ESTATÍSTICA E DELINEAMENTO

FORMULÁRIO

Descrição	Fórmula
Regressão Linear Simples	
Covariância	$cov_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$
Estimador do declive da recta	$\hat{\beta}_1 = \frac{Cov_{xY}}{s_x^2} = \sum_{i=1}^n c_i Y_i, \qquad com c_i = \frac{x_i - \overline{x}}{(n-1) s_x^2}.$
Estimador da ordenada na origem	$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} = \sum_{i=1}^n d_i Y_i, \text{com } d_i = \frac{1}{n} - \frac{(x_i - \overline{x}) \overline{x}}{(n-1) s_x^2}.$
Variância do estimador do declive	$Var(\hat{\beta}_1) = \frac{\sigma^2}{(n-1)s_x^2}$.
Variância do estimador da ordenada na origem	$Var(\hat{\beta}_0) = \sigma^2 \cdot \left(\frac{1}{n} + \frac{\overline{x}^2}{(n-1)s_x^2}\right).$
Covariância entre os estimadores	$COV(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\overline{x} \sigma^2}{(n-1) s_x^2}.$
Intervalo de predição a $(1-\alpha)\times 100\%$ para	$ \left] (b_0 + b_1 x) - t_{\frac{\alpha}{2}; n-2} \cdot \sqrt{QMRE \cdot \left[1 + \frac{1}{n} + \frac{(x-\overline{x})^2}{(n-1)s_x^2}\right]} \right], $
observação individual de Y , dado X=x:	$\left[(b_0 + b_1 x) + t_{\frac{\alpha}{2}; n-2} \cdot \sqrt{QMRE \cdot \left[1 + \frac{1}{n} + \frac{(x-\overline{x})^2}{(n-1)s_x^2}\right]} \right].$
Valor do efeito alavanca	$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{(n-1)s_x^2}$
Propriedades de Matrizes	$(\mathbf{A} - \mathbf{B})^t = \mathbf{A}^t - \mathbf{B}^t (\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t (\mathbf{A}^t)^{-1} = (\mathbf{A}^{-1})^t$
Propriedades da Multinormal	Se $\mathbf{W} \cap \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, \boldsymbol{a} vector $k \times 1$ (não aleatório)
	e \mathbf{C} matriz $k \times n$ (não aleatória, de característica k)
	então $\mathbf{CW} + \boldsymbol{a} \cap \mathcal{N}_k(\mathbf{C}\boldsymbol{\mu} + \boldsymbol{a}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^t)$
Regressão Linear Múltipla	
Modelo	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$
Vector dos estimadores dos parâmetros	$\hat{oldsymbol{eta}} = \left(\mathbf{X}^t \mathbf{X}\right)^{-1} \mathbf{X}^t \mathbf{Y}.$
Matriz de projecção ortogonal	$\mathbf{H} = \mathbf{X} (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t.$
Vector dos valores estimados de Y	$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{H}\mathbf{Y}.$
Matriz de variância-covariâncias dos estimadores β_i	$Var(\hat{\boldsymbol{\beta}}) = \sigma^2 \cdot (\mathbf{X}^t \mathbf{X})^{-1}.$
Distribuição dos resíduos	$E_i \cap \mathcal{N}\left(0, \sigma^2 \cdot (1 - h_{ii})\right) \text{ com } h_{ii} = \mathbf{H}_{(i,i)}.$
AIC (Critério de Informação de Akaike)	$AIC = n \ln\left(\frac{SQRE_k}{n}\right) + 2(k+1).$
IC a $(1-\alpha) \times 100\%$ para combinações lineares	$\mathbf{a}^{t}\mathbf{b} - t_{\frac{\alpha}{2};n-(p+1)} \cdot \hat{\sigma}_{\mathbf{a}^{t}\hat{\beta}}, \ \mathbf{a}^{t}\mathbf{b} + t_{\frac{\alpha}{2};n-(p+1)} \cdot \hat{\sigma}_{\mathbf{a}^{t}\hat{\beta}}.$
dos parâmetros: $\mathbf{a}^t \boldsymbol{\beta} = \sum_{i=0}^p a_i \beta_i$.	$\operatorname{com}\hat{\sigma}_{\mathbf{a}^t\underline{\hat{\boldsymbol{\beta}}}} = \sqrt{QMRE \cdot \mathbf{a}^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{a}}.$
Teste aos Modelos Encaixados (teste F parcial)	$F = \frac{(SQRE_s - SQRE_c)/(p-k)}{(SQRE_c)/(n-(p+1))}.$
Resíduos (internamente) estandardizados	$R_i = \frac{E_i}{\sqrt{QMRE \cdot (1 - h_{ii})}}$
Distância de Cook	$D_i = R_i^2 \cdot \left(\frac{h_{ii}}{1 - h_{ii}}\right) \cdot \frac{1}{p+1}$
\mathbb{R}^2 modificado	$R_{mod}^2 = 1 - \frac{QMRE}{QMT}$

Descrição	Fórmula
ANOVA	
Modelo	Estimadores, Resíduos e SQs
<u>Um factor</u>	$\hat{\mu}_1 = \overline{Y}_1.$
	$\hat{\mu}_{1} = \overline{Y}_{1}.$ $\hat{\alpha}_{i} = \overline{Y}_{i} \overline{Y}_{1}. ; SQF = \sum_{i=1}^{k} n_{i} (\overline{Y}_{i} \overline{Y}_{.})^{2}$ $E_{ij} = Y_{ij} - \overline{Y}_{i}. ; SQRE = \sum_{i=1}^{k} (n_{i} - 1) S_{i}^{2}$
	$E_{i,i} = Y_{i,i} - \overline{Y}_{i} \qquad SORE = \sum_{k}^{k} (n_{i} - 1) S_{i}^{2}$
Dois factores, com interacção	$\hat{\mu}_{11} = \overline{Y}_{11}$
2 of according con mediation	$\hat{\alpha}_i = \overline{Y}_{i1} - \overline{Y}_{11}.$
	$\begin{vmatrix} \hat{\beta}_i &= \overline{Y}_{1i} - \overline{Y}_{11}. \end{vmatrix}$
	$\hat{\mu}_{11} = \overline{Y}_{11}.$ $\hat{\alpha}_{i} = \overline{Y}_{i1} \overline{Y}_{11}.$ $\hat{\beta}_{j} = \overline{Y}_{1j} \overline{Y}_{11}.$ $(\hat{\alpha}\hat{\beta})_{ij} = (\overline{Y}_{ij}. + \overline{Y}_{11}.) - (\overline{Y}_{i1}. + \overline{Y}_{1j}.)$
	$\hat{V}[\hat{\alpha}_i] = QMRE\left(\frac{1}{n_{i1}} + \frac{1}{n_{11}}\right)$ $\hat{V}[\hat{\beta}_j] = QMRE\left(\frac{1}{n_{1j}} + \frac{1}{n_{11}}\right)$
	$\hat{V}[\hat{\beta}_j] = QMRE\left(\frac{1}{n_{1j}} + \frac{1}{n_{11}}\right)$
	$\hat{V}[(\hat{\alpha\beta})_{ij}] = QMRE\left(\frac{1}{n_{ij}} + \frac{1}{n_{11}} + \frac{1}{n_{1j}} + \frac{1}{n_{i1}}\right)$
	_
	$\begin{bmatrix} E_{ijk} = Y_{ijk} - \overline{Y}_{ij}. \\ a & b \end{bmatrix}$
	$SQRE = \sum_{i=1}^{a} \sum_{j=1}^{b} (n_{ij} - 1) S_{ij}^{2}$
(para delineamentos equilibrados, n_c obs. por célula)	$SQA = b n_c \sum_{i=1}^{a} (\overline{Y}_{i\cdots} - \overline{Y}_{\cdots})^2$
(para delineamentos equilibrados, n_c obs. por célula)	$SQB = a n_c \sum_{i=1}^{i-1} (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot i})^2$
	j=1
Estatística de teste para μ_{ij}	$T = \frac{\overline{Y}_{ij} - \mu_{ij} _{H_0}}{T} \cap t$
	$T = \frac{Y_{ij.} - \mu_{ij} _{H_0}}{\sqrt{QMRE/n_{ij}}} \cap t_{n-ab}$
Outras fórmulas Testes de Tukey	
$(n_c \text{ repetições em cada um de } m \text{ níveis/células})$	$q_{\alpha(m,\nu)} \sqrt{QMRE/n_c} \qquad (\text{com } \nu = gl(SQRE)).$
(pooly our out and an in involoj ocialio)	$f(m,\nu)$
<u>Teste de Bartlett</u>	
	$K^{2} = \frac{(n-m) \ln QMRE - \sum_{i} \left[\sum_{j} (n_{i[j]} - 1) \ln S_{i[j]}^{2}}{C} \sim \chi_{m-1}^{2}$
(m níveis/células)	$K^2 = \frac{1}{C} \sim \chi^2_{m-1}$
$[\cdot]$ indica que pode ou não ser preciso	onde $C = 1 + \frac{1}{3(m-1)} \left(\sum_{i} \left[\sum_{j} \right] \frac{1}{n_{i[j]} - 1} - \frac{1}{n - m} \right)$