operações deve indicar os nomes dos conjuntos de dados, o seu tipo e os seus atributos atributos, e também nomes, parâmetros e prioridade (quando se aplique) das operações. As operações que pode usar são selecção, geração de buffers, e intersecção.

- (a) Identificar as povoações com menos de 10000 habitantes que contém pelo menos uma árvore notável.
- (b) Associar a cada árvore notável o nome da povoação a que pertence, caso pertença a alguma (i.e. a tabela de atributos do resultado deverá ter as colunas ID e nomePov;
- (c) Determinar as árvores notáveis que se situam a menos de 100 m de um rio.
- 4. Considere o seguinte modelo digital de elevação \mathbf{MDE} com uma resolução de 80 metros e os conjuntos de dados geográficos matriciais \mathbf{Sx} e \mathbf{Sy} com, respectivamente, os declives derivados de \mathbf{MDE} na direcção dos x e dos y.


	1		MDE (r	esolucad	=80m)			
412	418	418	402	385	390	403	400	386
378	387	382	364	347	355	367	360	352
341	354	344	320	303	314	326	317	311
306	319	307	279	259	270	283	274	267
274	282	269	241	217	227	239	228	223
	+	Sx	(declive	na direc	cao dos	x)	 	+
	0.03	-0.15	-0.23	-0.06	0.13	0.04	-0.1	
	0.02	-0.2	-0.26	-0.05	0.14	0.02	-0.1	
	0	-0.24	-0.3	-0.06	0.15	0.02	-0.1	
·		Sy	(declive	na direc	cao dos	y)		
	0.43	0.46	0.5	0.5	0.49	0.49	0.5	
	0.44	0.47	0.52	0.54	0.53	0.53	0.53	
	0.45	0.47	0.5	0.53	0.54	0.55	0.55	

- (a) Mostre que o declive estimado na direcção dos y é 0.54 no pixel cinzento como indicado.
- (b) Determine o valor estimado do declive do terreno na direcção de maior declive no pixel cinzento.
- (c) Determine a orientação da encosta nesse mesmo pixel cinzento (azimute em graus e octante).
- (d) Escreva uma expressão usando operações aritméticas e lógicas para identificar os pixels que satisfazem **pelo menos uma** das seguintes duas condições:
 - i. declive ao longo dos x estritamente positivo e elevação superior a 300 m;
 - ii. declive ao longo dos y estritamente superior a 0.5.

Os pixels identificados acima deverão ter valor 1, tendo os restantes valor 0 (use a convenção segundo a qual o valor lógico **verdade** é 1 e o valor **falso** é 0).

- (e) Represente, numa nova grelha, o resultado da operação acima.
- (f) Pretende-se definir um cdg **hipsometria** do tipo "polígono" em que cada *feature* corresponde a uma região com uma gama de altitudes numa das seguintes três classes: até 300 m, de 300 m a 400 m, mais de 400 m. Apresente um diagrama de operações cujo *input* seja o cdg matricial **MDE** e cujo *output* seja o cdg **hipsometria**. Indique as operações, os seus parâmetros, os atributos, e os domínios para os cgd que constam do diagrama.

5. Considere os conjuntos de dados do tipo "raster" seguintes extraídos de uma mesma imagem. Indique, justificando, o histograma correcto para cada um. Note que o eixo dos x indica valores crescentes dos pixels, e o eixo dos y indica frequências. Em cada histograma as linhas verticais representam, da esquerda para a direita, sinal da superfície de 0%, 10%, 20%, e assim sucessivamente.

- 6. O satélite Sentinel 2-A da ESA foi lançado no final de 2015. A seu bordo transporta o sensor MSI cujas bandas 2, 3 , 4 e 8, com resolução espacial de 10 m e uma largura de imagem (GFOV) de 290 km, estão associadas respectivamente às regiões espectrais do "azul", "verde", "vermelho" e "infravermelho próximo". A resolução temporal deste sensor é de 10 dias sobre o Equador.
 - (a) Qual é o significado de "resolução espacial"?
 - (b) Qual é o significado de "resolução temporal'? Sobre Portugal essa resolução será inferior ou superior a 10 dias? Justifique.
 - (c) Considere dois pixels A e B de uma imagem para os quais os valores de reflectância nessas quatro bandas

	bandas	2	3	4	8
são	A	0.05	0.15	0.1	0.45
	В	0.1	0.18	0.30	0.48

- i. Associe, justificando, cada um desses pixels a um dos seguintes tipos de ocupação do solo: (1) água profunda; (2) eucaliptal denso; (3) pastagem pobre no final do verão; (4) terraço de cimento.
- ii. Determine o índice de vegetação NDVI para cada um dos pixels e comente;
- iii. Numa composição colorida RGB=843 qual dos pixels terá uma cor mais avermelhada? justifique.