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Classification 

Multispectral classification may be performed using a variety of methods, 

including:

• algorithms based on parametric and nonparametric statistics that use  

ratio- and interval-scaled data and nonmetric methods that can also 

incorporate nominal scale data;

• the use of supervised or unsupervised classification logic;,

• the use of hard or soft (fuzzy) set classification logic to create hard or 

fuzzy thematic output products; 

• the use of per-pixel or object-oriented classification logic, and

• hybrid approaches. 

Jensen, 2005



Classification 

Parametric methods such as maximum likelihood classification and 

unsupervised clustering assume normally distributed remote sensor data and 

knowledge about the forms of the underlying class density functions.

Nonparametric methods such as nearest-neighbor classifiers, fuzzy 

classifiers, and neural networks may be applied to remote sensor data that 

are not normally distributed and without the assumption that the forms of 

the underlying densities are known.

Nonmetric methods such as rule-based decision tree classifiers can operate 

on both real-valued data (e.g., reflectance values from 0 to 100%) and 

nominal scaled data (e.g., class 1 = forest; class 2 = agriculture).

Jensen, 2005



Supervised Classification 

In a supervised classification, the identity and location of some of the land-

cover types (e.g., urban, agriculture, or wetland) are known a priori through

a combination of fieldwork, interpretation of aerial photography, map

analysis, and personal experience. The analyst attempts to locate specific

sites in the remotely sensed data that represent homogeneous examples of

these known land-cover types. These areas are commonly referred to as

training sites because the spectral characteristics of these known areas are

used to train the classification algorithm for eventual land-cover mapping of

the remainder of the image. Multivariate statistical parameters (means,

standard deviations, covariance matrices, correlation matrices, etc.) are

calculated for each training site. Every pixel both within and outside the

training sites is then evaluated and assigned to the class of which it has the

highest likelihood of being a member.

Jensen, 2005



Unsupervised Classification 

In an unsupervised classification, the identities of land-cover

types to be specified as classes within a scene are not generally

known a priori because ground reference information is

lacking or surface features within the scene are not well

defined. The computer is required to group pixels with similar

spectral characteristics into unique clusters according to some

statistically determined criteria. The analyst then re-labels and

combines the spectral clusters into information classes.

Jensen, 2005



Hard vs. Fuzzy Classification 

Supervised and unsupervised classification algorithms typically use hard

classification logic to produce a classification map that consists of hard,

discrete categories (e.g., forest, agriculture).

Conversely, it is also possible to use fuzzy set classification logic, which

takes into account the heterogeneous and imprecise nature of the real world.

Jensen, 2005



Per-pixel vs. Object-oriented Classification 

In the past, most digital image classification was based on processing the

entire scene pixel by pixel. This is commonly referred to as per-pixel

classification.

Object-oriented classification techniques allow the analyst to decompose

the scene into many relatively homogenous image objects (referred to as

patches or segments) using a multi-resolution image segmentation process.

The various statistical characteristics of these homogeneous image objects

in the scene are then subjected to traditional statistical or fuzzy logic

classification. Object-oriented classification based on image segmentation is

often used for the analysis of high-spatial-resolution imagery (e.g., 1  1 m

Space Imaging IKONOS and 0.61  0.61 m Digital Globe QuickBird).

Jensen, 2005



Be Careful 

No pattern classification method is inherently superior to any

other. The nature of the classification problem, the biophysical

characteristics of the study area, the distribution of the

remotely sensed data (e.g., normally distributed), and a priori

knowledge determine which classification algorithm will yield

useful results. Duda et al. (2001) provide sound advice: “We

should have a healthy skepticism regarding studies that

purport to demonstrate the overall superiority of a particular

learning or recognition algorithm.”

Jensen, 2005
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Land-use and Land-cover Classification Schemes

Land cover refers to the type of material present on the landscape (e.g., 

water, sand, crops, forest, wetland, human-made materials such as asphalt).

Land use refers to what people do on the land surface (e.g., agriculture, 

commerce, settlement). 

The pace, magnitude, and scale of human alterations of the Earth’s land 

surface are unprecedented in human history. Therefore, land-cover and 

land-use data are central to such United Nations’ Agenda 21 issues as 

combating deforestation, managing sustainable settlement growth, and 

protecting the quality and supply of water resources. 

Jensen, 2005



Land-use and Land-cover Classification Schemes

All classes of interest must be selected and defined carefully 

to classify remotely sensed data successfully into land-use 

and/or land-cover information. This requires the use of a 

classification scheme containing taxonomically correct 

definitions of classes of information that are organized 

according to logical criteria. If a hard classification is to be 

performed, then the classes in the classification system should 

normally be: 

• mutually exclusive,

• exhaustive, and 

• hierarchical. Jensen, 2005



Land-use and Land-cover Classification Schemes

* Mutually exclusive means that there is no taxonomic overlap

(or fuzziness) of any classes (i.e., deciduous forest and

evergreen forest are distinct classes).

* Exhaustive means that all land-cover classes present in the

landscape are accounted for and none have been omitted.

* Hierarchical means that sublevel classes (e.g., single-family

residential, multiple-family residential) may be hierarchically

combined into a higher- level category (e.g., residential) that

makes sense. This allows simplified thematic maps to be

produced when required.

Jensen, 2005



Land-use and Land-cover Classification Schemes

It is also important for the analyst to realize that there is a 

fundamental difference between information classes and 

spectral classes. 

* Information classes are those that human beings define. 

* Spectral classes are those that are inherent in the remote 

sensor data and must be identified and then labeled by the 

analyst. 

Jensen, 2005



Land-use and Land-cover Classification Schemes

Certain hard classification schemes can readily incorporate land-use and/or land-

cover data obtained by interpreting remotely sensed data, including the: 

• American Planning Association Land-Based Classification System which is

oriented toward detailed land-use classification;

• United States Geological Survey Land-Use/Land-Cover Classification System for 

Use with Remote Sensor Data and its adaptation for the U.S. National Land Cover 

Dataset and the NOAA Coastal Change Analysis Program (C-CAP);

• U.S. Department of the Interior Fish & Wildlife Service Classification of Wetlands 

and Deepwater Habitats of the United States; 

• U.S. National Vegetation and Classification System;

• International Geosphere-Biosphere Program IGBP Land Cover Classification 

System modified for the creation of MODIS land-cover products



The Land-Based 

Classification System

(LBCS) contains detailed 

definitions of urban/ 

suburban land use. The 

system incorporates 

information derived in situ

and using remote sensing 

techniques. This is an 

oblique aerial photograph of 

a mall in Ontario, CA. 

Hypothetical activity and 

structure codes associated 

with this large parcel are 

identified. Site development 

and ownership information 

attribute tables are not shown 

(courtesy American Planning 

Association).

Jensen, 2005



The U.S. Geological Survey’s Land-Use/Land-Cover Classification

System for Use with Remote Sensor Data is a resource-oriented land-

cover classification system in contrast with people or activity land-

use classification systems such as the APA’s Land-Based

Classification System. The USGS rationale is that “although there is

an obvious need for an urban-oriented land-use classification

system, there is also a need for a resource-oriented classification

system whose primary emphasis would be the remaining 95 percent

of the United States land area.” The USGS system addresses this

need with 8 of the 9 Level I categories that treat land area that is not

in urban or built-up categories. The system is designed to be driven

primarily by the interpretation of remote sensor data obtained at

various scales and resolutions and not data collected in situ.

U.S. Geological Survey’s Land-Use/Land-Cover 

Classification System for Use with Remote Sensor Data

Jensen, 2005



Four Levels of the U.S. Geological Survey 

Land-Use/Land-Cover Classification 

System for Use with Remote Sensor Data

and the type of remotely sensed data 

typically used to provide the information.

Jensen, 2005



Four Levels of the U.S. Geological Survey 

Land-Use/Land-Cover Classification System 

for Use with Remote Sensor Data and the 

type of remotely sensed data typically used 

to provide the information.

Jensen, 2005



U.S. Department of the Interior Fish & Wildlife Service Classification of Wetlands 

and Deepwater Habitats of the United States

Jensen, 2005



U.S. Department of the Interior Fish & Wildlife Service Classification of Wetlands and 

Deepwater Habitats of the United States

Jensen, 2005

The U.S. Department of the Interior Fish & Wildlife Service is responsible for mapping 

and inventorying wetland in the United States. Therefore, they developed a wetland 

classification system that incorporates information extracted from remote sensor data 

and in situ measurement (Cowardin et al., 1979). 

The Cowardin system describes ecological taxa, arranges them in a system useful to 

resource managers, and provides uniformity of concepts and terms. Wetlands are 

classified based on plant characteristics, soils, and frequency of flooding. Ecologically 

related areas of deep water, traditionally not considered wetlands, are included in the 

classification as deep-water habitats. Five systems form the highest level of the 

classification hierarchy: marine, estuarine, riverine, lacustrine, and palustrine. Marine 

and estuarine systems each have two subsystems: subtidal and intertidal. The riverine 

system has four subsystems: tidal, lower perennial, upper perennial, and intermittent. 

The lacustrine has two, littoral and limnetic, and the palustrine has no subsystem. 

Within the subsystems, classes are based on substrate material and flooding regime or 

on vegetative life form. The same classes may appear under one or more of the systems 

or subsystems. 



U.S. Department of the Interior Fish & Wildlife Service Classification of Wetlands and 

Deepwater Habitats of the United States

Jensen, 2005

The Cowardin system was adopted as the National Vegetation Classification Standard 

for wetlands mapping and inventory by the Wetlands Subcommittee of the Federal 

Geographic Data Committee (FGDC, 1996). The Cowardin wetland classification 

system is the most practical scheme to use if you are going to extract wetland 

information from remotely sensed data and share the information with others interested 

in wetland-related problems.



U.S. Department of the Interior Fish & Wildlife Service Classification of Wetlands and 

Deepwater Habitats of the United States

Jensen, 2005



U.S. National Vegetation Classification System

Jensen, 2005

The Vegetation Subcommittee of the Federal Geographic 

Data Committee has endorsed the National Vegetation 

Classification System (NVCS) which produces uniform 

vegetation resource data at the national level. The NVCS 

uses a systematic approach to classifying a continuum of 

natural, existing vegetation. The combined physiognomic-

floristic hierarchy uses both qualitative and quantitative 

data appropriate for conservation and mapping at various 

scales. Physiognomic characteristics include the more 

general and less precise levels of taxonomy, whereas the 

floristic characteristics are found in the more specific 

levels of taxonomy.



U.S. National Vegetation Classification System

Jensen, 2005

The Vegetation Subcommittee of the Federal 

Geographic Data Committee has endorsed 

the National Vegetation Classification 

System (NVCS) which produces uniform 

vegetation resource data at the national level. 

The NVCS uses a systematic approach to 

classifying a continuum of natural, existing 

vegetation. The combined physiognomic-

floristic hierarchy uses both qualitative and 

quantitative data appropriate for 

conservation and mapping at various scales. 

Physiognomic characteristics include the 

more general and less precise levels of 

taxonomy, whereas the floristic 

characteristics are found in the more specific 

levels of taxonomy.



International Geosphere-Biosphere Program IGBP Land-Cover Classification 

System Modified for the Creation of MODIS Land-Cover Products

Jensen, 2005

If a scientist is interested in inventorying land cover at the regional, national, and global scale, 

then the modified International Geosphere-Biosphere Program Land-Cover Classification 

System may be appropriate. For example, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) of NASA’s Earth Observing System (EOS) is providing global 

land-surface information at spatial resolutions of 250 to 1,000 m. There are approximately 44 

standard MODIS-derived data products that scientists are using to study global change. The 

MODIS Land Science Team is producing a global land-cover change product at 1-km (0.6 

mile) resolution to depict broad-scale land-cover changes. 

The land-cover type and land-cover change parameters are produced at 1-km resolution on a 

quarterly basis. The land-cover parameter identifies 17 categories of land-cover following the 

IGBP global vegetation database which defines nine classes of natural vegetation, three 

classes of developed lands, two classes of mosaic lands, and three classes of nonvegetated 

lands (snow/ice, bare soil/rocks, water). The first global land-cover map based on MODIS 

data was distributed in August, 2002. 



Observations about Classification Schemes

Jensen, 2005

Geographical information (including remote sensor data) is often imprecise. For

example, there is usually a gradual transition at the interface of forests and

rangeland, yet many of the aforementioned classification schemes insist on a hard

boundary between the classes at this transition zone. The schemes should contain

fuzzy definitions because the thematic information they contain is fuzzy. Fuzzy

classification schemes are not currently standardized. They are typically developed

by individual researchers for site-specific projects. The fuzzy classification systems

developed may not be transferable to other environments. Therefore, we tend to see

the use of existing hard classification schemes, which are rigid, based on a priori

knowledge, and generally difficult to use. They continue to be widely employed

because they are scientifically based and different individuals using the same

classification system can compare results



Observations about Classification Schemes

Jensen, 2005

If a reputable classification system already exists, it is 

foolish to develop an entirely new system that will probably 

be used only by ourselves. It is better to adopt or modify 

existing nationally or internationally recognized 

classification systems. This allows us to interpret the 

significance of our classification results in light of other 

studies and makes it easier to share data.



Observations about Classification Schemes

Jensen, 2005

There is a relationship between the level of detail in a

classification scheme and the spatial resolution of remote

sensor systems used to provide information. Welch (1982)

summarizes this relationship for mapping urban/suburban

land use and land cover This suggests that the level of detail

in the desired classification system dictates the spatial

resolution of the remote sensor data that should be used. Of

course, the spectral resolution of the remote sensing system

is also an important consideration, especially when

inventorying vegetation, water, ice, snow, soil, and rock.



Nominal spatial resolution 

requirements as a function of 

the mapping requirements for 

Levels I to IV land-cover 

classes in the United States 

(based on Anderson et al., 

1976). Note the dramatic 

increase in spatial resolution 

required to map Level II classes.

Jensen, 2005



Relationship between the level of 

detail required and the spatial 

resolution of representative 

remote sensing systems for 

vegetation inventories. 

Jensen, 2005



Training Site Selection and Statistics Extraction

Jensen, 2005

An analyst may select training sites within the image that are representative of the land-

cover or land-use classes of interest after the classification scheme is adopted. The 

training data should be of value if the environment from which they were obtained is 

relatively homogeneous. For example, if all the soils in a grassland region are composed 

of well-drained sandy-loam soil, then it is likely that grassland training data collected 

throughout the region would be representative. However, if the soil conditions change 

across the study area (e.g., one-half of the region has a perched water table with moist 

near-surface soil), it is likely that grassland training data acquired in the dry-soil part of 

the study area will not be representative of the spectral conditions for grassland found in 

the moist-soil portion of the study area. This is called a geographic signature extension

problem, meaning that it may not be possible to extend the grassland remote sensing 

training data through x, y space. 



Training Site Selection and Statistics Extraction

Jensen, 2005

The easiest way to remedy this situation is to apply geographical stratification during

the early stages of a project. At this time all significant environmental factors that

contribute to geographic signature extension problems should be identified, such as

differences in soil type, water turbidity, crop species (e.g., two strains of wheat),

unusual soil moisture conditions possibly caused by a thunderstorm that did not

uniformly deposit its precipitation, scattered patches of atmospheric haze, and so on.

Such environmental conditions should be carefully annotated on the imagery and the

selection of training sites made based on the geographic stratification of these data. In

such cases, it may be necessary to train the classifier over relatively short geographic

distances. Each individual stratum may have to be classified separately. The final

classification map of the entire region will then be a composite of the individual stratum

classifications. However, if environmental conditions are homogeneous or can be held

constant (e.g., through band ratioing or atmospheric correction), it may be possible to

extend signatures vast distances in space, significantly reducing the training cost and

effort. Additional research is required before the concept of geographic and temporal

(through time) signature extension is fully understood.



Training Site Selection and Statistics Extraction

Jensen, 2005

Once spatial and temporal signature extension factors have been considered, the analyst

selects representative training sites for each class and collects the spectral statistics for

each pixel found within each training site.

Each site is usually composed of many pixels. The general rule is that if training data

are being extracted from n bands then >10n pixels of training data are collected for each

class. This is sufficient to compute the variance–covariance matrices required by some

classification algorithms.



Training Site Selection and Statistics Extraction

Jensen, 2005

There are a number of ways to collect the training site data, including:

• collection of in situ information such as tree type, height, percent canopy closure, 

and diameter-at-breast-height (dbh) measurements, 

• on-screen selection of polygonal training data, and/or 

• on-screen seeding of training data.



Training Site Selection and Statistics Extraction

Jensen, 2005

The analyst may view the image on the color CRT screen and select polygonal areas of

interest (AOI) (e.g., a stand of oak forest). Most image processing systems use a “rubber

band” tool that allows the analyst to identify detailed AOIs. Conversely, the analyst may

seed a specific location in the image space using the cursor. The seed program begins at

a single x, y location and evaluates neighboring pixel values in all bands of interest.

Using criteria specified by the analyst, the seed algorithm expands outward like an

amoeba as long as it finds pixels with spectral characteristics similar to the original seed

pixel. This is a very effective way of collecting homogeneous training information.



Band Ratioing
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where BVi,j,k is the brightness value for the i,jth pixel in band k.

Training Site Selection and Statistics Extraction

Each pixel in each training site associated with a particular class (c)

is represented by a measurement vector, Xc:

Jensen, 2005



Band Ratioing
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where ck represents the mean value of the data obtained for

class c in band k.

Training Site Selection and Statistics Extraction

The brightness values for each pixel in each band in each training

class can then be analyzed statistically to yield a mean

measurement vector, Mc, for each class:

Jensen, 2005



Band Ratioing
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where Covckl is the covariance of class c between bands k through l.

For brevity, the notation for the covariance matrix for class c (i.e.,

Vckl) will be shortened to just Vc. The same will be true for the

covariance matrix of class d (i.e., Vdkl = Vd).

Training Site Selection and Statistics Extraction

The raw measurement vector can also be analyzed to yield the

covariance matrix for each class c:

Jensen, 2005



Selecting the Optimum Bands for Image Classification: 

Feature Selection

Once the training statistics have been systematically collected from each

band for each class of interest, a judgment must be made to determine the

bands (channels) that are most effective in discriminating each class from

all others. This process is commonly called feature selection. The goal is to

delete from the analysis the bands that provide redundant spectral

information. In this way the dimensionality (i.e., the number of bands to be

processed) in the dataset may be reduced. This minimizes the cost of the

digital image classification process (but should not affect the accuracy).

Feature selection may involve both statistical and graphical analysis to

determine the degree of between-class separability in the remote sensor

training data. Using statistical methods, combinations of bands are normally

ranked according to their potential ability to discriminate each class from all

others using n bands at a time.

Jensen, 2005



Bar graph spectral plots of 

data. Training statistics 

(the mean ±1s) for six 

land-cover classes are 

displayed for three 

Landsat MSS bands. The 

simple display can be 

used to identify between-

class separability for each 

class and single band. 

Jensen, 2005



a) Cospectral mean vector 

plots of 49 clusters extracted 

from Charleston Landsat 

TM data bands 3 and 4. b) 

The logic for increasing 

numeral size and thickness 

along the z-axis. c) The 

introduction of band 2 

information scaled 

according to size and 

thickness along the z-axis.

Jensen, 2005



Two-dimensional feature space 

plots of four pairs of Landsat 

TM data of Charleston, SC. a) 

TM bands 1 and 3, b) TM 

bands 2 and 4, c) TM bands 3 

and 4, and d) TM bands 4 and 

5. The brighter a particular 

pixel is in the display, the more 

pixels within the scene having 

that unique combination of 

band values. 

Jensen, 2005



Plot of the Charleston, SC, 

Landsat TM training statistics 

for five classes measured in 

bands 4 and 5 displayed as 

cospectral parallelepipeds. The 

upper and lower limit of each 

parallelepiped is ±1s. The 

parallelepipeds are 

superimposed on a feature 

space plot of bands 4 and 5.

Jensen, 2005



Simple parallelepiped displayed in 

pseudo three-dimensional space. 

Each of the eight corners represents a 

unique x, y, z coordinate 

corresponding to a lower or upper 

threshold value of the training data. 

For example, the original coordinates 

of point 4 are associated with 1) the 

upper threshold value of band 4, 2) 

the lower threshold value of band 5, 

and 3) the lower threshold value of 

band 7. The rotation matrix 

transformations cause the original 

coordinates to be rotated about the y-

axis some q radians, and the x axis 

some f radians. 

Jensen, 2005



Three-dimensional parallelepipeds of five 

Charleston, SC, training classes derived 

from Landsat TM data. Only bands 4, 5, 

and 7 are used in this investigation. The 

data are rotated about the y-axis, 0°, 45°, 

90°. At 0° and 90° [parts (a) and (c), 

respectively]. We are actually looking at 

only two bands, analogous to the two-

dimensional parallelepiped boxes shown 

previously. The third band lies 

perpendicular to the page we are viewing. 

Between such extremes, it is possible to 

obtain optimum viewing angles for visual 

analysis of training class statistics using 

three bands at once. Part (b) displays the 

five classes at a rotation of 45°, revealing 

that the classes are separable using this 

three-band combination. It probably is not 

necessary to use all three bands since 

bands 4 and 5 alone will discriminate 

satisfactorily between the five classes, as 

shown in part (a). There would be a 

substantial amount of overlap between 

classes if bands 5 and 7 were used. 
Jensen, 2005



Statistical Measures of Feature Selection

Statistical methods of feature selection are used to quantitatively select which subset of 

bands (also referred to as features) provides the greatest degree of statistical separability 

between any two classes c and d. The basic problem of spectral pattern recognition is 

that given a spectral distribution of data in n bands of remotely sensed data, we must 

find a discrimination technique that will allow separation of the major land-cover 

categories with a minimum of error and a minimum number of bands. This problem is 

demonstrated diagrammatically using just one band and two classes. Generally, the 

more bands we analyze in a classification, the greater the cost and perhaps the greater 

the amount of redundant spectral information being used. When there is overlap, any 

decision rule that one could use to separate or distinguish between two classes must be 

concerned with two types of error. 

• A pixel may be assigned to a class to which it does not belong 

(an error of commission).

• A pixel is not assigned to its appropriate class (an error of omission).

Jensen, 2005



Divergence was one of the first measures of statistical separability used in the machine

processing of remote sensor data, and it is still widely used as a method of feature

selection. It addresses the basic problem of deciding what is the best q-band subset of n

bands for use in the supervised classification process. The number of combinations c of

n bands taken q at a time is:

Thus, if there are six TM bands and we are interested in the three best bands to use in

the classification of the Charleston scene, this results in 20 combinations that must be

evaluated:
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Divergence is computed using the mean and covariance matrices of the class statistics

collected in the training phase of the supervised classification. We will initiate the

discussion by concerning ourselves with the statistical separability between just two

classes, c and d. The degree of divergence or separability between c and d, Divercd, is

computed according to the formula:

where tr [ ] is the trace of a matrix (i.e., the sum of the diagonal elements), Vc and Vd are

the covariance matrices for the two classes under investigation, c and d, and Mc and Md

are the mean vectors for classes c and d (Konecny, 2003).
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But what about the case where there are more than two classes? In this instance, the

most common solution is to compute the average divergence, Diveravg. This involves

computing the average over all possible pairs of classes c and d, while holding the

subset of bands q constant. Then, another subset of bands q is selected for the m classes

and analyzed. The subset of features (bands) having the maximum average divergence

may be the superior set of bands to use in the classification algorithm. This can be

expressed:

Using this, the band subset q with the highest average divergence would be selected as

the most appropriate set of bands for classifying the m classes.
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The Bhattacharyya distance assumes that the two classes c and d are Gaussian and that

the means Mc and Md and covariance matrices Vc and Vd are available. It is computed

(Duda et al., 2001):

To select the best q features (i.e., combination of bands) from the original n bands in an

m-class problem, the Bhattacharyya distance is calculated between each m(m – 1)/2 pair

of classes for each possible way of choosing q features from n dimensions. The best q

features are those dimensions whose sum of the Bhattacharyya distance between the

m(m – 1)/2 classes is highest.

Statistical Measures of Feature Selection
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Various supervised classification algorithms may be used to assign an unknown pixel to 

one of m possible classes. The choice of a particular classifier or decision rule depends 

on the nature of the input data and the desired output. Parametric classification 

algorithms assumes that the observed measurement vectors Xc obtained for each class in 

each spectral band during the training phase of the supervised classification are 

Gaussian; that is, they are normally distributed. Nonparametric classification algorithms 

make no such assumption. 

Several widely adopted nonparametric classification algorithms include:

• one-dimensional density slicing

• parallepiped,

• minimum distance, 

• nearest-neighbor, and 

• neural network and expert system analysis.

The most widely adopted parametric classification algorithms is the:

• maximum likelihood.

Select the Appropriate Classification Algorithm
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This is a widely used digital image classification decision rule based on simple Boolean

“and/or” logic. Training data in n spectral bands are used to perform the classification.

Brightness values from each pixel of the multispectral imagery are used to produce an

n-dimensional mean vector, Mc = (ck, c2, c3, …, cn) with ck being the mean value of

the training data obtained for class c in band k out of m possible classes, as previously

defined. sck is the standard deviation of the training data class c of band k out of m

possible classes. In this discussion we will evaluate all five Charleston classes using just

bands 4 and 5 of the training data.

Parallelepiped Classification Algorithm
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Using a one-standard deviation threshold (as shown in Figure 9-15), a parallelepiped 

algorithm decides BVijk is in class c if, and only if:

where 

c = 1, 2, 3, …, m, number of classes, and

k = 1, 2, 3, …, n, number of bands.

Therefore, if the low and high decision boundaries are defined as:

and

the parallelepiped algorithm becomes

Parallelepiped Classification Algorithm

ckckijkckck BV ss 

ckckckL s 

ckckckH s 

ckijkck HBVL 
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2004

Points a and b are pixels in 

the image to be classified. 

Pixel a has a brightness value 

of 40 in band 4 and 40 in 

band 5. Pixel b has a 

brightness value of 10 in band 

4 and 40 in band 5. The boxes 

represent the parallelepiped

decision rule associated with 

a ±1s classification. The 

vectors (arrows) represent the 

distance from a and b to the 

mean of all classes in a 

minimum distance to means

classification algorithm. Refer 

to Tables 9-8 and 9-9 for the 

results of classifying points a

and b using both classification 

techniques. 

Jensen, 2005
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The minimum distance to means decision rule is computationally simple and commonly

used. When used properly it can result in classification accuracy comparable to other

more computationally intensive algorithms such as the maximum likelihood algorithm.

Like the parallelepiped algorithm, it requires that the user provide the mean vectors for

each class in each band µck from the training data. To perform a minimum distance

classification, a program must calculate the distance to each mean vector µck from each

unknown pixel (BVijk). It is possible to calculate this distance using Euclidean distance

based on the Pythagorean theorem or “round the block” distance measures. In this

discussion we demonstrate the method of minimum distance classification using

Euclidean distance measurements applied to the two unknown points (a and b).

Minimum Distance to Means Classification Algorithm
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The computation of the Euclidean distance from point a (40, 40) to the mean of class 1

(36.7, 55.7) measured in bands 4 and 5 relies on the equation:

where µck and µcl represent the mean vectors for class c measured in bands k and l. In

our example this would be:

The distance from point a to the mean of class 2 in these same two bands would be:

Notice that the subscript that stands for class c is incremented from 1 to 2. By

calculating the Euclidean distance from point a to the mean of all five classes, it is

possible to determine which distance is shortest.

Minimum Distance to Means Classification Algorithm

   22

clijlckijk BVBVDist  

   2
5,15

2

4,141
  ijija BVBVDist

classto

   2
5,25

2

4,242
  ijija BVBVDist

classto
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The distance used in a 

minimum distance to means

classification algorithm can 

take two forms: the 

Euclidean distance based on 

the Pythagorean theorem and 

the “round the block” 

distance. The Euclidean 

distance is more 

computationally intensive. 

Jensen, 2005
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The aforementioned classifiers were based primarily on identifying decision 

boundaries in feature space based on training class multispectral distance

measurements. The maximum likelihood decision rule is based on probability. 

• It assigns each pixel having pattern measurements or features X to the class i

whose units are most probable or likely to have given rise to feature vector X. 

• In other words, the probability of a pixel belonging to each of a predefined set of 

m classes is calculated, and the pixel is then assigned to the class for which the 

probability is the highest. 

• The maximum likelihood decision rule is still one of the most widely used 

supervised classification algorithms.

Maximum Likelihood Classification Algorithm
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The maximum likelihood procedure assumes that the training data 

statistics for each class in each band are normally distributed

(Gaussian). Training data with bi- or n-modal histograms in a single 

band are not ideal. In such cases the individual modes probably 

represent unique classes that should be trained upon individually and 

labeled as separate training classes. This should then produce 

unimodal, Gaussian training class statistics that fulfill the normal 

distribution requirement.

Maximum Likelihood Classification Algorithm
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But how do we obtain the probability information we 

will need from the remote sensing training data we have 

collected? The answer lies first in the computation of 

probability density functions. We will demonstrate using

a single class of training data based on a single band of 

imagery. 

Maximum Likelihood Classification Algorithm
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For example, consider the hypothetical histogram (data frequency 

distribution) of forest training data obtained in band k. We could 

choose to store the values contained in this histogram in the 

computer, but a more elegant solution is to approximate the 

distribution by a normal probability density function (curve), as 

shown superimposed on the histogram.

Jensen, 2005



The estimated probability density function for class wi (e.g., forest) is computed using

the equation:

where exp [ ] is e (the base of the natural logarithms) raised to the computed power, x

is one of the brightness values on the x-axis, is the estimated mean of all the values

in the forest training class, and is the estimated variance of all the measurements in

this class. Therefore, we need to store only the mean and variance of each training

class (e.g., forest) to compute the probability function associated with any of the

individual brightness values in it.

Maximum Likelihood Classification Algorithm

 
 

 







 


2

2

2

1
ˆ

ˆ

2

1
exp

ˆ2

1
|ˆ

i

i

i

i

x
wxp

s



s

i̂
2

ˆ
is

Jensen, 2005



But what if our training data consists of multiple bands of remote sensor data for the 

classes of interest? In this case we compute an n-dimensional multivariate normal 

density function using:

where        is the determinant of the covariance matrix,         is the inverse of the 

covariance matrix, and                is the transpose of the vector              . The mean 

vectors (Mi) and covariance matrix (Vi) for each class are estimated from the training 

data. 

 TiMX 

|| iV 1

iV

 iMX 

 
 

   











ii

T

i

i

n
i MXVMX

V

wXp
1

2

1

2
2

1
exp

||2

1
|



Maximum Likelihood Classification Algorithm

Jensen, 2005



For example, consider this illustration 

where the bi-variate probability density 

functions of six hypothetical classes are 

arrayed in red and near-infrared feature 

space. It is bi-variate because two bands 

are used. Note how the probability 

density function values appear to be 

normally distributed (i.e., bell-shaped). 

The vertical axis is associated with the 

probability of an unknown pixel 

measurement vector X being a member 

of one of the classes. In other words, if 

an unknown measurement vector has 

brightness values such that it lies within 

the wetland region, it has a high 

probability of being wetland.

data. 

Maximum Likelihood 

Classification Algorithm
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If we assume that there are m classes, then p(X/wi) is the probability

density function associated with the unknown measurement vector

X, given that X is from a pattern in class wi. In this case the

maximum likelihood decision rule becomes:

Decide             if, and only if,

for all i and j out of 1, 2, ... m possible classes.

Therefore, to classify a pixel in the multispectral remote sensing

dataset with an unknown measurement vector X, a maximum

likelihood decision rule computes the product for each class and

assigns the pattern to the class having the largest product. This

assumes that we have some useful information about the prior

probabilities of each class i (i.e., p(wi)).

Maximum Likelihood Classification Algorithm

iwX 

       
jjii wpwXpwpwXp  ||
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Maximum Likelihood Classification Without Prior Probability

Information:

In practice, we rarely have prior information about whether one

class (e.g., forest) is expected to occur more frequently in a scene

than any other class (e.g., 60% of the scene should be forest). This is

called class a priori probability information (i.e., p(wi)). Therefore,

most applications of the maximum likelihood decision rule assume

that each class has an equal probability of occurring in the

landscape. This makes it possible to remove the prior probability

term (p(wi)) in Equation 9-23 and develop a simplified decision rule

that can be applied to the unknown measurement vector X for each

pixel in the scene:

Maximum Likelihood Classification Algorithm
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Maximum Likelihood Classification Without Prior Probability Information:

Decide unknown measurement vector X is in class i if, and only if,

pi > pj

for all i and j out of 1, 2, ... m possible classes

and

where Mi is the mean measurement vector for class i and Vi is the covariance matrix of

class i for bands k through l. Therefore, to assign the measurement vector X of an

unknown pixel to a class, the maximum likelihood decision rule computes the value pi

for each class. Then it assigns the pixel to the class that has the largest (or maximum)

value.

Maximum Likelihood Classification Algorithm
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Now let us consider the computations required. 

In the first pass, p1 is computed with V1 and M1

being the covariance matrix and mean vectors 

for class 1. Next, p2 is computed with V2 and 

M2 being the covariance matrix and mean 

vectors for class 2. This continues for all m

classes. The pixel or measurement vector X is 

assigned to the class that produces the largest 

or maximum pi. The measurement vector X

used in each step of the calculation consists of 

n elements (the number of bands being 

analyzed). For example, if six Landsat TM 

bands (i.e., no thermal band) were being 

analyzed, each unknown pixel would have a 

measurement vector X of: 

Maximum Likelihood Classification Algorithm
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What happens when the 

probability density 

functions of two or more 

training classes overlap 

in feature space? For 

example, consider two 

hypothetical normally 

distributed probability 

density functions 

associated with forest 

and agriculture training 

data measured in bands 1 

and 2. In this case, pixel 

X would be assigned to 

forest because the 

probability density of 

unknown measurement 

vector X is greater for 

forest than for 

agriculture.
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MODIS Land 

Cover Mapping
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