INSTITUTO SUPERIOR DE AGRONOMIA

2ª Chamada de Álgebra Linear
31 de janeiro de 2017 - Duração: 2h

- [8v] **1.** Considere a matriz $A = \begin{bmatrix} 0 & -1 & \alpha \\ \alpha & 1 & 2\alpha \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} v_1 \mid v_2 \mid v_3 \end{bmatrix}$ e $b = \begin{bmatrix} 1 \\ 0 \\ \beta \end{bmatrix}$, com $\alpha, \beta \in \mathbb{R}$.
 - a) Discuta o sistema Ax = b para todos os valores de α e β . No que segue considere $\alpha = 2$.
 - b) Indique para que valores de β o vetor $b \in \mathcal{C}(A)$ e escreva-o como combinção linear de v_1, v_2 e v_3 .
 - c) Calcule $v_1 \times v_2$.
 - d) Indique uma base ortogonal de \mathbb{R}^3 que contenha uma base de $\mathcal{C}(A)$.
 - e) Calcule os valores próprios de A.
 - f) Mostre que (0,2,1) é vetor próprio de A.
- [8v] **2.** Considere $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ e $b = (-2, 2, -1, 3) \in \mathbb{R}^4$.
 - a) Calcule o ângulo entre u_1 e u_2 .
 - b) Defina $\mathcal{C}(A)$ analiticamente.
 - c) Indique uma base e a dimensão de C(A).
 - d) Determine um vetor unitário ortogonal a C(A).
 - e) Calcule $\operatorname{proj}_{\mathcal{C}(A)}(b)$.
 - f) Indique, justificando, um vetor de $c \in \mathbb{R}^4$ tal que $\operatorname{proj}_{\mathcal{C}(A)}(c) = \operatorname{proj}_{\mathcal{C}(A)}(b)$ e cuja distância a $\mathcal{C}(A)$ seja 1.
 - g) Determine um vetor não nulo de C(A) ortogonal a b.
- [4v] **3.** A totalidade dos resíduos produzidos por duas cidades, A e B, são enviados para duas incineradoras, E e F. As quantidades de resíduos produzidos e as distâncias entre as cidades e as incineradoras estão na tabela seguinte:

	Quantidade de resíduos	Distância às incineradoras (km)	
Cidade	$(\mathrm{t/dia})$	E	F
A	500	30	20
В	400	36	42

Transportar uma tonelada de resíduos custa 2€/km. As capacidades das incineradoras e os custos de incineração estão na tabela seguinte:

	Capacidade	Custo de incineração
Incineradora	$(\mathrm{t/dia})$	(€/t)
E	500	40
F	600	30

Pretende-se determinar o plano diário de transporte dos resíduos, das cidades para as incineradoras, que minimize o custo total com o transporte e a incineração.

- a) Formule o problema em programação linear, atribuíndo significado às variáveis.
- b) Escreva o problema na forma standard, atribuíndo significado às variáveis de folga.
- c) Considere a opção de as incineradoras E e F receberem 400t e 500t de resíduos por dia, respetivamente. Indique, justificando, um plano de transporte admissível que satisfaz esta opção e não corresponde a um vértice da região admissível.