ESTATÍSTICA E DELINEAMENTO

FORMULÁRIO

Descrição	Fórmula
Covariância amostral	$cov_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) y_i$
Propriedades covariância de variáveis aleatórias	Cov[a+bX,c+dY] = bd Cov[X,Y] ; Cov[X,X] = V[X]
	$Cov[X\pm Y,Z]=Cov[X,Z]\pm Cov[Y,Z]$
Regressão Linear Simples	
Estimador do declive da recta β_1	$\hat{\beta}_1 = \frac{Cov_{xY}}{s_x^2} = \sum_{i=1}^n c_i Y_i, \text{com } c_i = \frac{x_i - \overline{x}}{(n-1) s_x^2}.$
Estimador da ordenada na origem β_0	$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} = \sum_{i=1}^n d_i Y_i, \qquad \text{com } d_i = \frac{1}{n} - \frac{(x_i - \overline{x})}{(n-1)} \frac{\overline{x}}{s_x^2}.$
Variância dos estimadores $\hat{\beta}_1$ e $\hat{\beta}_0$	$Var(\hat{\beta}_1) = \frac{\sigma^2}{(n-1) s_x^2}$, $Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{(n-1) s_x^2} \right)$.
Covariância dos estimadores $\hat{\beta}_1$ e $\hat{\beta}_0$	$Cov(\hat{eta}_0, \hat{eta}_1) = -\frac{\overline{x} \ \sigma^2}{(n-1) \ s_x^2}.$
Intervalo de predição a $(1-\alpha)\times 100\%$ para	
observação individual de Y , dado X=x:	$(b_0 + b_1 x) + t_{\frac{\alpha}{2}; n-2} \cdot \sqrt{QMRE \cdot \left[1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{(n-1) s_x^2}\right]} $
Valor do efeito alavanca	$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{(n-1)s_x^2}$
Propriedades de Matrizes	$(\mathbf{A} \pm \mathbf{B})^t = \mathbf{A}^t \pm \mathbf{B}^t (\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t (\mathbf{A}^t)^{-1} = (\mathbf{A}^{-1})^t$
Propriedades da Multinormal	Se $\vec{\mathbf{W}} \cap \mathcal{N}_n(\vec{\boldsymbol{\mu}}, \boldsymbol{\Sigma})$, $\vec{\mathbf{a}}$ vector $k \times 1$ (não aleatório)
	e \mathbf{C} matriz $k \times n$ (não aleatória, de característica k)
	então $\mathbf{C}\vec{\mathbf{W}} + \vec{\mathbf{a}} \cap \mathcal{N}_k(\mathbf{C}\vec{\boldsymbol{\mu}} + \vec{\mathbf{a}}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^t)$
Regressão Linear Múltipla	
Equação do modelo	$ec{\mathbf{Y}} = \mathbf{X} ec{oldsymbol{eta}} + ec{oldsymbol{\epsilon}}$
Vector dos estimadores dos parâmetros	$ec{\hat{oldsymbol{eta}}} = \left(\mathbf{X}^t\mathbf{X} ight)^{-1}\mathbf{X}^t\vec{\mathbf{Y}}.$
Matriz de projecção ortogonal	$\mathbf{H} = \mathbf{X} \left(\mathbf{X}^t \mathbf{X} \right)^{-1} \mathbf{X}^t.$
Vector dos valores estimados de Y	$ec{\hat{\mathbf{Y}}} = \mathbf{X} ec{\hat{oldsymbol{eta}}} = \mathbf{H} ec{\mathbf{Y}}.$
Matriz de (co-)variâncias dos estimadores $\hat{\beta}_i$	$Var(\vec{\hat{\beta}}) = \sigma^2 \cdot (\mathbf{X}^t \mathbf{X})^{-1}.$
Distribuição dos resíduos	$E_i \cap \mathcal{N}\left(0, \sigma^2 \cdot (1 - h_{ii})\right) \text{ com } h_{ii} = \mathbf{H}_{(i,i)}.$
AIC (Critério de Informação de Akaike)	$AIC = n \ln \left(\frac{SQRE_k}{n} \right) + 2(k+1).$
IC a $(1-\alpha) \times 100\%$ para combinações lineares	$\left] \vec{\mathbf{a}}^t \vec{\mathbf{b}} - t_{\frac{\alpha}{2}; n-(p+1)} \cdot \hat{\sigma}_{\vec{\mathbf{a}}^t \vec{\hat{\boldsymbol{\beta}}}} \right., \ \vec{\mathbf{a}}^t \vec{\mathbf{b}} + t_{\frac{\alpha}{2}; n-(p+1)} \cdot \hat{\sigma}_{\vec{\mathbf{a}}^t \vec{\hat{\boldsymbol{\beta}}}} \left[.\right.$
dos parâmetros: $\vec{\mathbf{a}}^t \vec{\boldsymbol{\beta}} = \sum_{i=0}^p a_i \beta_i$.	$\operatorname{com} \hat{\sigma}_{\vec{\mathbf{a}}^t \vec{\hat{\boldsymbol{\beta}}}} = \sqrt{QMRE \cdot \vec{\mathbf{a}}^t (\mathbf{X}^t \mathbf{X})^{-1} \vec{\mathbf{a}}}.$
Teste de Ajustamento Global	$F = \frac{n - (p+1)}{n} \cdot \frac{R^2}{1 - R^2}$.
Teste aos Modelos Encaixados (teste F parcial)	$F = \frac{(SQRE_s - SQRE_c)/(p-k)}{(SQRE_c)/(n-(p+1))}.$
Resíduos (internamente) estandardizados	$R_i = \frac{E_i}{\sqrt{QMRE \cdot (1 - h_{ii})}}$
Distância de Cook	$D_i = R_i^2 \cdot \left(\frac{h_{ii}}{1 - h_{ii}}\right) \cdot \frac{1}{p+1}$
\mathbb{R}^2 modificado	$R_{mod}^2 = 1 - \frac{QMRE}{QMT}$

Descrição	Fórmula
ANOVA	
<u>Um factor</u>	$ \hat{\mu}_1 = \overline{Y}_1. ; \hat{\alpha}_i = \overline{Y}_i \overline{Y}_1. ; E_{ij} = Y_{ij} - \overline{Y}_i $ $ V[\hat{\mu}_1] = \frac{\sigma^2}{n_1} ; V[\hat{\alpha}_i] = \sigma^2 \left[\frac{1}{n_1} + \frac{1}{n_i} \right] $ $ k $
	$SQF = \sum_{i=1}^{k} n_i (\overline{Y}_{i.} - \overline{Y}_{})^2$; $SQRE = \sum_{i=1}^{k} (n_i - 1) S_i^2$
Dois factores Factorial, com ou sem interacção	a
(delineamento equilibrado, n_c obs. por célula)	$SQA = b n_c \sum_{i=1}^{a} (\overline{Y}_{i\cdots} - \overline{Y}_{\cdots})^2$
(delineamento equilibrado, n_c obs. por célula)	$SQB = a n_c \sum_{j=1}^{b} (\overline{Y}_{.j.} - \overline{Y}_{})^2$
Dois factores Factorial, sem interacção	$\hat{Y}_{ijk} = \overline{Y}_{i} + \overline{Y}_{.j.} - \overline{Y}_{}$
Dois factores Factorial, com interacção	$\hat{\mu}_{11} = \overline{Y}_{11}.$; $\hat{\alpha}_i = \overline{Y}_{i1} \overline{Y}_{11}.$; $\hat{\beta}_j = \overline{Y}_{1j} \overline{Y}_{11}.$
	$(\hat{\alpha\beta})_{ij} = (\overline{Y}_{ij.} + \overline{Y}_{11.}) - (\overline{Y}_{i1.} + \overline{Y}_{1j.})$
	$\widehat{V[\hat{\alpha}_i]} = QMRE\left(\frac{1}{n_{i1}} + \frac{1}{n_{11}}\right)$
	$V[\hat{\beta}_j] = QMRE\left(\frac{1}{n_{1j}} + \frac{1}{n_{11}}\right)$
	$V[(\hat{\alpha\beta})_{ij}] = QMRE\left(\frac{1}{n_{ij}} + \frac{1}{n_{11}} + \frac{1}{n_{1j}} + \frac{1}{n_{i1}}\right)$
	$E_{ijk} = Y_{ijk} - \overline{Y}_{ij}.$
	$SQRE = \sum_{i=1}^{a} \sum_{j=1}^{b} (n_{ij} - 1) S_{ij}^{2}$
Dois factores Hierarquizados	g.l.(SQA) = a - 1
	$g.l.(SQB(A)) = \sum_{i=1}^{a} (b_i - 1)$
	$g.l.(SQRE) = n - \sum_{i=1}^{a} b_i$
	$SQRE = \sum_{i=1}^{a} \sum_{j=1}^{b_i} (n_{ij} - 1) S_{ij}^2$
(del. equilibrado, n_c obs. por célula/folha)	$SQA = n_c \sum_{i=1}^{a} b_i (\overline{Y}_{i} - \overline{Y}_{})^2$
, , , , , , , , , , , , , , , , , , , ,	i=1
Testes de Tukey	
$(n_c$ repetições em cada um de m níveis/células)	$q_{\alpha(m,\nu)} \sqrt{QMRE/n_c}$ (com $\nu = gl(SQRE)$).
Teste de Bartlett	
(m níveis/células)	$K = \frac{(n-m) \ln QMRE - \sum_{i} \left[\sum_{j} \right] (n_{i[j]} - 1) \ln S_{i[j]}^{2}}{C} \sim \chi_{m-1}^{2}$
$[\cdot]$ indica que pode ou não ser preciso	onde $C = 1 + \frac{1}{3(m-1)} \left(\sum_{i} \left[\sum_{j} \right] \frac{1}{n_{i[j]} - 1} - \frac{1}{n - m} \right)$