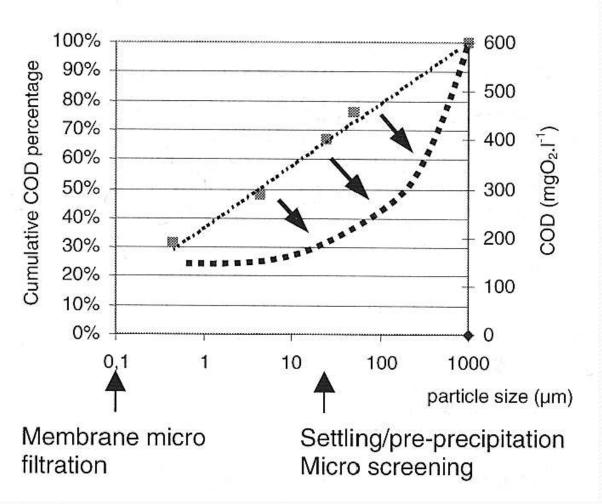
Processo de Coagulação/Floculação


O papel da coagulação/floculação na remoção de partículas

A coagulação/floculação é muito importante no processo de remoção de partículas. Quase todos os processos unitários de coagulação/floculação apresentados requerem agentes floculantes para se obter um nível elevado de remoção de partículas (i.e. 80 a 90% de remoção de SST), excepto para algumas modificações conseguidas com meios filtrantes.

Esta necessidade resulta do facto da maior parte das etapas de pré-tratamento só removerem as partículas de maiores dimensões. Os agentes floculantes têm que ser adicionados para aumentar as dimensões médias das partículas/ ou alterarem as características superficiais

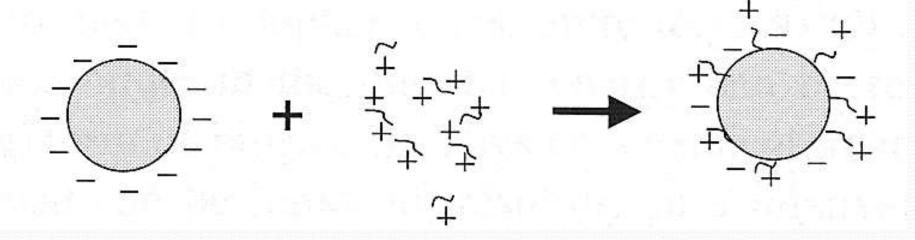
Efeito da adição de um floculante no tamanho médio das partículas



Alguns dos agentes floculantes mais importantes

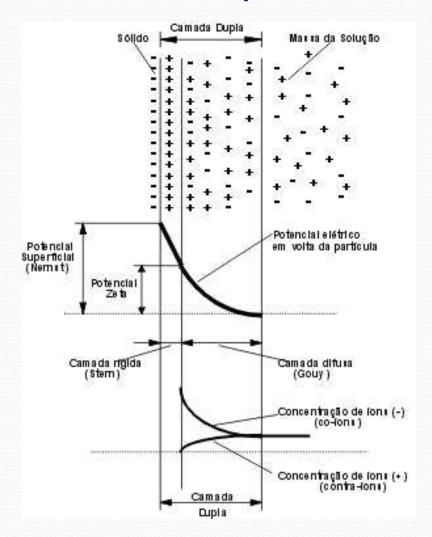
Migratura de estados de	
Metal-based flocculating agents	Organic flocculating agents
FeCl ₃ , FeSO ₄ , AlCl ₃	Polyacrylamides
	Polyamines
Polymerized aluminium chloride	Poly-DADMACs
	Quaternized starch
Burner 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Condensed tannin
	Chitosan
	Seed of the Morringa Oleifera
	PRACT 1

Aspeto do quitosano (a) e das sementes de Moringa (b). Biopolímeros




Adsorção dos polímeros ou dos iões metálicos às particulas das águas residuais

Devido à adsorção dos polímeros ou dos iões metálicos às partículas das águas residuais elas são parcialmente descarregadas



Coagulação por adsorção-e-efeito-de "ponte"

Modelo elétrico da dupla camada de Stern

Coagulação - Floculação Jar-test

O grau de mistura pode ser avaliado pelo gradiente de velocidade (G), sendo que quanto maior for o valor numérico, mais forte será a mistura.

Expressão de Camp & Stein

$$G = \left(\frac{P}{\mu V}\right)^{0.5}$$

G – gradiente de velocidade

P – potência de agitação

μ - viscosidade dinâmica da água

V – volume de água no tanque

Valores Típicos de *t* e de *G* para unidades de mistura rápida

	t (s)	$G(s^{-1})$
Misturadores on-line	0.5	3500

800

 Misturadores mecânicos 	10 a 20	1000
	20 a 30	900
	30 a 40	800

>40

700

Misturadores de pás verticais (turbina axial)

Expressão empírica que relaciona *G* e *t* com a concentração do coagulante, quando é usado sulfato de alumínio

$$G^{2.8} t = 264 \times 10^6 / C$$

 $G(s^{-1})$ – gradiente de velocidade (20<G<50)

C (mg/L) – concentração de $Al_2 (SO_4)_3 (0 < C < 50)$

