INSTITUTO SUPERIOR DE AGRONOMIA

Exame de Álgebra Linear (2ª Chamada) 27 de Janeiro de 2015 - Duração: 2 h

$$[3v] \qquad \textbf{1. Considere } A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ -\alpha & 0 & 0 \\ 2 & 3 & \alpha \end{array} \right] \in b = \left[\begin{array}{c} 4 \\ \beta \\ 2 \end{array} \right], \ \alpha,\beta \in \mathbb{R}.$$

- a) Discuta o sistema Ax = b em função de $\alpha, \beta \in \mathbb{R}$.
- b) Para $\alpha = 2$ calcule A^{-1} .

[3v] **2.** Sejam
$$u = (1, 1, 2), v = (2, -1, 1)$$
 e $w = (-1, 2, 1)$.

- a) Calcule o ângulo entre $u \in v$.
- b) Determine um vetor unitário ortogonal a $u \in v$.
- c) Mostre que $\langle u, v \rangle = \langle v, w \rangle$.

[7.5v] **3.** Considere
$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
 e $b = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$.

- a) Indique uma base e a dimensão de C(A).
- b) Defina e interprete geometricamente $\mathcal{C}^{\perp}(A)$.
- c) Calcule a projeção de b sobre $\mathcal{C}^{\perp}(A)$.
- d) Determine a distância de b a C(A).
- e) Calcule a matriz de projeção sobre C(A).
- f) Determine os valores próprios de A e indique as respectivas multiplicidades algébricas.
- g) Indique dois vetores próprios de A linearmente independentes.
- [2.5v] 4. Seja uma matriz quadrada de ordem n tal que $A^2 = A$ e sejam x_1 e x_2 duas soluções do sistema Ax = b.
 - a) Mostre que 0 e 1 são os únicos valores próprios possíveis de A.
 - b) Mostre que $x_1 Ax_2$ é solução do sistema homogéneo Ax = 0.
 - [4v] 5. Considere o seguinte problema de PL nas variáveis x_1, x_2, x_3 ,

- a) Escreva o problema na forma standard.
- b) Mostre que (1,0,3) é um vértice da região admissível do problema.
- c) Suponha que a restrição $x_1 + x_2 + x_3 \le 4$ é substituída por $x_1 + x_2 + x_3 = 4$. Será que (1,0,3) é uma solução ótima do problema? Justifique.