INSTITUTO SUPERIOR DE AGRONOMIA

ESTATÍSTICA E DELINEAMENTO

3 de Novembro, 2014 PRIMEIRO TESTE 2014-15

Uma resolução possível

Ι

Tem-se uma tabela de contingências de dimensão 4×2 .

1. O problema colocado corresponde a um teste de homogeneidade, em que se procura saber se as proporções de frutos defeituosos, ou com valor comercial, são iguais nas quatro variedades.

Hipóteses: Representando por π_i a probabilidade de um fruto ser defeituoso, se fôr da variedade i, e tendo em conta que os frutos apenas se classificam em duas categorias (defeituosos ou com valor comercial) podemos escrever as hipóteses de teste como

$$H_0: \pi_1 = \pi_2 = \pi_3 = \pi_4$$
 vs. $H_1: \exists i, j \in \{1, 2, 3, 4\}$ tal que $\pi_i \neq \pi_j$

Estatística do Teste:
$$X^2 = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{(O_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}} \sim \chi^2_{(a-1)(b-1)}$$
, sob H_0 ,

sendo a = 4, b = 2, O_{ij} o número de observações na célula (i, j) e \hat{E}_{ij} os valores esperados ao abrigo da hipótese de homogeneidade, estimados a partir das frequências relativas marginais de coluna. O enunciado diz que podemos admitir a validade do critério de Cochran, ou seja, a validade da distribuição assintótica acima indicada.

Nível de significância: $\alpha = P[$ Erro do tipo I] = P[Rej. $H_0 \mid H_0 \text{ verdade }] = 0.05.$

Região Crítica: (Unilateral direita) Rejeitar
$$H_0$$
 se $\chi^2_{\text{calc}} > \chi^2_{\alpha[(a-1)(b-1)]} = \chi^2_{0.05(3)} = 7.815$.

Conclusões: É dito no enunciado que $X_{calc}^2 = 66.3942$. Logo há uma clara rejeição de H_0 , i.e., conclui-se que não há homogeneidade na distribuição dos frutos de cada variedade pelas categorias "defeituoso" e "com valor comercial".

O resultado do teste não surpreende. Uma análise da tabela de valores observados indica que há duas variedades (41A, 35) em que o número de frutos defeituosos é superior, e num caso (35) muito superior, ao de frutos com valor comercial, enquanto que noutras duas variedades (40C e 15A) passa-se o contrário, com diferenças acentuadas. Assim, a hipótese de que a probabilidade dum fruto ser defeituoso fosse igual em todas as variedades dificilmente seria admissível.

2. Pede-se o valor da soma das duas parcelas associadas à variedade 35, correspondentes às células (4,1) e (4,2). Ora,

$$\hat{E}_{41} = \frac{N_{4,\times N,1}}{N} = \frac{181 \times 394}{764} = 93.34293$$

$$\hat{E}_{42} = \frac{N_{4,\times N,2}}{N} = \frac{181 \times 370}{764} = 87.65707.$$

Logo,

$$\frac{(O_{41} - \hat{E}_{41})^2}{\hat{E}_{41}} + \frac{(O_{42} - \hat{E}_{42})^2}{\hat{E}_{42}} = \frac{(135 - 93.34293)^2}{93.34293} + \frac{(46 - 87.65707)^2}{87.65707}$$
$$= 18.59071 + 19.79659 = 38.3873.$$

Assim a variedade 35 é responsável por mais de metade do valor calculado da estatística do teste, o que só por si coloca o valor da estatística muito acima do limiar da região crítica. Este valor elevado reflecte a singularidade desta variedade, que é a única em que a grande maioria dos frutos não tem valor comercial.

3. Pede-se para verificar a validade das condições de Cochran, que indicam condições suficientes de dimensão da amostra para que se possa considerar válida a distribuição assintótica da estatística do teste. Essas condições exigem que, em nenhuma das células da tabela, o valor esperado seja inferior a 1 e que não seja inferior a 5 em mais de 20% das células. Ora, tendo em conta que $\hat{E}_{ij} = \frac{N_{i.} \times N_{.j}}{N}$, o mais pequeno valor esperado estimado tem de corresponder à linha com menor dimensão de amostra $(i=1, \text{ com } N_1 = 120)$ e à coluna com menor frequência $(j=2, \text{ com } N_{.2} = 120)$ 370). Mas este menor valor esperado estimado é muito superior a 5: $\hat{E}_{12} = \frac{120 \times 370}{764} = 58.11518 \gg$ 5. Logo, a dimensão da amostra pode considerar-se suficientemente grande, permitindo usar a distribuição assintótica.

II

- 1. (a) Sabemos que numa regressão linear simples, o coeficiente de determinação é o quadrado do coeficiente de correlação amostral entre o preditor (x, no nosso caso temperatura) e a variável resposta (y, no nosso caso dias). Logo, o coeficiente de correlação amostral r_{xy} é uma das raízes quadradas do coefciente de determinação, que é indicado na listagem: $R^2 = 0.6080$. Falta saber o sinal dessa raíz. Mas o gráfico é claro em indicar que estamos perante uma relação decrescente entre x e y, pelo que tem de ter-se: $r_{xy} = -\sqrt{R^2}$ $-\sqrt{0.6080} = -0.77974$. Alternativamente, o sinal do coeficiente de correlação pode ser determinado recordando que, numa regressão linear simples, é sempre igual ao sinal do declive da recta de regressão.
 - (b) O coeficiente de determinação é $R^2 = 0.6080$. Não sendo um valor muito elevado, mesmo assim significa que esta regressão linear explica mais de 60% da variabilidade nos valores observados da variável resposta (dias). Em particular, é um modelo significativamente melhor do que o Modelo Nulo, como se pode verificar pelo teste F de ajustamento global:

Hipóteses: $H_0: \mathcal{R}^2 = 0$ vs. $H_1: \mathcal{R}^2 > 0.$ **Estatística do Teste:** $F = \frac{QMR}{QMRE} = (n-2)\frac{R^2}{1-R^2} \cap F_{(1,n-2)}, \text{ sob } H_0.$

Nível de significância: $\alpha = P[$ Erro do tipo I] = P[Rej. $H_0 \mid H_0$ verdade] = 0.05.

Região Crítica: (Unilateral direita) Rejeitar H_0 se $F_{calc} > f_{\alpha[1,54]} \approx 4.03$.

Conclusões: Tem-se $F_{calc} = 54 \times \frac{0.6080}{1-0.6080} = 83.7551 \gg 4.03$. Logo há uma clara rejeição de H_0 , i.e., a recta de regressão não é inútil para prever o número de dias entre postura e emergência, a partir da temperatura.

- (c) Os erros aleatórios do modelo são os ϵ_i cuja variância é dada por $V[\epsilon_i] = \sigma^2$ (para todo o i). Esta variância é estimada pelo Quadrado Médio Residual, cuja raíz quadrada é dada nas listagens produzidas pelo programa R, com a designação Residual standard error. Assim, $QMRE=(3.369)^2=11.35016$. Este valor tem unidades de medida. De facto, $QMRE=\frac{SQRE}{n-2}$. O denominador não tem unidades de medida, mas o numerador tem as unidades de medida do quadrado dum resíduo. Uma vez que as unidades dum resíduo são as unidades de medida da variável resposta Y, trata-se no nosso caso de $11.35016\,\mathrm{dias}^2$.
- (d) Pede-se um intervalo de predição para um valor de Y associado ao valor x=22.9. Este intervalo de predição tem extremos: $(b_0 + b_1 x) \pm t_{0.025(n-2)} \sqrt{QMRE \left[1 + \frac{1}{n} + \frac{(x-\overline{x})^2}{(n-1)s_x^2}\right]}$,

sendo conhecidos a partir do enunciado os seguintes valores: $b_0 = 91.5285$, $b_1 = -2.5284$, $\sqrt{QMRE} = 3.369$, n = 56 (porque n-2 = 54), $\overline{x} = 22.96$, $s_x^2 = 2.7046$. Pelas tabelas, tem-se $t_{0.025(54)} \approx 2.01$. Substituindo, obtém-se o intervalo:

- (e) As distâncias de Cook são uma medida da influência duma observação, ou seja, do impacto que a exclusão dessa observação teria no ajustamento da regressão. Quanto maior fôr a distância de Cook, maior a influência da observação e convenciona-se considerar o valor 0.5 como um "limiar de alarme" para observações excessivamente influentes. Sabemos (ver formulário) que a distância de Cook duma observação i é função do resíduo internamente estandardizado (R_i) e do valor do efeito alavanca (h_{ii}) dessa mesma observação. Mais concretamente, numa regressão linear simples tem-se (já que p=1): $D_i=R_i^2\left(\frac{h_{ii}}{1-h_{ii}}\right)\frac{1}{2}$. Ora os valores de R_i e h_{ii} definem os eixos vertical e horizontal, respectivamente, do gráfico do enunciado. Para a observação 37 tem-se $R_{37}\approx 2$ e $h_{37,37}\approx 0.08$. Logo $D_{37}\approx 4\times\frac{0.08}{0.92}\times 0.5=0.174$ (o verdadeiro valor é $D_{37}=0.191$). É um valor relativamente elevado, mas ainda distante do limiar 0.5.
- 2. Considera-se agora a regressão linear resultante duma dupla transformação logarítmica de x e y.
 - (a) A transformação utilizada corresponde à transformação linearizante dum modelo potência $y=c\,x^d$. De facto, logaritmizando esta equação do modelo potência obtém-se $\underbrace{\ln(y)}_*=$

 $\underbrace{\ln(c)}_{=b_0^*} + \underbrace{\frac{d}{b_1^*} \underbrace{\ln(x)}_{=x^*}}_{=x^*}.$ Assim, o declive da recta corresponde à potência $(b_1^* = d)$, enquanto que

a ordenada na origem da recta corresponde ao logaritmo natural da constante multiplicativa na equação potência ($b_0^* = \ln(c)$). A equação potência que relaciona directamente as variaveis originais é assim $y = \mathrm{e}^{b_0^*} \, x^{b_1^*}$ Logo, a equação potência ajustada no nosso caso é $y = \mathrm{e}^{8.8404} \, x^{-1.7058} = 6907.755 \, x^{-1.7058} = \frac{6907.755}{x^{1.7058}}$. O facto da potência ser negativa (isto é, do declive da recta na transformação linearizada ser negativo) indica que se trata duma relação decrescente, o que é coerente com a nuvem de pontos dada no enunciado.

(b) O enunciado pergunta se é admissível considerar que $y = \frac{\alpha}{x^2}$. Tendo em conta a resposta da alínea anterior, vemos que um tal modelo corresponde a admitir que, na transformação linearizada, o declive teórico da recta de regressão entre $\ln(y)$ e $\ln(x)$ seria $\beta_1 = -2$ (sendo $b_1^* = -1.7058$ a estimativa amostral desse valor). Eis o teste de hipóteses pedido:

Hipóteses: $H_0: \beta_1 = -2$ vs. $H_1: \beta_1 \neq -2$.

Estatística do Teste: $T = \frac{\hat{\beta}_1 - \beta_1|_{H_0}}{\hat{\sigma}_{\hat{\beta}_1}} \cap t_{n-2}$, sob H_0 .

Nível de significância: $\alpha = P[$ Erro do tipo I] = P[Rej. $H_0 \mid H_0 \text{ verdade }] = 0.05.$

Região Crítica: (Bilateral) Rejeitar H_0 se $|T_{calc}| > t_{\frac{\alpha}{2}(54)} \approx 2.01$.

Conclusões: Tem-se $T_{calc} = \frac{-1.7058 - (-2)}{0.1715} = 1.715452$. Este valor não pertence à região crítica, logo não se rejeita H_0 . Não se pode excluir a hipótese referida no enunciado.

(c) Pede-se um intervalo de predição (a 95%) para Y, dado x=22.9. Apenas sabemos determinar intervalos de predição no contexto dum modelo linear, pelo que teremos de começar por determinar um intervalo de predição para $\ln(Y)$, dado o valor $\ln(x) = \ln(22.9) = 3.1312$. Ora, a forma do intervalo de predição já foi dada em cima, tendo por extremos neste caso:

 $(b_0^* + b_1^* x^*) \pm t_{0.025(n-2)} \sqrt{QMRE \left[1 + \frac{1}{n} + \frac{(x^* - \overline{x^*})^2}{(n-1)s_{x^*}^2}\right]},$ onde x^* indica que se trata dos valores

de temperaturas logaritmizadas. Em geral, será preciso conhecer as média (\overline{x}^*) e variância $(s_{x^*}^2)$ dos valores transformados $x_i^* = \ln(x_i)$. Mas o enunciado indica um facto importante, que dispensa o conhecimento desses valores: a temperatura x=22.9 pedida tem por logaritmo a média dos logaritmos dos x_i (\overline{x}^*) . Assim, a última parcela debaixo da raíz desaparece, ficando apenas os extremos $(b_0^* + b_1^* x^*) \pm t_{0.025(n-2)} \sqrt{QMRE} \left[1 + \frac{1}{n}\right]$. O Quadrado Médio Residual referido também diz respeito aos valores transformados, mas é conhecido a partir da listagem: $\sqrt{QMRE} = 0.09072$. Por outro lado, $\sqrt{1 + \frac{1}{n}} = 1.008889$. Finalmente, $b_0^* + b_1^* x^* = 8.8404 - 1.7058 \times \ln(22.9) = 3.499307$. Logo, o intervalo de predição para $Y^* = \ln(Y)$ é] 3.315339, 3.683275 [. Tal significa que o intervalo de predição (95%) para Y tem por extremos a exponencial destes dois valores, ou seja, é] 27.532, 39.776 [. Tratase dum intervalo de predição muito semelhante ao obtido com a regressão linear original, embora este intervalo seja marginalmente mais preciso (de menor amplitude).

III

- 1. Da definição de variância duma variável aleatória X tem-se $V[X] = E[(X-E(X))^2] = E[X^2]-E^2[X]$. No nosso caso, tem-se a partir do enunciado que o valor esperado da variável aleatória E_i é zero, logo fica apenas $V[E_i] = E[E_i^2]$.
- 2. Por definição, $SQRE = \sum_{i=1}^{n} E_i^2$. Logo, e tendo também em conta a informação sobre $V[E_i]$ constante do enunciado e as propriedades do valor esperado, tem-se:

$$E[SQRE] = E\left[\sum_{i=1}^{n} E_i^2\right] = \sum_{i=1}^{n} E[E_i^2] = \sum_{i=1}^{n} V[E_i] = \sum_{i=1}^{n} \sigma^2 (1 - h_{ii}) = n \sigma^2 - \sigma^2 \sum_{i=1}^{n} h_{ii}.$$

Mas, considerando a expressão para h_{ii} , tem-se $\sum_{i=1}^{n} h_{ii} = 2$, o que completa a demonstração:

$$\sum_{i=1}^{n} h_{ii} = \sum_{i=1}^{n} \left[\frac{1}{n} + \frac{(x_i - \overline{x})^2}{(n-1) s_x^2} \right] = \mathcal{H}_{\mathcal{H}} + \frac{1}{(n-1) s_x^2} \underbrace{\sum_{i=1}^{n} (x_i - \overline{x})^2}_{=(n-1) s_x^2} = 1 + 1 = 2.$$

3. Pede-se para mostrar que $E[QMRE] = \sigma^2$. Ora, por definição, numa regressão linear simples, $QMRE = \frac{SQRE}{n-2}$. Logo, e tendo em conta a alínea anterior,

$$\mathrm{E}[QMRE] = \mathrm{E}\left[\frac{SQRE}{n-2}\right] = \frac{1}{n-2}\,\mathrm{E}[SQRE] = \frac{1}{n-2}\,(n-2)\,\sigma^2 = \sigma^2 \ .$$

4. Por definição, $E_i = Y_i - \hat{Y}_i$, o que equivale a dizer que $Y_i = E_i + \hat{Y}_i$. Logo, aplicando a propriedade relativa à variância duma soma de variáveis aleatórias, tem-se: $V[Y_i] = V[E_i] + V[\hat{Y}_i] + 2 Cov[E_i, \hat{Y}_i]$. Sabemos pelo enunciado que $V[E_i] = \sigma^2 (1 - h_{ii})$ e que $Cov[E_i, \hat{Y}_i] = 0$. Sabemos ainda que do modelo RLS decorre directamente que $V[Y_i] = \sigma^2$. Substituindo e isolando $V[\hat{Y}_i]$, vem: $V[\hat{Y}_i] = V[Y_i] - V[E_i] = \sigma^2 - \sigma^2 (1 - h_{ii}) = \sigma^2 h_{ii}$.

5. Tendo em conta a alínea anterior, apenas é necessário provar duas coisas: (i) que \hat{Y}_i tem distribuição Normal; e (ii) que $E[\hat{Y}_i] = \beta_0 + \beta_1 x_i$. Começando por esta última questão, e aproveitando os resultados anteriores, tem-se:

$$E[\hat{Y}_i] = E[Y_i - E_i] = \underbrace{E[Y_i]}_{=\beta_0 + \beta_1 x_i} - \underbrace{E[E_i]}_{=0} = \beta_0 + \beta_1 x_i$$

como se queria mostrar. Embora \hat{Y}_i seja a diferença de duas v.a.s Normais $(Y_i \in E_i)$ não é possível concluir daí que tenha distribuição Normal, uma vez que falta uma condição essencial: a independência dessas v.a. Normais (que não se verifica - recordar que no Exercício 20b) da RLS se viu que $Cov[E_i, Y_i] \neq 0$). Mas é sempre possível recorrer ao raciocínio usado nas aulas para este tipo de situações: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \, x_i = \sum_{j=1}^n \left(d_j + c_j \, x_i\right) Y_j$ é uma combinação linear das observações Y_i que, essas sim, sabemos serem v.a. Normais e independentes. Logo \hat{Y}_i tem distribuição Normal, o que completa a demonstração.